Field Precision LLC

Minimizing electric fields on finite-length coaxial electrodes

Stanley Humphries, Ph.D.

Field Precision LLC
E mail: techinfo@fieldp.com
Internet: https://www.fieldp.com

To reduce the possibility of breakdowns, a common goal in high-voltage engineering is to minimize peak electric field values on electrodes for a given voltage. One example is the choice of conductor and shield radii for a coaxial cable. For a given shield radius r_{o}, what choice of the conductor radius r_{i} gives the lowest electric? The field on the inner conductor is high when it is a thin wire $\left(r_{i} \ll r_{o}\right)$ or when the its surface is close to the shield ($r_{i} \cong r_{o}$). We expect a minimum at an intermediate value. The electric field on the inner conductor of a coaxial cable with applied voltage V_{0} is

$$
\begin{equation*}
E_{r}\left(r_{i}\right)=\frac{V_{0}}{r_{i} \ln \left(r_{o} / r_{i}\right)} \tag{1}
\end{equation*}
$$

Setting $\partial E_{r} / \partial r_{i}=0.0$, we find that the minimum field occurs when

$$
\begin{equation*}
\frac{r_{i}}{r_{o}}=\frac{1}{e}, \tag{2}
\end{equation*}
$$

where $e=2.718$. Similarly, the condition for minimum field between spherical electrodes with radii r_{i} and r_{o} is

$$
\begin{equation*}
\frac{r_{i}}{r_{o}}=\frac{1}{2} . \tag{3}
\end{equation*}
$$

In a recent electron-gun design project, the cathode was located on the spherical tip of a cylindrical electrode of radius r_{i}. For reliable gun operation, it was important to determine the peak electric field as a function of r_{i} for the combined geometry. The application was ideal for numerical methods - an analytic solution would be require complex series expansions and would not offer an accuracy advantage. Figure 1 shows the geometry for a calculation with the two-dimensional EStat code. The solution volume represented a 5.0 cm length of a coaxial transmission with outer radius $r_{o}=1.0 \mathrm{~cm}$ and applied voltage $V_{0}=1.0 \mathrm{~V}$. For good accuracy, the element size was about 0.01 cm . I made calculations for several choices of r_{i}. It was relatively easy to change the geometry by direct editing of the text-format EStat control script. A geometry change was effected with a global replacement of the r_{i} values in the vectors that defined the inner conductor.

For each solution I viewed a plot of $|\mathbf{E}|$ in the EStat analysis menu. In the auto-normalization mode, the code determined and displayed the maximum value of electric field magnitude in the solution volume. The color-coding in Fig. 1 shows the field distribution near the optimal value of r_{i}. The highest field occurred near the transition from a spherical to cylindrical surface. The circles in Fig. 2 show $\left|\mathbf{E}_{\text {max }}\right|$ as a function of the cathode radius. As expected, the best choice of r_{i} was somewhat below the value for ideal spherical electrodes (Eq. 3).

Figure 1: Calculation geometry, coaxial transmission line with $r_{o}=1.0 \mathrm{~cm}$ with a center conductor of radius r_{i} with a spherical tip. The color coding shows for electric field distribution for $r_{i}=0.5 \mathrm{~cm}$

Figure 2: Peak electric field magnitude as a function of the cathode radius.

To find an accurate value of r_{i} with a finite number of calculations, I made a fifth order polynomial fit to the data points (solid line in Fig. 2). This task took only a few minutes using the numerical utility program PsiPlot (http://www.polysoftware.com/plot.htm). Rather than attempt to solve the resulting equation, I simply instructed the program to calculate a large number of instances over a short interval near the minimum. The best choice of inner radius was

$$
\begin{equation*}
\frac{r_{i}}{r_{o}}=0.490 \tag{4}
\end{equation*}
$$

At this value, the peak electric field for the normalized calculation was $358.2096 \mathrm{~V} / \mathrm{m}$ or $3.5821\left(V_{0} / r_{o}\right)$.

