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Abstract

This paper describes finite-element techniques to simulate scattering of electromagnetic radiation
from objects in inhomogeneous solution spaces. The motivation for the work is the development
of software to model field interactions at surfaces for scanning near-field optical microscopes. The
calculation is performed in a computational anechoic chamber - a finite volume surrounded by an
absorbing layer to simulate free space. The volume may consist of any configuration of materials,
including lossy dielectrics and ferrites. The first step in the procedure is to find a distribution of
element current sources consistent with the absorbing boundaries that generate the desired
unperturbed wave solution. The base solution is not limited to simple plane waves. It may consist
of any valid electromagnetic disturbance including mixed propagating and evanescent waves. The
second step is to introduce one or more scattering objects and to solve finite-element equations
for the perturbed fields. One advantage of the approach is that the boundaries need only absorb
the scattered field components. Another useful feature for the microscopy calculations is that the
method is equally effective for near and far fields. In simulations of small object scattering the
absorbing boundary can be at a distance much less than a wavelength.
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1. Introduction

The scattering of radiation has provided an impetus for progress in numerical methods for
electromagnetism1-13. Applications include radar, antenna design and electromagnetic
vulnerability. Typical scattering solutions treat objects in free space illuminated by incident plane
waves. In contrast, this paper describes methods to handle propagation of radiation in highly
inhomogeneous solution spaces with complex unperturbed solutions. The capability is essential
for simulations of near-field optical microscopes14-16. The goal of these devices is to resolve
features on surfaces that are smaller that the wavelength of theilluminating radiation. Figure 1
shows one approach. In Fig. 1a a dielectric surface is internally illuminated by a plane wave with
wavelengthλ incident above the angle of total internal reflection. The evanescent fields outside
the dielectric are confined to a distance near the surface comparable toλ. Figure 1b shows a
schematic view of a sample surface with subwavelength variations of material composition or
topography. A metal or dielectric probe close to the surface can couple to the evanescent fields,
producing propagating radiation. As the probe moves, the detected far-field signal will vary
depending on the probe’s proximity to surface features. In this case, the image resolution is
determined by the probe’s displacement from the surface and the accuracy of small scanning
motions. Resolution in the range 10-50 nm is feasible for optical radiation. Numerical simulations
are essential to understand how images relate to the features of the surface. The application
presents several challenges for scattering theory: inhomogeneous solution volumes, mixtures of
propagating and evanescent waves, and complex surface variations.

Solution methods for inhomogeneous volumes are illustrated in this paper with calculations
based on a two-dimensional conformal mesh with triangular elements. The techniques have also
been tested in a three-dimensional finite-element code on a regular mesh17. Section 2 covers the
governing equations and the use of termination layers to represent free-space boundaries. Section
3 introduces the method of distributed internal current sources with applications of plane-wave
scattering in a free-space region. Here, the currents are chosen to generate the incident (or
unperturbed) wave solutionwith the effect of the termination layers included. Combining the
source distribution with the material properties of a scattering object leads to the perturbed
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Figure 1. Scanning near-field optical microscopy using internal
illumination. a) Illumination of a dielectric surface by a totally-reflected
plane wave. b) Detection of sub-wavelength surface features through the
interaction of a scanned probe with evanescent fields.

solution. The approach has an advantage similar to scattered field approximation7. The
termination layer must absorb only the wave components created by the scattering object.
Therefore, slightly imperfect absorbing boundaries do not mask the scattered fields. Benchmark
calculations are discussed as well as a comparison to more complex methods for representing
free-space boundaries. Section 4 covers the extension of the technique to scanning near-field
optical microscope simulations. Here, the unperturbed solution consists of standing and
evanescent waves adjacent to a dielectric surface (Fig. 1a). An important point is that a finite-
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element program incorporating the distributed source method is inherently a versatile hybrid code.
It is easy to incorporate unperturbed wave solutions from any source: analytic or numeric.

2. Governing equations and free-space boundaries
References 17 and 18 review finite-element equations of electromagnetic fields for two-

dimensional simplex elements19. The examples in this paper are E type solutions in planar
geometry. Here, waves with field components Ez, Hx and Hy propagate in the x-y plane. Figure 2
shows an example of a conformal triangular mesh. The solution volume is divided into irregular
triangles with edges that lie on the boundaries of material regions. For simplex elements the
primary field quantity Ez has values defined at the element vertices (intersection of edges). The
subsidiary quantities Hx and Hy are given by

Equation 1 implies that Hx and Hy are constant within an element. Each element has a unique
material identity with associated values of the dielectric constantε and magnetic permeability µ.
vertices.

Application of the integral form of Maxwell’s equations for a constant angular frequencyω

around a vertex in the mesh of Fig. 2 leads to the following linear equation for the primary field
component:

The subscriptk refers to a test vertex andi refers to the surrounding vertices and elements. The
quantity ai is the area of an element and Jzi is the axial source current density. The coupling
coefficients Wi are given by
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Figure 2. Two-dimensional electromagnetic calculations on a conformal
triangular mesh, E-type solutions. Mesh for a planar simulation with Ez

defined at the vertices. Material properties and the subsidiary quantities Hx

and Hy are associated with elements.

We can write Eq. 2 in the succinct form

where

and
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Equation 4 represents a set of coupled linear equations, one for each vertex, that can be solved by
direct matrix inversion.

Solutions of Eq. 4 apply to bounded volumes in space. We must specify conditions on the
surface of the solution region. Scattering solutions usually require a free-space or outer radiation
boundary condition7,20-27. Such a boundary is equivalent to a perfect absorber of electromagnetic
energy. The termination layer28,29 is a conceptually simple way to implement the condition. The
layer consists of a single layer of absorbing elements adjacent to an unconstrained (open-circuit)
boundary. With a proper choice of the complex dielectric constant and magnetic permeability the
surface impedance can be matched to the characteristic impedance of the adjacent propagation
medium. The process is analogous to a resistive termination of a transmission line. Termination
layers work well in scattering calculations where the scattering object is near the center of the
solution volume. In this case, scattering waves are almost normally incident on the layer.

In scattering calculations termination layers can be used to define a computational anechoic
chamber. A good geometry for two-dimensional calculations is a cylindrical propagation volume
centered on the scattering object surrounded by a thin absorbing layer. An incident field of known
form (such as a plane wave) drives currents in the object which generate the scattered fields.
Drive boundaries with a fixed value of Ez(t) cannot be used inside the chamber to create the
incident field because they would reflect scattered fields. Instead, the incident wave must be
generated by internal current sources (Jz in Eq. 6). The challenge is to find the proper spatial
distribution of Jz to generate an ideal incident wave. One problem is that even small reflections
from the termination layer create interference patterns that mask scattered fields of interest.

The frequency-domain calculation shown in Fig. 3 illustrates the difficulty. In the example the
goal is to generate an incident plane wave withλ = 1.0 µm moving 20� with respect to the x-axis
inside the homogeneous solution volume. In the simulation the termination layer around the
rectangular volume has thickness∆ = 0.05 µm. Following the prescription in Ref. 28, the matched
imaginary part of the dielectric constant at normal incidence for the frequency f = 3.0 x 1014 Hz is
ε” = -3.178εo. The valueε” = -3.178εosin(70�) = -2.986εo is assigned to the left and right layers,
while the top and bottom layers haveε” = -3.178εosin(20�) = -1.087εo. A thin current layer on
the left generates the plane wave. A harmonic modulation of Jz in the y-direction with wavelength
2.924 µm gives a 20� inclination. Electromagnetic energy moving backward from the layer is
absorbed by the adjacent termination layer. Figure 3 shows that the solution generally follows the
desired variation but is clearly imperfect. In addition to the effect of the source edge at the
bottom, interference produces a 5 per cent vertical modulation of field amplitude.
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Figure 3. Unsuccessful approach to the generation of a plane
wave in an anechoic chamber. Simulation geometry and
contours of Ez for the solution. Chamber dimensions: 4.0 µm
in x and 10.0 µm in y. Plane wavelength in air withλ = 1.0
µm moving 20� with respect to the x-axis. Solution volume
surrounded by a termination layer of thickness∆ = 0.025
µm. Current drive layer on left-hand side.

Section 3. Distributed source method for free-space scattering
It is clear that attempts to guess the correct spatial distribution of Jz lead to noisy solutions of

limited use. Instead we shall apply an inverse procedure starting from the desired incident
waveform. An analysis of the governing equations leads to Jz distributions that are consistent with
the presence of the termination layers. In this paper the procedure will be referred to as the
distributed source method. This section treats the example of an incident plane wave. Section 4
shows that the method has considerable generality and is consistent with any unperturbed wave
solution. To begin, suppose we have an anechoic chamber with a termination layer but no
scattering object. The desired field variation for an E-type wave is

If k x > 0 and ky = 0, the expression of Eq. 13 corresponds to a traveling wave with amplitude
ξ and wavelengthλ = 2π/kx moving in the positive x direction. Substitution into Eq. 4 gives

Equation 14 defines a source term at each vertex. The coefficients Wi and Ak depend on the
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material properties of surrounding elements, some of which may be part of the termination layer.
If we solve the set of equations represented by Eq. 4 using Eq. 14 for the source terms, the result
must satisfy Eq. 13.

The distributed source procedure for a frequency-domain scattering solution consists of the
following steps.

1) Set up an anechoic chamber with no scattering object surrounded by termination or
symmetry boundaries.

2) Calculate the set of source terms Sk from Eq. 14 using values of Wi and Ak evaluated
for the object-free space.

3) Insert the scattering object and recalculate Wi and Ak for all vertices.

4) Solve the set of equations represented by Eq. 4 with the adjusted values of Wi and Ak

and the distributed source terms Sk.

5) To analyze the total field solution make a data file of Ezk at all vertices. To analyze the
scattered field, make a file of the values Ezk - ξ exp[-j(kxxk + kyyk)] (the total field minus
the incident field).

The method has several advantages for finite-element scattering calculations:

• The calculation is efficient in terms of computer resources because the free-space
boundaries require only a single layer of elements. In contrast to other approaches29,30

there is no advantage to multi-element layers.

• There are no limits on the size of the solution volume compared to the wavelength. The
method is equally effective for near-field and far-field analyses.

• Because the termination boundaries absorb only the fields scattered from the object, the
effects of small reflections are minimized.

• Finite-element calculations using distributed sources are well-suited to scattering objects
with complex geometries. It is easy to assign values of complexε and µ to individual
elements to produce structures with graded or mixed properties.

To illustrate the method, consider an extreme example where the scattering object completely
changes the nature of the incident wave solution. Figure 4a shows the geometry. A one-
dimensional vacuum region with length 1.0 m has symmetry boundaries at the top and bottom and
termination layers with thickness∆ = 0.01 m at the left and right. The unperturbed solution is a
traveling wave with unity amplitude andλ = 0.5 m incident from the left-hand side. The scattering
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Figure 4. Benchmark test of one-dimensional wave propagation with a large scattering object. a)
Solution geometry. The volume has length 1.0 m in x and 0.5 m in y. Radiation: f = 6.0 x 108 Hz,
λ = 0.5 m. Top and bottom boundaries; open-circuit. Region 1: Upstream absorber. Region 2:
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Air. Region 3: Scattering object: air for the unperturbed solution, perfect conductor for the
modified solution. Region 4: Air. Region 5. Downstream absorber. b) Plot of�Ez� along x with
the metal object in place for a termination layer thickness∆ = 0.01. c) Plot of�Ez� along x with
the metal object in place for a termination layer thickness∆ = 0.0025.

object is a metal plate that divides the solution volume. The solution with the object in place
should be a standing wave with amplitude 2.0 and periodλ/2 in the upstream region and zero field
downstream. The unperturbed solution and source terms are computed with the electric
properties of all elements in internal regions set toεo and µo. To represent the metal plate the
material characteristics in the object region are changed toε = 10-12εo and µ = 1012µo. This choice
preserves the speed of light in the medium while reducing the characteristic impedance close to
zero.

Figure 4b shows a plot of field amplitude with the metal plate in place. The results are close to
the expected behavior. The standing wave on the upstream side has amplitude close to twice that
of the incident traveling wave and there is a high degree of field cancellation on the downstream
side. The residual field in this region is a standing wave that results from a small reflected
component from the absorbing boundary. Complete field cancellation occurs only if the scattered
wave amplitude exactly equals that of the incident wave. For a comparison, Ref. 28 shows that
the field reflection coefficient for radiation of wavelengthλ normally incident on a termination
layer of thickness∆ is about 5 per cent forλ/∆ = 50. Reflection of the backward-going wave from
the metal object surface should create a standing wave with a peak amplitude equal to about 10
per cent of the incident wave amplitude. This figure is consistent with the peak amplitude of 8.7
per cent in Fig. 4b. We can improve the results of the frequency-domain calculation by reducing
the width of the termination layer (Ref). Figure 4c plots the wave amplitude for a layer thickness
of ∆ = 0.0025 m. The residual field amplitude drops to 2.3 per cent, consistent with the prediction
of Ref. 28.

To illustrate two-dimensional solutions we will compare results to the advanced hybrid model
calculations of Ref. 31. The authors’ goal was to implement nearby absorbing boundaries to
simulate wave scattering from objects in free space. The calculation used second-order elements
and the Mei method [Ref. 27] to define boundary currents that represent perfect absorbers.
Figure 5 shows a difficult problem, scattering from a reentrant object. Plane waves withλ = 10 m
are incident from the left on the object (Fig. 5a). The radius of the anechoic chamber is 12.5 m
with a symmetry boundary on the bottom. The plot of Fig. 5b is a comparison of current density
moving along the object surface starting from the midpoint of the front face. The distributed
source result is the solid line, the Mei boundary calculation from Ref. 31 is shown as a dashed line
while the dotted line represents results from a boundary-element calculation. The Mei calculation
failed in this example, and the plotted results are extrapolations from an artificial object boundary.
The distributed source calculation is in good agreement with the boundary-element treatment,
with better resolution of the current discontinuity on the outer edge of the object and the field
enhancement on the downstream tip.
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Figure 5. Plane wave scattering from a reentrant metal object. a) Calculation geometry. The
solution volume is a half-cylinder of radius 12.5 m with a reflection symmetry boundary along the
bottom. A plane wave withλ = 10 m is incident from the left hand side. b) Plot of induced current
density on the object as a function of distance from the midpoint of the front face. Solid line:
distributed source prediction. Dashed line: result from Ref. 31 using the Mei boundary method.
Dotted line: Results from Ref. 31 using a boundary-element model.
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4. Distributed source method for inhomogeneous media
This section discusses calculations for inhomogeneous scattering volumes that are difficult to

resolve with conventional methods. These calculations are essential for simulations of scanning
near-field optical microscopes where phenomena of interest take place less than one wavelength
from surfaces. To begin, consider an example that can be directly compared to analytic theory: the
quarter-wave transformer. The geometry is similar to that of Figure 4a. Waves propagate in the
x-direction. There are symmetry boundaries at the top and bottom. Region 2 (-0.5 m to 0.0 m)
represents vacuum (ε2 = εo) with characteristic impedance Z2 = 377.3Ω. Region 1 is an absorber
with a matched conductivity. On the right-hand side, Region 4 (0.5 m to 1.0 m) is a dielectric with
ε4 = 4.0εo and Z4 = 188.7Ω. For the unperturbed solution Region 3 (0.0 m to 0.5 m) is a dielectric
with ε3 = 4.0εo. In this case, the incident wave should partially reflect at the dielectric discontinuity
at x = 0.0. For the scattered wave solution the central region is assigned a dielectric constantε3 =
2.0εo. For the choice of frequency f = 101.6 MHz the system is a quarter wave transformer. In this
case, the incident traveling wave from the left-hand side should be transformed to a traveling
wave with no reflection32.

This calculation requires a more complex unperturbed solution consisting of incident, reflected
and transmitted waves. Following Ref. 29, if the incident wave has electric field amplitude 1.0000
V/m, then the amplitude of the reflected wave is -0.3333 V/m and the transmitted wave is 0.6667
V/m. Multiple plane wave components with correct phase and amplitude are used in Eq. 14 to
calculate the source terms. Figure 6 shows plots of the amplitude of Ez as a function of position
from the interference of incident and reflected waves. The constant amplitude in the dielectric
(0.00 to 1.00 m) marks a pure traveling wave. The variation of Curve B is close to that of an ideal
quarter wave transformer solution. The constant amplitude of 1.0 in the vacuum indicates that
there is no reflected wave. The traveling wave on the right-hand side is consistent with total
energy transfer through the transition. The amplitude is close to the theoretical prediction of
(Z4/Z2)

½ = 0.707. Note that there are mixed standing and traveling waves in the transformer
region (0.00 to 0.50 m).

The following set of examples illustrates applications to scanning near-field optical microscopy.
The unperturbed solution corresponds to an inhomogeneous volume with propagating and
evanescent waves. The goal is to investigate the near-field effects of probes and geometric
irregularities on radiation near a dielectric surface with total internal illumination (Fig. 1). The
unperturbed solution consists of incident wave, totally-reflected waves and evanescent waves
propagating parallel to the surface. Figure 7a shows the calculation geometry. The solution region
with dimensions 2 µm × 2 µm is surrounding by a termination layer of thickness 0.025 µm. The
left-hand side is a dielectric withεr = 2.0. A plane wave is incident from the left at 50�, above the
critical angle of 45�. The frequency f = 4.243 x 1014 Hz givesλ = 0.500 µm in the dielectric andλ
= 0.707 µm in vacuum. The amplitudes and wave numbers of the incident, reflected, and
evanescent waves were calculated from Ref. 33. Figure 7b shows contours of Ez for the
unperturbed solution.
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Figure 6. Plot of�Ez� for a quarter wave transformer solution. The upstream vacuum propagation
region (ε = εo) extends from -0.50 to 0.00 m. The downstream region hasε = 4.0εo and extends
from 0.5 to 1.0 m. The object (0.0 to 0.5 m) hasε = 4.0εo for the unperturbed solution andε =
2.0εo for the modified solution. A traveling wave with frequency 101.6 MHz is incident from the
upstream boundary. Curve A: Unperturbed solution. Curve B: Modified solution.

We can create interesting solutions by adding perturbing objects. The first example, illustrated
in Fig. 8a, is a broad extension of the dielectric surface with thickness 0.4λ. The figure shows
the total field determined by the distributed source method. Introduction of the object radically
alters the nature of the local fields. The standing wave solution extends to the new surface and the
evanescent waves propagate around the extension. A second example (shown in Figs. 8b and 8c)
is a metal probe in vacuum a distance 0.1λ from the surface. The probe modifies the total fields
(Fig. 8b) by excluding magnetic fields from its volume. Currents excited in the probe by the
evanescent fields generate propagating radiation in the air region. Figure 8c shows the scattered
fields created by the probe.

The distributed source method is not limited to unperturbed solutions composed of plane
waves. The geometry of the solution volume can have any degree of complexity and the base
solution can be any valid field consistent with the geometry. The source of the unperturbed
solution can be analytic formulas or numerical results from another type of code. There are only
two requirements to set up a distributed-source finite-element calculation: 1) identification of the
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Figure 7. Simulation of total internal reflection and evanescent fields near a dielectric surface. a)
Geometry. The solution region with length 2 µm in x and y is surrounding by a termination layer
of thickness 0.025 µm. Region 1: Termination layer matched to the characteristic impedance of
Region 3. Region 2: Termination layer matched to the characteristic impedance of Region 4.
Region 3: Dielectric,ε = 2.0εo. Region 4: Air. b) Contours of Ez for a plane wave at frequency
4.243 x 1014 Hz incident from the left-hand side at 50�.
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Figure 8. Modifications of the solution of Fig. 7 by scattering objects, contours of Ez. a) Shaped
surface extension of thickness 0.14 µm, total fields. b) Metal probe 0.1 µm from the surface, total
fields. c) Metal probe 0.1 µm from the surface, scattered fields.

electrical properties of the elements and 2) a method to interpolate field values at vertex locations
to determine the sources Sk. The implication is that a finite-element code with distributed-source
capabilities has built-in hybrid capabilities. The strategy is to map a subset of any valid
electromagnetic solution to an appropriate computational anechoic chamber, add geometric or
material perturbations, and then proceed to a solution for the modified fields using the methods
described in Sects. 2, 3 and 4.
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