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Abstract

1. Introduction

This paper describes a new method to calculate beam-generated magnetic fields in
two-dimensional ray-tracing codes. The technique is useful for modeling high-current relativistic
electron beams where the magnetic force is comparable to the electrical force arising from space
charge. The discussion concentrates on the application to cylindrical beams in finite-element codes
employing conformal triangular meshes for the electric field calculation1-4. The extension to codes
with box meshes5-9 is straightforward. The approach is based on the assignment of model particle
currents to the faces of elements on the same mesh used for the electrostatic calculation. We then
derive enclosed currents and values of toroidal field at mesh vertices by tracing a logical path
along faces to the axis. The technique has several advantages:

• Field interpolations are more accurate than those on a simple rectangular mesh.

• Use of the same mesh and interpolation method reduces systematic differences in
calculations of electric and magnetic forces. The balanced calculations are resistant to
numerical filamentation instabilities in highly-relativsitic beams.

• Implementation of the magnetic calculation requires little extra run time because the
main tasks of identifying elements along particle trajectories and collecting interpolation
points are already performed for the electric field calculation.

• Because element faces in the mesh conform to the surfaces of materials, orbit
intersections with surface faces can be used to find the distribution of current on source
and collector electrodes. The toroidal magnetic fields produced by feed currents can
strongly influence the dynamics of beams from convex emitters.
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Section 2 reviews the ray-tracing technique and previous appoaches to the calculation of
beam-generated magnetic forces. Section 3 describes the assignment of model particle currents to
element faces, the basis of our procedure. The method automatically satisfies the condition

in the beam propagation region and gives the correct distribution of surface currents on��j � 0
electrodes. The algorithm is tolerant to variations in element size and time step and correctly
accounts for reflex orbits. Section 4 covers the conversion of face currents into values of toroidal
field. Balanced current and space-charge averaging can be introduced to eliminate oscillations of
field quantities between iteration cycles. Finally, Section 5 describes benchmark calculations
performed with the ETrak code to illustrate theaccuracy and versatility of the method.

2. Ray tracing method

Ray-tracing is a familiar technique10 to find self-consistent steady-state electric fields in
high-current charged-particle guns. A variety of finite-difference and finite-element codes1-9 have
been developed in the last two decades. Figure 1illustrates the mesh used for cylindrical
finite-element solutions in ETrak. The triangles are the cross-sections of small volumes that are
figures of revolution about the axis. We shall refer to the volumes aselements, the surfaces of the
elements asfaces, and the intersection of the faces asvertices. ETrak uses a structured conformal
mesh with vertices organized in columns (indexi along thez direction) and rows (indexj along
ther direction). The ray-tracing procedure for non-relativistic beams starts from a vacuum
electrostatic solution consisting of values of potential at vertices. The code generates severalφ(i,j)
model particles (denoted by indices ) to represent the beam. Each particle carries a1 � n � N
portionIn of the beam current. (Note thatIn has a negative value for electrons.)

The sum of model particle currents equals the full beam currentI:

The values ofIn and the initial positions and momenta of model particles may be specified to
represent an incident beam. Alternatively, the quantities may be determined by the code from the
source geometry and a local application of a Child law emission algorithm4. The program tracks
each particle in turn, numerically integrating the equations of motion over time step∆t using local
interpolations for the electric field. For each model particle the process yields a set of differential
orbit vectors, in the solution space. The initial and final positions of a particle are givenXpk (r,z)
by

To assign space charge the program determines the element that contains the midpoint of andXpk
increments the element charge by . After tracking all particles the program recalculates theIn∆t
electrostatic field with the added space-charge and then retraces the orbits. The process repeats
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Figure 1. Conformal triangular mesh for a cylindrical high-current electron gun. The
triangles are the cross-sections of elements. The sides of the triangles are faces and the
intersections of faces are vertices. The blue triangles (A) constitute a region constant
potential elements to represent the cathode and focusing electrode. The vertices marked in
red act as sources points and the connecting lines are Emission faces. The lines that
constitute the surface of the anode (B) are Collector faces. The green Material region
marked C is a target to stop electrons.

for several cycles. With suitable space-charge averaging between cycles, the technique usually
converges to a self-consistent solution.

For relativistic beams a ray-tracing code must also find the distribution of beam current to
calculate magnetic forces. Although the mathematical expression for magnetic fields in cylindrical
systems is simple, development of a procedure that can handle all practical cases is challenging.
One approach used in several codes isray counting. If the presently-tracked particle is at position

, then the code determines all rays that have smaller radius atzn. The enclosed axial current(rn,zn)
Iez equals the sum of internal ray currents plus one-half that of the present ray,
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The toroidal field is related to the enclosed current by

In a code that tracks rays sequentially, the ray-counting method is useful only for laminar beams.
In this case the particles maintain their radial order, and the enclosed currents are invariant. The
process becomes unwieldy for beams with non-zero emittance where the radial order changes
with z. Alternatively, a code can advance all model particles simultaneously, but the calculation of
Iez is straightforward only when particles move with about the same axial velocity (paraxial
motion). The main problem with ray counting is that electric forces are determined from the
particle distribution on the previous iteration cycle while the magnetic forces depend on the
present distribution. The imbalance may inhibit convergence of high-current solutions.
Furthermore, ray counting is not well-suited to the treatment of reflex orbits or counter-streaming
flows.

Another option that we have used in the Trak code3,4 is first to accumulate the current of each
ray on a simple independent mesh, next to determine values of enclosed current andB

θ
, and finally

to use interpolations to find the magnetic force on particles in the following iteration cycle. This
approach handles non-laminar and non-paraxial beams and resolves the problem of cycle offsets.
Nonetheless, the method has two drawbacks. For highly relativistic beams small systematic
differences in interpolations on the electric and magnetic meshes may cause a numerical instability
where the beam separates radially into filaments. Furthermore, a simple magnetic mesh yields
poor interpolations near curved emission surfaces.

Sometimes, the problems of filamentation and non-laminar beams can be resolved by tracking
orbits in therelativistic mode. The approach is simply to omit the magnetic force calculation and
to divide the transverse electric field force by . Here, the quantityγ is the radially-averaged1/γ2

relativistic energy factor of the beam. The approximation holds only under two circumstances: 1)
particle motion is paraxial and 2) the transverse electric arises solely from the beam space-charge.
The relativistic mode is not valid in electron guns or acceleration gaps. A further drawback is that
the code user must decide when to switch modes, increasing the chances for non-physical results.
The method we describe in the following sections has the advantages of the mesh approach and
resolves the problems of surface interpolations. Furthermore, the accuracy of the balanced
calculations of electric and magnetic forces make it unnecessary to invoke the relativistic mode.

3. Current assignment to element faces

In order to understand current assignment on a triangular mesh, it is useful to review briefly how
self-consistent non-relativistic orbits are determined in ETrak from electric field information.
Figure 1 shows the conformal mesh used to calculate electrostatic potential in a high-current gun.
In ETrak contiguous elements and vertices with the same material properties are calledregions
and are marked with a region number. In the electrostatic calculation, regions are assigned
physical properties to represent electrodes, dielectrics, vacuum volumes or fixed-potential



boundaries. For orbit tracking, regions are divided into three classes: 1)Vacuum, 2) Material and
3) Secondary. Particles move through Vacuum elements and stop if they enter a Material element.
A collision with a Secondary element results in re-emission of an electron. Secondary materials
are discussed in a separate paper11.

An ETrak simulation of a non-relativistic gun without secondary electrons consists of the
following operations:

• Find a vacuum electrostatic solution and (optionally) anappliedmagnetic field solution
on an independent mesh.

• Initiate model particles near an emission surface and assign currentsIn.

• Integrate the relativistic equations of motion for each particle sequentially by a
time-centered method12 with step∆t. During this process, the code must identify elements
that contain the ends and midpoint of the particle orbit vectors to perform electric fieldXpk
interpolations.

• For each time step increment the space charge in the element at the midpoint by .In∆t

• Stop the particles if they leave the solution volume or enter a Material element.

• Recalculate the field using the space-charge distribution generated by the full set of
model particle traces.

• Repeat the process for several cycles to achieve convergence.

Current assignment for the beam-generated magnetic field calculation is performed during orbit
integrations at the same time as space-charge assignment. The process employs the available
information on which element contains the orbit vector. The main difference is that particle
currents are assigned to element faces rather than volumes to ensure conservation of current. We
shall concentrate on general features of the method - the detailed index operations are laborious
even on a structured triangular mesh. Suppose that given a location we can identify the(r,z)
occupied element, the vertices and faces of the element, and the neighboring elements.
Furthermore, the code can find the nature of the face, one of four types:

• Interior faces have Material or Secondary elements on both sides. These faces are inside
electrodes. They do not contribute to the magnetic field solution.

• Vacuumfaces have Vacuum elements on both sides. This type of face fills the beam
propagation volume.

• Emissionfaces connect vertices that define the emission (or source) surface. Particles
enter the solution volume through Emission faces. Reflex orbits may also leave through an
Emission face.



Figure 2. Particles crossing a shared face between adjacent elements.
Definition of the particle vectorXp and surface vectorXs. The cross
productXp × Xs is positive in the case on shown on the left and negative
for the case on the right.

• Collectorfaces have a Vacuum element on one side and a Material or Secondary element
on the other. All faces on electrode surfaces that are not Emission faces are Collector
faces. Particles leave the solution volume through Collector faces.

To begin, consider the treatment of Vacuum faces. Suppose that during the orbit integration for
particlen the program detects that the ends of a particle vector lie in adjacent vacuumXpk
elements (Fig. 2). In this case, the particle has crossed the intervening Vacuum face. We form a
surface vector from the face end points arranged so that the vector points radially outward. IfXs
the cross product is positive, the particle has crossed toward higher values ofz and weXpk × Xs
increment the face current by +In. If the cross-product is negative, the current is adjusted by -In.

A particle that crosses a Collector face leaves the solution volume and contributes to current
flow on the electrode surface. Therefore, the current of a Collector face is always incremented by
+In, regardless of the direction of the orbit vector. The following section shows that this
convention yields the correct values ofIez for electrodes of any shape as long all surface vertices
logically connect to the axes along a path of Collector faces. Emission faces are more involved
because we want to include the possibility of reflected particles that may return to the source. At
the beginning of the calculation, the program makes a record of all emission faces, checks that
they constitute a contiguous surface logically-connected to the axis, and then arranges them in
order starting at the axis (Fig. 3). When a particle with orbit vector crosses an emission face,Xpk
the program creates a surface vector from the end points of the face arranged so that theXs
vector points away from the axis intersection. If the cross-product is positive, theXpk × Xs
particle is leaving the source and the program increments the face current by +In. A negative value
of the cross product indicates that the particle has re-entered the source, and the current is
changed by -In.
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Figure 3. Assigning current to Emission faces. Particle 1 re-enters
the source and the cross-productXp1 × Xs is negative. The cross
product for a particle that exits the source (Particle 2) is positive.

On a conformal mesh we must anticipate that a particle may cross several elements in a time
step in regions of high mesh resolution. In this case, the program makes a local search of faces
near the midpoint of the orbit vector to check for intersections with . The current ofXpk
interesected faces is changed following the rules for Vacuum, Collector or Emission faces. Figure
4 illustrates a quick method to check intersections. The particle vector has the start point

at t and end point at . The element face is represented byXp1 � (zp1,rp1) Xp2 � (zp2,rp2) t � ∆t
the vectors and . From the coordinates we form the following set ofXs1 � (zs1,rs1) Xs2 � (zs2,rs2)
vectors:

An intersection occurs if the following two conditions are true.



Figure 4. Vectors to check the intersection of a particle vector with a face vector.

• The cross products and point in opposite directions.Xa3 × Xa1 Xa3 × Xa2

• The cross products and point in opposite directions.Xb3 × Xb1 Xb3 × Xb2

To conclude this section, we mention some guidelines for assigning current to Collector and
Emission faces in a practical code. It is essential to ensure that the currents of particles that leave
the solution space are registered on the exit surface. The following rule applies to the two-step
orbit integration method used in ETrak. If a particle enters a Material or Secondary element on
either the full or half time step, current is assigned to an intersected Collector or Emitter face
before the orbit is terminated. A second concern is that the current of entering particles is
correctly assigned to Emission faces. The problem is that particles must be created in a vacuum
element to guarantee a valid initial field interpolation. The method of resolution depends on which
calculation mode is used for the ETrak run.

Track Mode. Particles are initiated from an externally-supplied list of parameters (position
vector, momentum vector and current), possibly from a previous calculation.

Space-charge Limited Emission Mode. The program generates a set of particles for each vertex
of the Emission surface based on a local application of the Child Law. The program creates the
particles at a computational surface in vacuum close to the Emission surface.

In the Track Mode the particles are usually generated with specified current close to a boundary
or electrode marked as an Emission surface. In this case, the program loops through the particles
and assignsIn to the closest Emission face. For the Space-charge Limited Emission mode ETrak
uses a method to create particles and set currents that is particularly well-suited to the magnetic
field calculation4. The program projects orbits backward from the computational surface to the
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Emission surface before undertaking the standard integration in the forward direction. During
reverse tracking the program assigns current to intersected Emission faces using the following
rule: -In if the cross-product is positive and +In otherwise.Xpk × Xs

4. Converting face currents to enclosed current and toroidal magnetic field

When orbit integrations are complete the program converts face current information to a set of
values of enclosed currentIez on vertices and then to values ofB

θ
through Eq. 4. These values can

then be used to find magnetic forces in the following cycle using linear or higher-order
interpolations. The first step of the conversion process is to scan the mesh and to set a flag that
marks all valid vertices asUnprocessed. Here the termvalid indicates that the vertex is a part of
at least one vacuum element. The next step is to set enclosed current on vertices connected to
Emission or Collector faces. The program searches the bottom row of the mesh (j = 1)
corresponding to the axis or minimum radius of the solution space. When a vertex connected to
an Emission or Collector surface is located, the program setsIez = 0 and marks the point as
Processed. It then checks whether the vertex is logically-connected to an Unprocessed Collector
or Emission point. The program moves to the connected vertex and sets the enclosed current
equal to that on the previous vertex plus the current of the connecting face. The process continues
until there is no Unprocessed point connected along a Collector or Emission face. The program
then searches for any other sets of surface points connected to the axis. Section 5 shows that the
procedure correctly sets currents on feed electrodes, even with complex reentrant geometries.

The next step is to set included currents at the remaining valid points that fill the vacuum
propagation volume. The program setsIez = 0 for remaining points on axis and marks them as
Processed. It them moves radially outward row by row looking for Unprocessed points. For each
vertex on rowj, the program looks for a connection along a face to the Processed point on row

with the smallest axial displacement. It then sets the enclosed current equal to that of thej�1
interior point plus that of the connecting face and marks the vertex as processed. If there are any
Unprocessed points after reaching the top row, the program repeats the mesh scan.

It is essential to average beam charge and current between cycles to ensure stability of the
ray-tracing procedure. For example, consider Child law space-charge assignment. On one cycle,
the electric field near the cathode may be strong, resulting in the large particle currents on the
following cycle. The resulting enhanced space-charge density suppresses fields near the cathode,
giving low current on the following cycle. To prevent cycle-to-cycle oscillations it is usually
necessary to make gradual corrections of the space charge by averaging with values from previous
cycles. To preserve force balance in relativistic beams the same averaging should be applied to
beam-generated magnetic fields. To implement averaging on cycleK we use the equation

In Eq. 6 the averaging constantζ is in the range . Low values ofζ give small0 < ζ < 1
corrections averaged over many cycles.



Figure 5. Expansion of a relativistic beam in free space: 617.4 A, 1 MeV. Particle orbits in black.
Dimensions in cm. 10× vertical exaggeration. A) Emission surface. B) Target region with
Collector surface. C) Contour lines of constant B

θ
.

5. Benchmark calculations

This section covers several calculations that demonstrate the accuracy and validity of the
face-current technique. Although the results look straightforward, they would be difficult to
achieve with the methods reviewed in Sect. 2. To begin consider the expansion of a
uniform-current-density relativistic electron beam in free space. The calculation is a sensitive test
of accuracy because forces arise solely from the presence of the beam. In the example a 617.4 A
beam with 1 MeV kinetic energy starts from a waist point with radius 1.0 cm. For a grounded
wall radius of 3.0 cm the predicted13 space-charge potential on axis at the waist is 62.93 kV.
Therefore, we can assume that the kinetic energy changes little during expansion. The predicted
beam expansion factor13 for a 50 cm transport distance is .rf/ri � 3.88

Figure 5 shows the result of a calculation in the Track Mode of ETrak with 40 model electrons.
The particles start at a distance of 0.01 cm from the left-hand boundary with current assigned to



Figure 6a. Capture of an expanding relativistic beam (617.4 A, 1 MeV) by a
grounded collector: electron orbits and lines of constant B

θ
. Dimensions in cm,

10× vertical exaggeration. Collector volume shown in light blue.
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Figure 6b.Collected current as a function of distance from probe tip
derived from face currents



approximate a uniform current density ofjz = 197 A/cm2. The plots shows electron orbits and
lines of constantB

θ
. Note that there is a vertical magnification by a factor of 10. The vertices on

the left-hand boundary share a Region Number and are specified as source points. The connected
faces therefore have the Emission condition and program assigns the current of one or more
particles with the closest starting point. Note that there is a thin target region along the right-hand
boundary. It is treated as medium with for the electrostatic calculation toε/εo � 1.0 × 10�6

preserve the Neumann boundary condition. The enclosed elements are designated as Material and
the surfaces faces have the Collector characteristic. The presence of the layer ensures that
electrons stop in a Material element. Linear interpolations are applied for both electric and
magnetic forces. Note that the orbits are almost perfectly laminar and there is no sign of
filamentation. The ratio of the final to initial envelope radius is 3.88. This is an absolute prediction
with no adjustable parameters. The two imperfect orbits near the axis reflect a common problem
in ray tracing codes. They result from accumulated interpolation errors in the region where two
very small forces are balanced. The error in final position, 1 mm over 50 cm of transit, has a
neglible effect on beam dynamics because the affected particles near axis carry only a small
fraction of beam current. Contours of constantB

θ
are also plotted in Fig. 5. The important point

is that lines at large radius are parallel, even though the associated vertices connect to the axis
along widely different logical paths. The effect demonstrates conservative of current in the
propagation volume and along conducting boundaries.

Figure 6a shows a related example that would be difficult to handle with previous methods.
Again, a 617.4 A 1 MeV electron beam expands from a waist with 1 cm radius. A grounded
probe 25 cm downstream captures the beam. Note the probe has a spherical tip and that the plot
has a 10× vertical exaggeration. Capture of the beam is a relativistic effect. The probe reduces the
local radial electric field so that the beam magnetic force predominates. In the simulation is is
essential to assign the current of impinging electrons to the front and side faces of the problem
toderive the pinch force correctly. The parallelism ofB

θ
lines at large radius is a

sensitiveindicatorof the validity of surface current assignment. The face-current method also
provides useful diagnostic information. For example, we can make ordered list of face values to
find the beam current distribution on the collector. Figure 6b shows collected current as a
function of distance from the probe tip.

The simulation of Figure 7 illustrates assignment of initial electron parameters to represent
space-charge-limited emission. Figure 7a and 7b show orbits andB

θ
contours in a

converging-beam gun for a relativistic klystron (420 A at 600 kV). The goal of the calculation is
to get a good estimate of the current density distribution at the entrance to the transport region.
The simulation is challenging because of substantial effects of the beam-generated magnetic field
in the gun and transport regions, the complex electrode geometry, and the high beam
convergence. The simulation employs a high-density mesh near axis to improve interpolations of
the electric and magnetic forces. To smooth the current density distribution the calculation applies
the ETrak capability to create multiple thermal electrons at initiation point. Five electrons with a
transverse temperature of 1 eV start at each source location. The axial current density can be
estimated at any point in the propagation volume by interpolations ofB

θ
at vertices. The code

makes a radial scan of toroidal field and then takes numerical derivatives,
. Fig. 7c shows resulting values for axial current density at the beamjz � (1/µ0) (dB

θ
/dr � B

θ
/r)

waist point in Fig. 7a.



Figure 7. Relativistic electron gun, 420 A, 600 kV. Dimensions in inches. Top:
Electron orbits. Bottom: Contours of constantB

θ
.
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Figure 7c. Variation of current density at the point of maximum compression, derived
from toroidal field information.

The final calculation of Fig. 8 utilizes all the techniques of the face-current method. The
simulation addresses relativistic flow from a spherical cathode across a gap with 1 MV applied
voltage. The collector and outer wall are grounded. Electrons are created on the cathode by
explosive plasma emission with a surface temperature of 500 eV. The beam-generated magnetic
field dominates electron behavior. It prevents radial electron flow, enhancing the space-charge
density near the cathode and strongly influencing the total current. Some orbits travel backward
and some return to the cathode, proving a rigourous test of current conservation. Note the
parallelism ofB

θ
lines at large radius. These lines exhibit a noticeable slope if we deactivate the

reassignment of relected electron current to Emission faces.

In conclusion, the face-current method gives physically-correct and accurate results, even for
complicated gun geometries and reflex flows. We have shown that it can be implemented on a
conformal triangle mesh. A significant advantage of the method is that it can be implemented
automatically for most practical geometries with minimal user input.

This work was supported by Subcontract Number 4400000474 from Science Applications
International Corporation under Contract Number N00014-97-C-2076 from the Naval Research
Laboratory.



Figure 8. Relativistic flow from a spherical emitter.: 15.66 kA at 1 MeV. Dimensions in inches.
Particles orbits and contours of constantB

θ
.
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