4 Field Precision LLC

Modeling an electron lens with SolidWorks
Stanley Humphries, Ph.D.

Field Precision LLC
E mail: techinfo@fieldp.com
Internet: https://www.fieldp.com

Figure 1: Einzel lens electrode with elliptical aperture.

MetaMesh (the mesh generator for our three-dimensional programs), supports the direct input of complex objects from SolidWorks and other CAD programs. This tutorial illustrates the effective use of SolidWorks objects in MetaMesh assemblies. It gives a step-by-step description of the procedure for people who may not use SolidWorks every day. The program has almost infinite capabilities - I will review a simple part that might appear in an electron optics system. My motivation was a recent consulting project, simulation of a three-dimensional electron beam transformation by an einzel lens. For a beam that propagates in z, the electrostatic lens achieves different focal properties in x and y through the use of an elliptical aperture in the central electrode (Fig. 1).

Using the native solid models of MetaMesh, it is possible to create a plate with an elliptical hole. The process would leave sharp edges, and one of the purposes of the study was to ensure that peak electric field levels were sufficiently low. Putting a uniform fillet around an elliptical opening is beyond the capabilities of the basic MetaMesh shapes, but is relatively easy in SolidWorks.

My strategy was to build other parts of the transport system from basic solids and to create the central electrode in SolidWorks. The part could then be ported to MetaMesh as an STL file. In the study, I needed to position the electrode to optimize beam focusing. In this case, it is more convenient to use the SHIFT command of MetaMesh rather than to regenerate the SolidWorks model and to export a new STL file. Accordingly, I

Figure 2: Pick a plane for making a sketch
creates a SolidWorks Part (rather than an Assembly) centered at $x=0.0$ $\mathrm{mm}, y=0.0 \mathrm{~mm}$ and $z=0.0 \mathrm{~mm}$. The choice corresponds to the workbench space of MetaMesh. I then moved the part to an absolute position in z. In this tutorial, we shall fabricate a plate with dimension $L_{x}=50.0$ $\mathrm{mm}, L_{y}=50.0 \mathrm{~mm}$ and $L_{z}=10.0 \mathrm{~mm}$. The elliptical hole has dimensions $R_{x}=15.0 \mathrm{~mm}$ and $R_{y}=10.0 \mathrm{~mm}$.

Run SolidWorks and set dimensions to mm. For this, choose the menu command Tools/Options/Document properties/Units and activate the radio buttom MMGS. Next, click File/New. Choose the Part option in the dialog. A good practice is to save the work often, so choose File/Save and supply the name central_electrode.

To get started, click the tool Extruded boss/base. We will make sketches in the $x-y$ plane to define the cross-sections of the plate and the aperture. Therefore, move the mouse to pick the Front plane (normal to z) as in Fig. 2. The program enters sketch mode. Pick the tool Center rectangle and move the cursor over the intersection of the red arrows (the origin) until it becomes active (Fig. 3). Click the left button and then move the mouse to define a rectangle of any dimension. Accept the operation by clicking the green check symbol on the left side of the screen. Next we will set the exact dimensions of the plate. Use the mouse to pick the top side of the rectangle (Fig. 4). In the Line properties section of the left, set the length dimension to 50.0 mm . Do the same for the left side. Click Zoom to fit for a better view.

We are now ready to use the sketch to create a solid plate. Click on Exit sketch. The information area on the left side is ready for instructions to make

Figure 3: Add a centered rectangle.

Figure 4: Set the width of the rectangle.

Figure 5: Extrusion of the sketch to create the plate.
the extrusion. Under Direction 1, choose the option Midplane in the list box. Fill in 10.0 mm for the depth. The result is a plate that extends between $-5.0 \leq z \leq 5.0 \mathrm{~mm}$. Click the green check symbol to add the part. This may be a good time to save the work.

The next step is to add the elliptical hole. Use the mouse to choose the front face of the plate (Fig. 6). It will be highlighted in blue. View the solid from the front face and click on the sketch tab. Pick the Ellipse tool and again associate the center point with the coordinate origin in the $x-y$ Move the mouse until the origin is highlighted and click the left button. Then move the mouse and click the left button to set any width in x and then set a width in y. We can set the exact dimensions in the information box on the left. Both the x and y angles should be 0.0°. Fill in the dimensions $R_{x}=15.0$ mm and $R_{y}=10.0 \mathrm{~mm}$ and then click the green check mark. Finally, we extend the elliptical hole through the plate. Exit the sketch mode, choose the sketch with the mouse and click on the Extruded cut tool. Use the option Through all. The final operation is to add fillets to the edges of the aperture. Under View orientation, pick Isometric. Both edges of the aperture should be visible. Use the mouse to pick the front edge and then click the Fillet tool. In the information box, set the fillet radius to 4.0 mm . Pick the rear edge and add another 4.0 mm fillet. Figure 1 shows the finished part.

After saving the work, we save the part as an STL file. Click File/Save as. In the Type list box choose STL. Then click Options to show the dialog of Fig. 8. There are several choices to make:

Figure 6: Pick the front face of the plate to make a sketch of the aperture.

Figure 7: Make a centered ellipse.

Figure 8: Export options dialog.

An ASCII format file is larger, but is more transparent in case there is a problem. You can inspect it with a text editor.

Set the units to mm.
There is no advantage to use facets that are much smaller than the MetaMesh element size. Generally, the choice of Coarse is sufficient. An unnecessarily high resolution will increase the MetaMesh run time and the chance of an error.

Be sure to check the box Do not translate STL output data to positive space to preserve the chosen part coordinates.

You can check the file using the Geometer STL Viewer. Figure 9 shows the tessellation of the solid surface created by SolidWorks. The facet perspective plot was created by unchecking the Solid box in the Region display dialog. The resolution of the filleted edges is clearly sufficient for electrostatic calculations.

We can use Geometer to create a quick MetaMesh script to observe how the shape appears in a conformal hexahedron mesh. Table 1 shows an example, which illustrates how to load an STL object. Figure 10 shows the end result.

Figure 9: Facets in the STL file displayed by the Geometer STL Viewer.

Figure 10: Cutaway view of the electrode in the hexahedron mesh created by MetaMesh.

Table 1: MetaMesh script CheckSTL. MIN.

```
GLOBAL
    XMesh
        -30.0 30.0 0.50
    End
    YMesh
        -30.0 30.0 0.50
    End
    ZMesh
        -10.0 10.0 0.50
    End
    RegName(1): SolutionVolume
    RegName(2): Electrode
    Parallel
END
PART
    Region: SolutionVolume
    Name: SolutionVolume
    Type: Box
    Fab: 60.0 60.0 20.0
END
PART
    Region: Electrode
    Name: Electrode
    Type: STL Central_Electrode Fit
    Fab: 8.00000E-01 3.00000E-01
    Surface Region SolutionVolume
END
ENDFILE
```


Figure 11: Modify the lens plate by editing the sketch that defines Extrude2 (aperture).

The final issue for a simulation run to optimize beam dynamics is how to use the baseline part to create a series of lens plates with different aspect ratios R_{y} / R_{x}. It is easy to make changes in the SolidWorks model to create a set of STL files. Load central_electrode.sldprt and save it under a different name. Set the View orientation to Front. Check the Features list on the left-hand side (Fig. 11). The feature Extrude2 represents the aperture and Sketch2 defines its shape. Left-click on Sketch2 and choose Edit sketch. Use the mouse to highlight the elliptical edge in the display. Its parameters appear in the information box on the left-hand side. For a test, change R_{x} to 10.0 mm to make a circular hole. Click the green check symbol to accept the sketch and then click Exit sketch. When you exit the sketch mode, the aperture and its dependencies (such as the fillets) are updated.

