
Calculating high-frequency resistive

losses in wires

Stanley Humphries, Ph.D.

Field Precision LLC
E mail: techinfo@fieldp.com

Internet: https://www.fieldp.com

1



This tutorial serves two functions:

Document some useful general results on the effective resistance and
ohmic losses in wires at high frequency.

Show how to set up calculations of magnetic field distributions in wires
with the two-dimensional code Nelson.

To start, let’s review some basic equations for a long wire with cross-section
area Aw (m2) and conductivity σ (S/m). At low frequency, the current
density is uniformly distributed across the wire and the resistance per length
is

R =
1

σAw

. (Ω/m) (1)

If the wire carries an alternating current I0 cos(2πft) at frequency f , the
time-averaged power dissipation is

P =
I2
0
R

2
. (W/m) (2)

At high values of f , the magnetic field associated with the current flow is
inhibited from penetrating the metal wire, concentrating the current density
near the wire surface. The effective effective cross-section area of the wire is
therefore smaller than Aw, increasing the resistance per length and the ohmic
power loss for a given current. The penetration distance for magnetic fields,
called the skin depth, is given by

δ =

√

1

πµσf
(m). (3)

The quantity µ is the magnetic permeability, given by

µ = (1.257× 10−6) µr, (4)

where µr is the relative magnetic permeability. The relative permeability
equals 1.0 for most wire metals.

The skin depth allows us to define the high and low-frequency regimes.
For a circular wire of radius rw, enhanced ohmic losses occur when

δ ≤ rw. (5)

In the following calculation, we’ll use the example of a circular copper wire
1.0 mm in radius. The conductivity of copper is σ = 5.814 × 107 S/m.
Using Eq. 3, the frequency corresponding to δ = 0.5 mm is 17.4 Khz. For
a wire area Aw = 3.142 × 10−6 m2, Eq. 1 gives the steady-state resistance
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Figure 1: Mesh for the Nelson circular wire calculation.

R = 5.474 × 10−3 Ω/m. For a drive current amplitude I0 = 1.0 A, the
low-frequency power loss is P = 2.738× 10−3 W/m.

The program Nelson finds field magnetic distributions in the frequency
domain – all quantities (including drive currents) vary harmonically at the
same frequency. The input files to define the mesh and to control the calcu-
lation are circular.min and circular.nin. Figure 1 shows the mesh with
dimensions in millimeters. The wire extends an infinite distance out of the
page. The large air region was included so that the calculation could easily
be modified for non-circular wires – the distant boundary has little effect on
the magnetic fields inside a wire.
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In the Nelson control script circular.nin, the boundary is a surface
of fixed vector potential (flux conserving boundary) and the air region has
µr = 1.0 and σ = 0.0 S/m. The copper wire has µr = 1.0, σ = 5.814 × 107

S/m and a drive current I0 = 1.0 A at a phase of 0.0o. The calculation of eddy
currents in the wire uses the multi-stage, self-consistent method described in
Chap. 4 of the Nelson manual. Figure 2 shows lines of B. At low frequency,
|B| inside the wire increases linearly with distance from the axis, consistent
with uniform current density. At high frequency, the magnetic flux density
is concentrated on the surface.

To make a quantitative comparison, we can use the automatic volume
integral in the Nelson Analysis menu to find the total power dissipation
per length along z. Results of calculations at several frequencies are plotted
in Fig. 3. The theoretical steady-state value is shown as a dashed line. As
expected, power losses increase significantly in the range 10-20 kHz. At hig
frequency, the current is confined to a thin layer on the wire surface. In this
case. the power loss increases approximately as

√
f , proportional to 1/δ.

It is important to recognize that the numerical results for the 1.0 mm
copper wire may be applied to circular wires of any diameter or composition.
It is not necessary to repeat the calculation for each special case. The strategy
is to recognize scaling laws and to incorporate them into a universal curve.
As an example, the green line of Fig. 4 plots the power level relative to the
steady-state value as a function of the ratio of the wire dimension to the skin
depth. There are two advantages to applying scaling laws:

Generality – the graphed data may used to determine the effective
resistance of any circular wire.

Identification of trends – it’s evident thatt the power loss is proportional
to 1/δ at high frequency.

As an example, suppose we have a 1/8”’ diameter stainless steel rod and we
want to find the frequency limit such that the power loss is no more than
50% of the low-frequency value. An inspection of Fig. 4 shows that δ must
be greater than rw/2.5. With σ = 1.240 × 106 S/m and rw = 1.59 mm, the
frequency corresponding to δ = 0.636 mm is f = 503.7 kHz. To check the
result, I set up another Nelson calculation with modified wire radius and
conductivity. For I0 = 1.0 A, the predicted steady-state power dissipation
is 50.77 mW/m. The Nelson calculation gives 50.77 mW/m at f = 1.0 Hz
and 76.28 mW/m at 503.7 kHz. The ratio of the two power levels is 1.50.

The results for circular wires could have been derived analytically with
some effort. The true advantage of a numerical approach is that complex
shapes are no more difficult to handle than simple shapes. To illustrate, I set
up a run for square copper wires by changing the shape of the wire region in
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Figure 2: Lines of magnetic flux density in and around a circular copper wire
at low and high frequency.
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Figure 3: Power dissipation per meter in a copper wire of radius 1.0 mm as
a function of frequency with a drive current amplitude of 1.0 A.

the Mesh input file. I used a wire with side lengths D = 2.0 mm. Figure 5
shows lines of B at high frequency. The universal power dissipation curve
for square wires is plotted as the blue line in Fig. 4.
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Figure 4: Universal curve for high-frequency wire resistance, power relative to
the steady-state value plotted as a function of the wire dimension normalized
by the skin depth. Circular and square wire cross sections.
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Figure 5: Lines of magnetic flux density in and around a square copper wire
at 40 kHz.
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