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ABSTRACT
   ETherm is a versatile finite-element software system
to model heating in biological media for electrosurgery
and other medical applications. The electrical field
component calculates penetration of RF radiation into
conductive dielectrics. The thermal solver finds
time-dependent or steady-state solutions using stable
diffusion methods with automatic time step adjustment.
An important feature is the capacity to treat non-linear
diffusion with temperature-dependent thermal
properties such as blood perfusion to represent physical
changes of tissues. The program also evaluates
Arrhenius damage integrals by maintaining temperature
integrals over tissue elements.

INTRODUCTION
  The ETherm program models RF heating and thermal
transport in biological media with emphasis on
electrosurgery applications. The finite-element program
handles two-dimensional systems with planar or
cylindrical symmetry. ETherm simultaneously performs
boundary value solutions for RF electric fields and an
initial value solution for the temperature. A goal in the
development of the program was effective use by
researchers who may not be experts in numerical
methods. The documentation and program interfaces
allow an occasional user to control the solution process
from mesh generation to analysis. The program runs on
widely available personal computers.

This paper gives a brief description of mathematical
methods used in ETherm. The following section
describes the motivation for the finite-element approach
and the organization of the program. An important
feature is forward compatibility with the growing body
of data on thermal properties of tissues1. The program
can organize a variety of input information including
temperature-dependent material properties as well as
heat source and electrode voltages with arbitrary time
variations. The next section covers principles of the RF

field calculation in media with dielectric and resistive
properties in the frequency regime of interest for
electrosurgery.

Here, the electric field can be derived from a
quasi-static potential. The field distribution determines
a spatially dependent heat source term for the thermal
calculation. When there are temperaturedependent
volume resistivities the field distribution must be
periodically updated. The following section describes
the treatment of thermal transport on an arbitrary
triangular mesh. The finite-element equations follow
from application of conservation of energy over small
volumes. The effects of blood perfusion are included in
a form equivalent to that in the bioheat equation. An
adaptation of the Dufort-Frankiel method2 ensures
numerical stability independent of the choice of time
step. Although this method is absolutely stable on a
rectilinear mesh, numerical divergence sets limits on the
shapes of elements in a triangular mesh. The final
section illustrates code capabilities with benchmark
results.

COUPLED FINITE ELEMENT CALCULATIONS
   Numerical simulations usually involve the expression
of continuous variations in a discrete form that can be
solved by digital computers3. The approach in
finite-difference calculations is direct conversion of
partial differential equations using difference operators.
The process is referenced to points on a spatial mesh. In
contrast, the basic units in finite-element calculations
are small divisions of the solution volume4. The
application of integral relationships like Gauss' law or
energy conservation over the elements leads to
difference equations. In both methods, the end result is
a large set of coupled linear equations that are
straightforward to solve on computers. One advantage
of the finiteelement process is that the integral method
is not closely tied to a rectilinear mesh. This makes it
easier to derive difference equations for generalized
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meshes. Furthermore, the definition of elements
facilitates assignment of material properties and the
identification of boundaries. For example, finite
element calculations give the correct discontinuity of
electric fields on dielectric surfaces. Another advantage
is that all unspecified boundaries automatically assume
a Neumann condition.

   The two-dimensional calculations of ETherm are
performed on a conformal triangular mesh like that of
Fig. 1. The space is divided into triangular volumes so
that element sides lie close to material boundaries. In
comparison to rectilinear meshes, the division of Fig. lb
gives a good representation of curved boundaries where
accuracy may be critical. The average element size can
also be adjusted to enhance accuracy in regions of
strong geometric variations. The mesh generation
process starts with boundary input. ETherm includes a
graphical drawing utility similar to popular CAD
programs. The output of the program is a set of point,
line and arc vectors that define the boundaries of
regions (Fig. la). The mesh generator begins with a set
of similar elements with known logical connections that
fill the solution volume. Triangle vertices are shifted to
conform to region boundaries. The affected vertices are
labeled with the associated region number. For volume
regions the program assigns the region number to
elements inside the closed boundary. The result after
smoothing is shown in Fig. lb. The robust method is
responsive to almost any user-generated geometry.
Furthermore, the simple logical connections facilitate
fast matrix inversions on personal computers.

   Physical properties are associated with region
numbers only during the solution process. ETherm uses
the same mesh for the electrical and thermal solutions,
reducing storage requirements. The regions of Fig. la
illustrate the generality. For the RF solution, Region I
is a conductive medium with ,r = 1.0 and D = 13.6 S-m,
Region 2 is a dielectric probe sheath with ,r = 10.0 and
D = 4. Region 3 is an electrode with a fixed potential of
amplitude of 100 V and phase 0°, while Region 4 is a
grounded outer wall. For the thermal solution Region 1
is tissue with D = 1000 kg/m3, k = 20 W/m2-s, and Cp =
3500 J/kg-°C. The dielectric sheath is a poor conductor
with k = 0. I W/m2-s. The electrode volume is an active
region with a high thermal conductivity k = 200
W/m2-s.

 I t  i s  s t ra ight fo rward  to  incorporate
temperature-dependent material properties in the
finite-element formulation. The main challenge is 

Figure 1

effectively organizing the diversity of possible
combinations. A coupled electrothermal problem may
require data on temperature variations of electrical
resistivity, specific heat and thermal conductivity. In
addition, it may be necessary to specify complex
temporal variations of heat sources, surface
temperatures or electrode voltages. The approach in
ETherm is to store all material and temporal variations
in an identical tabular format and pipe communication
with the program through a standard interpolation unit.
The user enters data through flexible format text files.
Each data line contains a set of values for the
independent and dependent variables. The program can
store up to 32 tables with up to 1024 data lines. Table
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storage can be flexibly assigned to any physical
function through pointer references.

   In coupled calculations thermal variations take place
much more slowly than the electric field relaxation
time. Therefore, it is sufficient to calculate the electric
field distribution in quasi-equilibrium. The first steps in
a coupled solution are to set values for electrical
resistivity at ambient temperature and to determine the
field by successive over-relaxation5. The volumetric
heat source in an element with electric field amplitude
Ei; and conductivity Fi is given by FiEi

2/2. The RF
distribution and any additional sources are used to
initiate the thermal transport calculation. If  there are no
variations of electrode voltages and no
temperature-dependent materials the initial RF
distribution applies throughout the calculation.
Otherwise, it is necessary to update the fields
periodically. Program output consists of spatial
distribution files of temperature, quasi-static potential,
and material properties at specified times. For
electrosurgery simulations ETherm maintains Arrhenius
damage integrals for tissue elements. An interactive
graphical postprocessor program uses the information
to create a variety of plots. The user can also place up
to 20 thermal and electrical probes inside the solution
volume to record time variations in a history file.

RF ELECTRIC FIELD CALCULATION
   For most electrosurgery simulations it is sufficient to
reduce the Maxwell equations to a form similar to
electrostatics. The criterion is that the system size L is
much smaller than the wavelength of electromagnetic
radiation at frequency f, or

(1)

For example, with L = 0.10 m, f = 50 MHz, : = :o, and
, = ,o, the ratio L/8 equals 0.05. In this limit inductive
electric fields make a small contribution so that L×E –
0. Therefore, the electric field can be expressed as the
gradient of a scalar potential, E(x,t) = -LNexp(jTt).

   The conductive current density is related to the
electric field by jc = FE. The time-varying conductive
current generates local concentrations of space charge,
Dc. The equation for the conservation of conductive
current is

The Maxwell equation for the divergence of electric
field is Combining this result with Eq. 2
gives

Equation 3 is identical to the Poisson equation if we
treat the quantity in parenthesis as a complex dielectric
constant,

The equation for low-frequency fields in resistive media
is the same as that for electrostatics except that the
quantities Ni and ,i may be complex numbers.
Physically, this means that there are phase differences
in electric fields at different locations because the
medium has both resistive and capacitive properties.

   The finite-element equation for the potential at a
vertex can be derived by applying Gauss' law on a
surface surrounding the point the includes one-third the
volume of each of the adjacent elements. The result for
a two-dimensional planar geometry and the regular six
element mesh used in ETherm is

Equation 5 relates the value of the complex potential at
a point to those at six neighboring vertices multiplied
by complex coupling coefficients3,4 Wi. These numbers
depend on the geometry and dielectric constant of
elements adjacent to the line between the vertices.
There is one relationship like Eq. 5 for each vertex. In
a typical simulation the number of equations ranges
from 5000 to 100,000. The large equation sets can be
solved on typical personal computers in approximately
a minute by the method of successive over-relaxation.
This process consists of continually checking the
deviation of potential values from the prediction of Eq.
5 and adding proportional correction factors5. Spatial
derivatives of the complex potential give the magnitude
and phase of electric field in elements of the solution
volume.
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THERMAL TRANSPORT
   The finite-element equivalent of the bioheat equation6

is derived by applying conservation of energy over
elements surrounding a vertex. The result is

where the sums are taken over elements surrounding a
vertex with areas ai, material densities Di, specific heats
Cpi and thermal conductivity ki. The coupling
coefficients are similar to those of the RF calculation
except ki replaces ,i. In the final term representing
blood perfusion the quantities Wb, Cpb and Tb are
respectively the mass flow rate, specific heat and
temperature of blood in the element region and  is the
average element temperature. There are several options
for time diflerencing of Eq. 6. A good choice is the
explicit Dufort-Frankiel algorithm2 that preserves
numerical stability for any choice of time step )t. The
form for a conformal triangular mesh' is

where the superscript n denotes time t = n)t
and the subscript i denotes the surrounding
elements. At each step ETherm advances the
temperature of all vertices with periodic
correction of )t to minimize run time and to
preserve accuracy.
   The Dufort-Frankiel method is absolutely stable when
applied to finite-difference equations on a rectilinear
mesh. We have observed a numerical instability that
may grow in certain regions of conformal finite-element
meshes. An analysis Eq. 7 and the forms of the coupling
coefficients show that solutions are unstable in mesh
areas where there are approximately eight or more

Figure 2

contiguous elements with an internal angle greater than
90°. Small changes in the element geometry can
stabilize the divergence. ETherm checks all triangles
before a calculation and warns of potential problem
areas.

BENCHMARK TESTS
  Two examples will serve to illustrate some capabilities
of ETherm. The first is a challenging non-linear
problem, propagation of a thermal bleaching wave. This
sharp temperature discontinuity, similar to a shock
wave, can occur in a material where the thermal
conductivity rises with temperature. Figure 2 shows a
wireframe plot of temperature in a medium where the
thermal conductivity jumps by a factor of 100 within a
2° span near 20°. In the solution, a temperature rise
from 0° to 25° in 0.1 ms on the top-left boundary
creates a transition wave that propagates downstream.
The figure shows the temperature distribution at 3.5 ms
for an ambient thermal conductivity of k = 1.0 W/m2-s.
   Figure 3 shows results for combined RF heating and
thermal transport for the system of Fig. 1. Figure 3a is
a contour plot of quasi static electric potential for
frequency f = 200 MHZ at reference phase 0.0°. The
displacement current across the dielectric sheath is large
at the high frequency so that the assembly probe acts
like a metal cylinder with radius equal to the sheath
outer radius. The total power transferred to the medium
is 7.278 W. At lower frequency (10 MHz) heating is
concentrated at the probe tip and the power transfer 
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Figure 3.

drops to 4.035 W. Figure 3b shows isothermal lines at
time t = 3.5 ms after initiation of the probe voltage. The
solution determines the effect of probe heat conduction
on the maximum tissue temperature.
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