
Creating a Maxwell-Boltzmann

particle distribution

Stanley Humphries, Ph.D.

Field Precision LLC
E mail: techinfo@fieldp.com

Internet: https://www.fieldp.com

1



A common task in computer calculations of collective physics is the gen-
eration of input particles with a desired probability distribution in energy,
angle or position. This article discusses some easy methods to accomplish
the task using a software module to manipulate tabular functions. As an ex-
ample, we’ll consider creating a Maxwell-Boltzmann distribution in kinetic
energy U .

As a preliminary, let’s review some probability theory. A distribution of
particles with respect to a quantity like energy is represented as a probability

density. The probability density p(x) is defined as follows: the probability of
observing a value of x in the interval x0−∆x/2 to x0+∆x/2 is approximately

p(x0)∆x (1)

The marginal probability is given by

P (x) =
∫

x

xmin

p(x′)dx′. (2)

Figure 1 shows the relationship of the two functions. If p(x) is a normalized
function, then the marginal probability has the range 0.0 ≤ P (x) ≤ 1.0. The
function gives the probability of observing a value of x between xmin and a
specified maximum value. The marginal probability has another interpreta-
tion illustrated by the shaded region of Fig. 1. The interval along the P (x)
axis represents a fraction of the particles (5% in the figure). These particles
are distributed along an interval of the x axis with a length inversely pro-
portional to the slope of P (x), or 1/p(x). The particle density along x is
low where p(x) is small and high where p(x) is large. In other words, a uni-
form distribution along the vertical axis maps into a non-uniform distribution
along the horizontal axis with density proportional to p(x).

The observation suggests the following procedure to createN model parti-
cles with probability density p(x). First, find N uniformly-distributed values
of the variable ζ in the interval 0.0 ≤ ζ ≤ 1.0. Second, use the inverse of the
marginal probability function to create N particles with x values

x = P−1(ζ). (3)

There are potential problems applying the procedure in a code:

• The probability density p(x) may not be normalized or integrable.

• There may be no closed form to express the inverse of the marginal
probability.

• The probability density may extend to infinity.

2



Figure 1: Relationship of the probability density and the marginal probability
for a Maxwell-Boltzmann energy distribution with x = U/kT .

3



All three items apply to the Maxwell-Boltzmann distribution. The first two
issues can be resolved by using a numerical approach that does not involve
closed-form expressions. To resolve the third issue, it is necessary to truncate
distributions at a finite value.

Tabular functions are a useful tool for generating particle distributions.
My introduction to the concept was in the program SciMath developed by
Robert Kares. It was easy-to-use software from the DOS era that was the
precursor to programs like Mathematica and MathCad. A tabular func-

tion in SciMath was a set of discrete values of an independent variable xi

and a dependent variable yi(xi). By using a variety of numerical techniques,
the program made interpolations and calculated integrals and derivatives. To
the user, tabular functions could be employed as though they were continu-
ous functions. I wrote a module to define tabular function variables and to
perform operations almost two decades ago and have applied it to innumer-
able applications since then. There is a complete description of the module
at the end of this article. The source code is available by request.

Let’s see how to apply tabular functions to create a Maxwell-Boltzmann
energy distribution. The probability distribution of kinetic energy scales as

p(x) ∼
√
x exp(−x), (4)

where x = U/kT for the temperature T in oK. My general approach is to do
one-time setup calculations with a spreadsheet and to incorporate repetitive
operations in the code. The first column in my spreadsheet contained 200
values of x over the range 0.0 ≤ x ≤ 10.0. The second column contained
non-normalized values of p(x) from Eq. 4. The third column was the definite
integral of p(x) using the trapezoid rule. Finally, the fourth column was
equal to the third column divided by the maximum value of the integral:

P (x) =

∫
x

0
p(x′)dx′

∫
10

0
p(x′)dx′

. (5)

This quantity represents the normalized marginal probability for a truncated
Maxwell-Boltzmann distribution.

The spreadsheet values can be transferred to a code with data statements
or via a text file. They are assembled into a tabular function with the PUTXY
subroutine. The trick to defining the inverse function is to use the P (x) values
as the independent variable and the x values as the dependent variable. This
is one of the outstanding features of tabular functions. An inverse function
is formed simply by exchanging the independent and dependent values. This
is possible as long as the function is single-valued (as in Fig. 1).

For each model particle, the code generates a random value of ζ in the
range 0.0 ≤ ζ ≤ 1.0. It then employs the VALUE subroutine to determine x
from the P−1 table. This value is multiplied by kT to determine the kinetic

4



Figure 2: Initial distribution of particles at the cathode. Kinetic energy for
kT = 1.0 eV.

energy U . Figure 2 shows the result for 10,000 model electrons with kTe = 1.0
eV. The distribution in kinetic energy follows Eq. 4. To test the validity of
the procedure, we can calculate the average kinetic energy of the electron
distribution. The value for the distribution of Fig. 2 is 1.485 eV. The small
difference from the theoretical value of 3kT/2 = 1.500 eV is a consequence
of truncation of the distribution at high energy.

A tabular function is an array of double precision numbers that contains
a set of x and y(x) values (maximum of 256) plus information about the
structure of the table. The calling program defines a table with statements
of the form

INTEGER(4),PARAMETER :: NTabSize = 770

INTEGER(4),PARAMETER :: NTabMax = 32

DOUBLE PRECISION MuTab(1:NTabSize,1:NTabMax)

The statements are taken from the Magnum program, which can include
up to 32 tables of relative magnetic permeability µr as a function of µ0H. A
set of values xq and yq is added to a table with a statement of the form

CALL PutXY(MuTab(1,NumTable),xq,yq)

The module handles stack operations and indices internally. A tabular func-
tion has the following structure within the module:

5



FName(1) - FName(256) XValues

FName(259) - FName(512) YValues

FName(513) - FName(768) YDPValues

FName(769) DBLE(NEnt)

Number of x-y pairs, negative if table has not been

sorted and if the cubic spline coefficients have not

been calculated

FName(770) DBLE(NError)

The YDP values are used for cubic spline interpolations. The module includes
the following interface functions and subroutines:

SUBROUTINE PutXY(FName,XValue,YValue)

Adds an x-y set to the tabular function FName. XValue and

YValue are double precision numbers. Increments NEnt and

sets it equal to a negative number.

NError = 1 if the table is full

DOUBLE PRECISION FUNCTION GetX(FName,N)

Returns the Nth x value of the tabular function.

NError = 1 and GetX = 0.0 if N < 1 or N > NEnt

DOUBLE PRECISION FUNCTION GetY(FName,N)

Returns the Nth y value of the tabular function.

NError = 1 and GetX = 0.0 if N < 1 or N > NEnt

SUBROUTINE Define(FName)

Sets all x,y and y" values to 0.0, and NEnt = 0

NError = 0

SUBROUTINE ScrDump(FName,NUnit,LinFlag)

Diagnostic routine to write contents of FName to

file unit NUnit. Cubic spline interpolation if

LinFlag is FALSE, otherwise linear interpolation

6



INTEGER FUNCTION NElem(FName)

Returns the number of x-y values stored in the table

FName

DOUBLE PRECISION FUNCTION XTMin(FName)

Returns the minimum value of x stored in FName.

NError = 1 and XMin = 0.0 if NEnt = 0

DOUBLE PRECISION FUNCTION XMax(FName)

Returns the maximum value of x stored in FName.

NError = 1 and XMax = 0.0 if NEnt = 0

DOUBLE PRECISION FUNCTION YMin(FName)

Returns the minimum value of y stored in FName.

NError = 1 and YMin = 0.0 if NEnt = 0

DOUBLE PRECISION FUNCTION YMax(FName)

Returns the maximum value of y stored in FName.

NError = 1 and YMax = 0.0 if NEnt = 0

DOUBLE PRECISION FUNCTION Value(FName,x)

Returns the value of y at the position x in the

tabular function FName, cubic spline interpolation

NError = 1 and Value = 0.0 if NEnt = 0

NError = 2 and Value = 0.0 if x out of range

NError = 3 and Value = 0.0 if interpolation error

DOUBLE PRECISION FUNCTION LValue(FName,x)

Returns the value of y at the position x in the

tabular function FName, linear interpolation

NError = 1 and Value = 0.0 if NEnt = 0

NError = 2 and Value = 0.0 if x out of range

NError = 3 and Value = 0.0 if interpolation error

INTEGER FUNCTION NCode

(Returns last NError)

SUBROUTINE Deriv(FName)

Converts the tabular function to its derivative

NError = 1 if NEnt = 0

NError = 2 if interpolation error

7



SUBROUTINE Integral(FName)

Converts the tabular function to its integral

NError = 1 if NEnt = 0

NError = 2 if interpolation error

Checks that y is a monotonically increasing or decreasing

value of x. If so, inverts the function. The function is

unchanged if there is an error

NError = 1 if NEnt = 0

NError = 2 if non-monotonic function

SUBROUTINE Invert(FName)

Checks that y is a monotonically increasing of decreasing

value of x. If so, inverts the function. The function is

unchanged if there is an error

NError = 1 if NEnt = 0

NError = 2 if non-monotonic function

SUBROUTINE Copy(FName,FName2)

Copies tabular function FName to FName2

To request the module source code, contact us at techinfo@fieldp.com.

8


