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Figure 1: Hollow steel sphere with µr = 833.3 immersed in a uniform mag-
netic field, showing lines of magnetic flux density B. R0 = 2.0 cm, ∆r = 0.15
cm.

1 Ideal material response

Magnetic shielding has long been a critical concern for sensitive electro-
optical devices like photomultipliers. Shielding calculations have become
increasingly important for large magnets in MRI facilities. Here, shields are
important for personnel safety, operation of nearby equipment and isolation
of multiple MRI machines. A magnetic shield is relatively simple. It is an
enclosure constructed from steel or other materials with a high relative mag-
netic permeability. Because lines of magnetic flux density flow preferentially
through such materials, they are shunted around a protected volumes. Nu-
merical codes such as PerMag and Magnum are effective tools for shielding
design. This article reviews some useful techniques and good practices.
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We shall begin by reviewing some theoretical constraints on shields with
non-saturable materials characterized by a fixed value of relative magnetic
permeability µr. Figure 1 shows an example, a hollow steel sphere immersed
in a uniform magnetic field. (Note that the figure is a z-r plot and represents
the full sphere.) The shell has outer radius Ro and inner radius Ri. The flux
density far from the origin approaches the value B = Bo z. The analytic
result1 in the limit µr ≫ 1 is that the field inside the sphere has the uniform
value B = Bi z, where
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If the thickness of the spherical shell, ∆R = Ro − Ri, is small compared to
the average radius, Eq. 1 may be written as:

Bi

Bo

∼=
3Ro

2µr∆R
. (2)

The PerMag solution SHIELDSCALING (supplied in the example library)
is a numerical example of a spherical shield. The file SHIELDSCALING.MIN

represents a shell with outer radius Ro = 2.0 cm inside a large solution volume
(a cylinder of radius 10.0 cm and length 20.0 cm). The solution boundaries
are set to generate a uniform field Bz = 0.050 tesla in the absence of the
sphere:

The left and right boundaries in z have the special Neumann condition
so that B is normal to the surfaces.

The stream function on the inner radial boundary has the Dirichlet
condition rAθ = 0.0 tesla-m2.

The solution volume is filled with a uniform flux density B = Boz if
the outer radial boundary has the stream function value RoAθ(Ro) =
BoR

2

o
/2. For the example, RoAθ(Ro) = 2.5× 10−4 tesla-m2.

We can confirm that the assigned value of stream function is correct by
making an initial run with the iron set to µr = 1.0. An initial calculation
with a thin shell (∆R = 0.05 cm) employs a small local element size of 0.025
cm. The code prediction for the internal field is Bi = 1.187 × 10−3 tesla,
close to the theoretical prediction of Bi = 1.200× 10−3 tesla.

1J.D. Jackson, Classical Electrodynamics, Second Edition (Wiley, New York,
1975), Sect. 5.12.
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Figure 2: Saturation curve for type 50H450 steel, plot of 1/µr versus the
total flux density in the material.

2 Scaling in shielding calculations

Thin sheets are the bête noire of finite-element calculations. Large disparities
in scale often lead to bad meshes and inaccurate answers. The issue may
arise for magnetic shields constructed of thin layers of steel or µ-metal. In
this case, it is often useful to employ scaling principles rather than a literal
approach. To define an alternative, note that Eq. 2 involves the product
(µr∆R). Suppose that we double the thickness of the shell and halve the
magnetic permeability. The result should be about the same as long as
∆R ≪ Ro. In the test example of Fig. 1, if we use a thickness ∆R = 0.10
cm and µr = 1250, the calculated field inside the shield is Bi = 1.218× 10−3

tesla. A thickness ∆R = 0.15 cm with µr = 833.3 gives Bi = 1.2492 × 10−3

tesla, about a 4% difference from the theoretical result.
As a general rule, in a two- or three-dimensional shielding calculation,

you can substitute a thicker sheet with reduced µr as long as the actual and
adjusted sheet thicknesses are small compared to the scale size of the volume
being shielded. You should be cautious applying scaling if parts of the shield
may become saturated. This topic is discussed in Sect. 4.
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3 Material saturation

Shielding design is more complex if portions of the ferromagnetic material
become saturated. In this state, all magnetic domains of the material are
aligned, and it looses its ability to conduct additional flux. As a result,
the shield becomes less effective. Figure 2 shows a saturation curve for a
typical magnet steel. The quantity γ = 1/µr is plotted versus the magnitude
of the total flux density in the material (|B|). It is convenient to use the
quantity γ because it lies in the range 0.0 to 1.0 while the relative magnetic
permeability may vary by several orders of magnitude. From the discussion
of Sect. 1, the reduction factor of a magnetic shield is roughly proportional to
γ. The quantity is small at low field so that shielding is effective. In the plot,
γ starts to increase at about 1.6 tesla and rises sharply above the material
saturation point (Bs = 2.00 tesla).

We can estimate conditions for saturation in a shield with thickness ∆R
and radius Ro normal to an applied field Bo. Inspection of Fig. 1 shows
that the shield pulls in both interior and exterior flux, roughly over a radial
range 0 ≤ r ≤ 2Ro. The cross-section area is about 4πR2

0
while the area of

the shield is 2πR0∆R. Assuming all diverted flux passes through the shield
material, we can find a criterion for the onset of saturation:

∆R ∼= 2R0

(

Bo

Bs

)

. (3)

For example, the thickness of a shield composed of a material with Bs = 2.00
tesla with radius Ro = 100.0 mm immersed in a field Bo = 0.05 tesla should
satisfy the condition ∆R > 5.0 mm.

The PerMag example SHIELDPIPE gives a quantitative picture of the
effects of saturation. It treats the practical case of an open shield, a steel
pipe with outer radius Ro = 100.0 mm and length L = 300.0 mm. Figure 3
shows the geometry. The material follows the saturation curve of Fig. 2.
Again, a uniform applied field Bo = 0.05 tesla is created by setting a fixed
stream function of the outer radius of the solution volume. A sequence of runs
with wall thickness varying from 2.0 to 10.0 mm were created. The results
are plotted in Fig. 4. The illustration shows the ratio of the internal to
external field as a function of wall thickness. The quantity Bi was measured
at the center of the pipe (z = 0.0 mm, r = 0.0 mm). The plot is consistent
with the estimate from Eq. 3 that wall thickness should exceed 5.0 mm. The
dashed red line shows the lowest possible value of the field ratio, determined
by in a run with a numerically-infinite value of relative magnetic permeability
(µr = 10000.0).
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Figure 3: Magnetic shielding by a steel pipe: z-r plot of lines of B. The
calculation covers half the pipe with a symmetry boundary at z = 0.0. Top:
wall thickness 10.0 mm. Bottom: Wall thickness 3.0 mm.
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Figure 4: Ratio of internal to external field at the center of a steel pipe of
radius Ro = 100.0 mm as a function of wall thickness. Bo = 0.05 tesla.

4 Three-dimensional shield calculations

The Magnum program can handle material saturation effects in shield cal-
culations. Nonetheless, we must recognize that a nonlinear three-dimensional
calculation requires a significant effort. Furthermore, the issue of scale dis-
parities for thin material sheets is more acute. There is a strong motivation
to plan calculations carefully to avoid wasted effort.

The most obvious path to minimize effort is to avoid saturation altogether.
We saw in the previous section that shielding is ineffective when the material
becomes saturated. Unless there is a severe weight constraint, you should
use sufficient shielding material. Here is a recommended procedure for a
three-dimensional calculation:

Estimate an initial shield thickness from Eq. 3. Set up a linear calcula-
tion with a representative fixed µr for unsaturated material, applying
the scaling technique discussed in Sect. 2 if necessary.

Use MagView plots to check values of |B|, ensuring that the flux
density is less than about 1.6 tesla in all regions.

If necessary, increase the material thickness and make additional cal-
culations.
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Figure 5: Saturation curve for type 50H450 steel, plot of 1/µr versus the
applied flux density in the material.

If the shield ratio Bi/Bo is determined mainly by penetrations in the
housing, the exact choice of µr has a relatively small effect.

The example SHIELD SATURATION illustrates how to do a full nonlinear
calculation with Magnum. The shield is a steel box with wall thickness
4.0 mm immersed in a uniform field B = B0z, where B0 = 0.05 tesla. The
box has full widths 200.0 mm in x and y and 320.0 mm in z. The mate-
rial has the saturation curve of Fig. 2. For a Magnum calculation, it is
necessary to express the relative magnetic permeability in terms of the ap-
plied magnetic flux density. The resulting variation of γ = 1/µr is shown
in Fig. fig:materialmagnum. The curve is relatively simple compared to the
variation of Fig. 2. As a result, nonlinear problems in Magnum generally
converge quickly.

Table 1 shows the Magnum control script SHIELD SATURATION.GIN. The
main difference from the PerMag setup is in the definition of the uniform
background field. Magnum performs a scalar calculation and does not make
use of the magnetic vector potential. Instead, the BUni command is used to
set a uniform value of applied field for the reduced potential calculation. In
this case, it is necessary to set symmetry conditions on the upper and lower
boundaries in the direction of the field (Region 3). One of the boundaries
is located at the symmetry plane z = 0.0 to reduce the run time of the
calculation. The natural boundary condition for Magnum (a perfectly-
conducting wall) applies on the boundaries in x and y. By symmetry, it
is sufficient to model only the first quadrant in the x-y plane. The field-
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Table 1:

SolType = STANDARD

Mesh = Shield_Saturation

DUnit = 1.0000E+03

ResTarget = 1.0000E-07

MaxCycle = 1000

BUni Z 0.05

Omega 1.95

Avg 0.75 15

* Region 1: Air

Mu(1) = 1.0000E+00

* Region 2: Steel 50H450

Mu(2) = (Table, steel50H470_magnum.dat)

* Region 3: Boundaries along z

Potential(3) = 0.0

EndFile

exclusion condition on the outer boundaries applies to the field components
created by the shield. There is a significant air volume around the shield
to approximate the free-space condition. The Avg command controls the
iterations of the nonlinear calculation. Figure 6 shows the magnitude and
direction of B in the plane y = 0.0n mm. Note that the field level in the
shield is clamped close to the saturation value. For the given wall thickness,
the reduction factor is Bi/Bo = 0.445.

In this example, the box shape made it easy to represent the thin walls of
the shield. For arbitrary shapes, it may be necessary to use scaling principles
like those discussed in Sect. 2. A larger local element size may be employed
with thicker walls. An approximate scaling technique can be applied in the
presence of material saturation. Inspection of Fig. 6 shows that the flux
density magnitude is almost uniform across the thickness of the shield at all
positions. We would get approximately the same solution with the following
procedure:

Double the thickness of the shield walls.

In the PerMag curve of B versus µr, halve the values of B.

Convert the curve to Magnum format by replacing the independent
variable with Bo = B/µr.
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Figure 6: Saturated magnetic shield calculation with Magnum. Plot of |B|
in the plane y = 0.0 mm.
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