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What is the Monte Carlo method?

Monte Carlo methods have application in a broad array of fields. In this
report, I’ll focus on one application – particle transport at the atomic level,
the foundation of our GamBet package for X-ray science. The fundamental
issue is how to deal with extremely large numbers of objects. Calculating the
history of every particle is beyond the capabilities of even the most powerful
computers. Instead, we seek the average properties of large groups.

In the Monte Carlo method, the full set of particles is represented by a
calculable set of model particles. In this case, each model particle represents a
group. We follow detailed histories of model particles as they undergo random
events like collisions with atoms. Characteristically, we use a random-number
generator with a known probability distribution to determine the outcomes
of the events. In the end, the core assumption is that averages over model
particles represent the average behavior of the entire group. The alternative
to this approach is the derivation and solution of moment (or transport)
equations. The following section covers this technique.

Instead of an abstract discussion, we’ll address a specific example to il-
lustrate the Monte Carlo method. Consider a random walk in a plane. As
shown in Fig. 1, particles emerge from a source at the origin with uniform
speed v0. They move freely over the surface unless they strike an obstacle.
The figure represents the obstacles as circles of diameter w. The obstacles
are distributed randomly and drift about so we can never be sure of their
position. The velocity of obstacles is much smaller than v0. If a particle
strikes an obstacle, we’ll assume it bounces off at a random direction with
no change in speed. The obstacles are unaffected by the collisions.

In a few sentences, we have set some important constraints on the physical
model:

The nature of the particles (constant speed v0).

The nature of the obstacles (diameter w, high mass compared to the
particles),

The nature of the interaction (elastic collision with isotropic emission
from the collision point)

The same type of considerations apply to calculations of radiation transport.
The differences are that 1) the model particles have the properties of photons
and electrons, 2) the obstacles are the atoms of materials and 3) there are
more complex collision models based on experimental data and theory. To
continue, we need to firm up the features of the calculation. Let’s assume
that 1010 particles are released at the origin at time t = 0. Clearly, there are
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Figure 1: Random walk in a plane.

too many particles to handle on a computer. Instead, we start Np = 10, 000
model particles and assume that they will give a good idea of the average
behavior. In this case, each model particle represent 106 real particles. We
want to find the approximate distribution of particle positions after they
make Nc collisions. The logic of a Monte Carlo calculation for this problem
is straightforward. The first model particle starts from the origin moving in
a random direction. We follow its history through Nc collisions and record
its final position. We continue with the other Np − 1 model particles and
then interpret the resulting distribution of final positions.

The source position is x = 0, y = 0. To find the emission direction, we use
a random number generator, a component of all programing languages and
spreadsheets. Typically, the generator returns a random number ξ equally
likely to occur anywhere over the interval

0.0 ≤ ξ ≤ 1.0. (1)

Adjusting the range of values to span the range 0 → 2π, the initial unit
direction vector is

ux = cos(2πξ), uy = sin(2πξ). (2)

The particle moves a distance a from its initial position and then has it first
collision. The question is, how do we determine a? It must be a random
quantity because we are uncertain how the obstacles are lined up at any
time. In this case, we seek the distribution of expectations that the particle
has a collision at distance a, where the distance may range from 0 to ∞. To
answer the question, we’ll make a brief excursion into probability theory.
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Let P (a) equal the probability that the particle moves a distance a with-
out a collision with an object. By convention, a probability value of 0.0
corresponds to an impossible event and 1.0 indicates a certain event. There-
fore, P (0) = 1.0 (there is no collision if the particle does not move) and
P (∞) = 0.0 (a particle traveling an infinite distance must encounter an ob-
ject). We can calculate P (a) from the construction of Fig. 2. The probability
that a particle reaches a+∆a equals the probability that the particle reaches
a times the probability that it passes through the layer of thickness ∆a with-
out a collision. The second quantity equals 1.0 minus the probability of a
collision.

To find the probability of a collision in the layer, consider a segment
of height h. If the average surface density of obstacles is N particles/m2,
then the segment is expected to contain Nh∆a obstacles. Each obstacle is a
circle of diameter w. The distance range for an interaction with an obstacle
is called the cross-section σ. In this case, we will associate the interaction
width with the obstacle diameter, or σ = w. The fraction of the height of
the segment obscured by obstacles is

F =
Nσh∆a

h
= Nσ∆a. (3)

The exit probability is given by

P (a+∆a) = P (a)× (1− F ) = P (a)× (1−Nσ∆a) (4)

A first-order Taylor expansion

P (a+∆a) ∼= P (a) +
dP (a)

da
∆a (5)

leads to the equation

dP

da
= −(nσ)P = −ΣP. (6)

Equation 6 defines another useful quantity, the macroscopic cross section

Σ = nσ with dimensions m−1. The solution of Eq. 6 is

P (a) = exp [−nσa] = exp [−Σa] = exp
[

−a

λ

]

. (7)

The new quantity is the mean free path, λ. It equals the average value of a for
the probability distribution of Eq. 7. The ideas of cross section, macroscopic
cross section and mean-free path are central to particle transport.

We can now solidify our procedure for a Monte Carlo calculation. The
first step is to emit a particle at the origin in the direction determined by
Eq. 2a. Then we move the particle forward a distance a consistent with the
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Figure 2: Probability of collision in a differential element.
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probability function of Eq. 7. One practical question is, how do we create
an exponential distribution with a random number generator that produces
only a uniform distribution in the interval 0.0 ≤ ξ ≤ 1.0? The plot of the
probability distribution of Eq. 7 in Fig. 3a suggests a method. Consider the
10% of particles with collision probabilities between P(0.3) and P(0.4). The
corresponding range of paths extends from a(0.6)/λ = − ln(0.4) = 0.9163
to − ln(0.3) = 1.204. If we assign path lengths from the uniform random
variable according to

a = −λ ln(ξ). (8)

then we can be assured that on the average 10% will lie in the range a/λ =
0.9163 to 1.204. By extension, if we apply the transformation of Eq. 8 to
a uniform distribution, the resulting distribution will be exponential. To
confirm, Fig. 3 shows a random distribution calculation with 5000 particles.

To continue the Monte Carlo procedure, we stop the particle at a collision
point a distance a from the starting point determined by Eq. 8 and then
generate a new random number ξ to determine the new direction according to
Eq. 2. Another call to the random-number generator gives a new propagation
distance a from Eq. 8. The particle is moved to the next collision point.
After Nc events, we record the final position and start the next particle.
The simple programing task with the choice λ = 1 is performed by the code
excerpt shown in Table 1.

Figure 4 shows the results for λ = 1 (equivalently, the plot is scaled in
units of mean-free-paths). The left-hand side shows the trajectories of 10
particles for Nc = 100 steps. With only a few particles, there are large
statistical variations, making the distribution in angle skewed. We expect
that the distribution will become more uniform as the number of particles
increases because there is no preferred emission direction. The right-hand
side is a plot of final positions for Np = 10, 000 particles. The distribution
is relatively symmetric, clustered within roughly 15 mean-free-parts of the
origin. In comparison, the average total distance traversed by each particle
is 100.

Beyond the visual indication of Fig. 4b, we want quantitative information
about how far particles move from the axis. To determine density as a
function of radius, we divide the occupied region into radial shells of thickness
∆r and count the number of final particle positions in each shell and divide
by the area of the shell. Figure 5 shows the results. The circles indicate the
relative density of particles in shells of width 0.8λ. Such a plot is called a
histogram and the individual shells (containers) are called bins. Histograms
are one of the primary methods of displaying Monte Carlo results. Note
that the points follow a smooth variation at large radius, but that they have
noticeable statistical variations at small radius. The reason is that the shells
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Figure 3: Exponential distribution. a) Relationship between intervals of P(a)
and a. b) Testing assignment of the collision distance, 5000 particles with
a/λ assigned according to Eq. 8.

7



Table 1: Core code for a random walk in a plane

DO Np=1,NShower

! Start from center

XOld = 0.0

YOld = 0.0

! Loop over steps

DO Nc=1,NStep

! Random direction

CALL RANDOM_NUMBER(Xi)

Angle = DTwoPi*Xi

! Random length

CALL RANDOM_NUMBER(Xi)

Length = -LOG(Xi)

! Add the vector

X = XOld + Length*COS(Angle)

Y = YOld + Length*SIN(Angle)

XOld = X

YOld = Y

END DO

END DO

Figure 4: Random walk in a plane, λ = 1 and Nc = 100. a) Sample trajec-
tories for 10 model particle trajectories. b) Final positions of 10,000 model
particles.
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Figure 5: Particle density as a function of radius (distance from the source),
λ = 1 and Nc = 100. The solid line is the solution of the two-dimensional
diffusion equation and the points are the results of the Monte Carlo solution.

near the origin have smaller area, and therefore contain fewer particles to
contribute to the average. Statistical variations are the prime concern for
the accuracy of Monte Carlo calculations.
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Transport equation solution

The alternative to the Monte Carlo treatment of the two-dimensional random
walk is to derive and to solve a transport equation. Here, we define an appro-
priate quantity averaged over a random distribution of particles and seek a
differential equation that describes how the quantity varies. For this calcu-
lation, the quantity is the average density of particles n(x, y, t) with units of
number/m2) (the quantity plotted in Fig. 5). To make a direct comparison
with the Monte Carlo results, we must carefully set model constraints:

Although the density may vary in space, the distribution of particle
velocities is the same at all points. Particles all have constant speed v0
and there is an isotropic distribution of direction vectors.

There is a uniform-random background density of scattering objects.

Equation 8 gives the probability distribution of a (the distance particles
travel between collisions) in terms of the mean-free-path λ.

We want to find how the density changes as particles perform their ran-
dom walk. Changes occur if, on the average, there is a flow of particles
(a flux ) from one region of space to another. If the density n is uniform,
the same number of particles flow in one direction as the other, so the av-
erage flux is zero. Therefore, we expect that fluxes depend on gradients of
the particle density. We can find the dependence using the construction of
Fig. 6. Assume that the particle density varies in x near a point x0. Using a
coordinate system with origin at x0, the first order density variation is:

n(x) ∼= n(0) +
dn(0)

dx
x. (9)

The goal is to find an expression for the number of particles per second
passing through the line element ∆y. To carry out derivation, we assume the
following two conditions:

The material is homogeneous. Equivalently, λ has the same value ev-
erywhere.

Over scale length λ, relative changes in n are small.

Using the polar coordinates shown centered on the line element, consider
an element in the plane of area (r∆θ)(∆r). We want to find how many
particles per second originating from this region pass through ∆y. We can
write the quantity as the product Jx∆y, where Jx is the linear flow density
in units of particles/m-s. On the average, every particle in the calculation
volume has the same average number of collisions per second:
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Figure 6: Geometry to calculate flux in a plane from a density gradient in x.

ν =
v0
λ
. (10)

The rate of scattering events in the area element equals ν times the number
of particles in the area:

n(x) ν (r∆r∆θ). (11)

The fraction of scattered particles aimed at the segment is

∆y cos(θ)

2πr
. (12)

Finally, the probability that a particle scattered out of the area element
reaches the line element is given by Eq. 7 as exp(−r/λ). Combining this
expression with Eqs. 11 and 12, we can determine the current density from
all elements surrounding the line segment. Taking the density variation in
the form:

n(x) = n(0) +
dn(0)

dx
r cos(θ). (13)

leads to the expression:
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Jx ∼= −
∫

2π

0

dθ
∫

∞

0

dr
ν

2π
exp(−r/λ)

[

n(0) cos(θ) +
dn(0)

dx
r cos2(θ).

]

(14)

The integral of the first term in brackets equals zero, so that only the term
proportional to the density gradient contributes. Carrying out the integrals,
the linear current density is

Jx ∼= −D
dn

dx
, (15)

where the planar diffusion coefficient (with units m2/s) is given by

D =
λ2 ν

2
=

λ v0
2

. (16)

Generalizing to possible variations in both x and y, can write Eq. 15 as

J = −D ∇n. (17)

This relationship between the vector current density and the gradient of den-
sity is called Fick’s first law. Fick’s second law, a statement of conservation
of particles, states that:

∂n

∂t
= −∇ · J+ S = −∇ ·D ∇n+ S. (18)

The quantity ∇·J is the divergence of flux from a point and S is the source of
particles at that point (particles/m2-s). Equation 18 is the diffusion equation

for particles in a plane. It states that the density at a point changes in time
if there is a divergence of flux or a source or sink.

We are now ready to compare the predictions of the model with the Monte
Carlo results of the previous section. The solution to the diffusion equation
for particles emission from the origin of the plane is

n(r, t) =
A

Dt
exp

(

−r2

4Dt

)

, (19)

where r =
√
x2 + y2. We can verify Eq. 19 by direct substitution by using

the cylindrical form of the divergence and gradient operators and taking D
as uniform in space. In order to make a comparison with the Monte Carlo
calculation, we pick a time value t0 = Ncλ/v0 and evaluate A in Eq. 19 based
on the condition that

∫

∞

0

2πr dr n(r, t) = Np. (20)

The resulting expression for the density at time t0 is
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n(r, t0) =
Np

2πNcλ2
exp

(

−r2

2Ncλ2

)

, (21)

The prediction of Eq. 21 is plotted as the solid line in Fig. 5. The results
from the two methods show close absolute agreement.

Finally, we can determine the theoretical 1/e radius of the particle cloud
from Eq. 21 as

re =
√

2Nc λ. (22)

In a random walk, the particle spread increases as the square root of the
number of transits between collisions. For Nc = 100, the value is re/λ ∼= 14.1
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Comparing the methods

The demonstration calculations give a basis for comparing the relative ben-
efits and drawbacks of the Monte Carlo and transport equation approaches.
We have seen that both strategies are based on averages over random dis-
tributions of particles whose statistical properties are known. Both methods
give the same result in the limit of a large number of model particles. The
main difference is that the averaging process is performed at the beginning
of the transport equation calculation but at the end of the Monte Carlo
solution.

In the transport equation approach, the idea is to seek average quanti-
ties n or J and to find relationships between them (like Fick’s first and
second laws). These relationships are accurate when there are large
numbers of particles. To illustrate the meaning of large, note that
the number of electrons in one cubic micrometer of aluminum equals
3× 1015. When averages are taken over such large numbers, the trans-
port equations are effectively deterministic.

In the Monte Carlo method, the idea is to follow individual particles
based on a knowledge of their interaction mechanisms. A practical
computer simulation may involve millions of model particles, orders of
magnitude below the actual particle number. Therefore, each model
particle represents the average behavior of a large group of actual par-
ticles. In contrast to transport equations, the accuracy of Monte Carlo
calculations is determined by statistic variations, evident in Fig. 5.

An additional benefit of transport equations is that they often have closed-
form solutions that lead to scaling relationships like Eq. 22. We could extract
an approximation to the relationship from Monte Carlo results, although at
the expense of some labor.

Despite the apparently favorable features of the transport equations,
Monte Carlo is the primary tool for electron/photon transport. Let’s un-
derstand why. One advantage is apparent comparing the relative effort in
the demonstration solutions – the Monte Carlo calculation is much easier to
understand. A clear definition of physical properties of particle collisions was
combined with a few simple rules. The only derivation required was that for
the mean free path. The entire physical model was contained in the 14 lines
of code of Table1. In contrast, the transport model required considerable
insight and derivation of several equations. In addition, it was necessary
to introduce additional results like the divergence theorem. Most of us feel
more comfortable staying close to the physics with a minimum of intervening
mathematical constructions. This attitude represents good strategy, not lazi-
ness. Less abstraction means less chance for error. A computer calculation
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that closely adheres to the physics is called a simulation. Program managers
and funding agents have a warm feeling for simulations.

Beyond the emotional appeal, there is an over-riding practical reason
to apply Monte Carlo to electron/photon transport in matter. Transport
equations become untenable when the interaction physics becomes complex.
For example, consider the following scenario for a demonstration calculation:

In 20% of collisions, a particle splits into two particles with ve-
locity 0.5v0 and 0.2v0. The two particles are emitted at a random
angles separated by 60o. Each secondary particle has its own
cross section for interaction with the background obstacles.

It would be relatively easy to modify the code of Table 1 to represent this
history and even more complex ones. On the other hand, it would be require
consider effort and theoretical insight to modify a transport equation. As a
second example, suppose the medium were not uniform but had inclusions
with different cross sections and with dimensions less than λ. In this case,
the derivation of Fick’s first law is invalid. A much more complex relation-
ship would be needed. Again, it would relatively simple to incorporate such
a change in a Monte Carlo model. Although these scenarios may sound arbi-
trary, they are precisely the type of processes that occur in electron/photon
showers.

In summary, the goal in collective physics is to describe behavior of huge
numbers of particles. We have discussed two approaches:

Monte Carlo method. Define a large but reasonable set of model
particles, where each model particle represents the behavior of a group
of real particles with similar properties. Propagate the model particles
as single particles using known physics and probabilities of interactions.
Then, take averages to infer the group behavior.

Transport equation method. Define macroscopic quantities, aver-
ages over particle distributions. Derive and solve differential equations
that describe the behavior of the macroscopic quantities.

The choice of method depends on the nature of the particles and the inter-
action mechanisms. Often, practical calculations usually use a combination
of the two approaches. For example, consider the three types of calculations
required for the design of X-ray devices (supported in our Xenos package):

Radiation transport in matter. Photons may be treated with the
Monte Carlo technique, but mixed methods are necessary for electrons
and positrons. In addition to discrete events (hard interactions) like

15



Compton scattering, energetic electrons in matter undergo small angle
scattering and energy loss with a vast number of background electrons
(soft interactions). It would be impossible to model each interaction in-
dividually. Instead, averages based on transport calculations are used.

Heat transfer. Here, a particle is the energy transferred from one
atom to an adjacent one. Because the interaction model is simple and
the mean-free-path is extremely small, transport equations are clearly
the best choice.

Electric and magnetic fields. The standard approach is through
the Maxwell equations. They are transport type equations, derived by
taking averages over a large number of charges. On the other other
hand, we do employ Monte-Carlo-type methods to treat contributions
to fields from high-current electron beams.
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