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Figure 1: Magnetic dipole moment vector of a circular current loop of radius
a. The quantity R is the distance from the center of the loop and θ is the
angle with respect to the z axis.

Sometimes we need to find small magnetic fields at a relatively large
distance from a magnet assembly. One application might be to determine
shielding requirements for sensitive equipment in an MRI installation. Nu-
merical field solutions are performed in a finite volume. The problem is that
the common boundary conditions for magnetostatic finite-element solutions
strongly influence weak fields at large distances, leading to inaccuracies. This
tutorial illustrates how to make good estimates of distant fields.

The far-field variation of most magnet assemblies approaches that of a
simple dipole. The flux density of a dipole is given in spherical coordinates
by:

B =
(

µ0m

4πR3

)

(aR 2 cos θ + aθ sin θ) . (1)

The quantity m is the magnitude of the magnetic moment of the assembly
with units of A-m2. Figure 1 shows the definition of the coordinate system
with respect to the direction of the vector magnetic moment m. The mag-
netic moment of the single-turn loop shown in the figure with current I and
radius a is

m = az Iπa2. (2)

To make an accurate estimate of the flux density at a distance from a large
magnet, we can use the following procedure:
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Set up a solution with boundaries that extend to the far-field region.
Find calculated values of flux density at positions along the z axis (θ =
0.0o) that are removed from both the assembly and the boundaries.
Then, fit the values to the 1/R3 variation of Eq. 1 to find m.

Use the value of m in Eq. 1 to predict the magnetic flux density at
positions near or outside the boundaries.

A two-dimensional cylindrical solution illustrates the method and demon-
strates accuracy limits set by boundaries (MAGDIPOLE). Figure 2 shows one
half of a cylindrical coil. The solution is performed in the space z ≥ 0.0 m
with a Neumann boundary at z = 0.0 m. The full coil has inner radius 0.04
m, outer radius 0.05 m, length 0.10 m and current I = 1000 A-turn. For
comparison, the magnetic moment of a circular loop with radius a = 0.045
m and current I = 1000 A is 6.362 A-m2. The coil encloses a region of radius
0.03 m and full length 0.14 m. The magnetic permeability of this region may
be set to that of air (µr = 1.0) or ferrite (µr = 500.0). The boundaries of the
solution volume are zmax = 0.40 m and rmax = 0.40.

In a cylindrical PerMag solution, the axis always assumes the Dirich-
let condition rAθ = 0.0 tesla-m2. We can choose a Dirichlet or Neumann
condition for the outer boundaries at the top and the right-hand side. The
Dirichlet condition (top plot in Fig. 2) corresponds to a perfectly-conducting
wall. Lines of B that would extend into free space are confined within the
solution cylinder. The effect is to reduce the value of Bz along the z axis
close to the right-hand wall. The Neumann boundary condition (bottom of
Fig. 2) constrains lines of B to be normal to the boundary. The condition
has the opposite effect to that of the Dirichlet condition. It increases the
value of Bz along the z axis near the wall. An inspection of the figure shows
that the fields of the two solutions near the assembly are the same, but there
are large differences near the boundaries.

Figure 3 shows quantitative results for the two boundary conditions. The
value of m was calculated from a scan of Bz along the z axis from z = 0.10
m to the boundary according to:

m =

(

2π

µ0

)

Bz(z, 0) z
3. (3)

The plots show computed values of m for the two boundary types without
(top) and with (bottom) the ferrite slug. For comparison, the dashed red
line gives the value for a circular loop with I = 1000 A and a = 0.045 m.

Although the numerical values diverge significantly from the ideal free-
space result, they contain information sufficient to make a good estimate of
the far fields. First, consider the plot for the air region. The quantity Bz(z, 0)
approaches the far-field variation at z = 0.12 m (a distance approximately
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Figure 2: Lines of magnetic flux density generated by a cylindrical coil en-
closing a ferrite slug. Top: Dirichlet boundary (perfectly-conducting wall).
Bottom: Neumann boundary.
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Figure 3: Variation of calculated magnetic moment m along the z axis with
Dirichlet and Neumann boundary conditions. Top: Enclosed region has µr =
1.0. Dashed red line is the theoretical value for a thin loop. Bottom: Enclosed
region has µr = 500.0.
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equal to the outer diameter of the coil). With a Dirichlet boundary, the
calculated magnetic moment remains constant to about z = 0.2 m and then
rises because of the boundary effect. The Dirichlet boundary has a stronger
influence, reducing Bz to zero at the boundary. The value of m at z = 0.18
m with the Neumann boundary is slightly higher than the theoretical value
for an equivalent circular loop. The difference is real, resulting from the
non-zero length and radial thickness of the coil. An inspection of the graph
shows that m ∼= 7.0 A-m2.

The curves in the bottom plot of Fig. 3 settle to the far-field variation at
larger z because of the protruding ferrite object. An inspection of the curves
yields a value of 30 A-m2 at z = 0.2 m, probably accurate to a few percent.
The numerical calculation yields a good answer rather than a perfect answer.
The following conclusions gives some perspective on the analysis:

It would be quite difficult to derive the magnetic moment of the ferrite
assembly with analytic methods.

Given the value of m, we can find distant fields to good accuracy using
Eq. 1. In contrast, the direct field values in the numerical solutions near
the boundary differ substantially from the free-space dipole variation.

The numerical solution shows that the ferrite slug increases the mag-
netic moment for given coil parameters more than a factor of four.
The amplification is significant for applications such as satellite torque
generators.
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