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1 Introduction

The space-charge-limited flow of electrons across a vacuum acceleration gap
is a process of practical importance in the design of wide variety of electron-
beam equipment. The theory of flow with a singular electron distribution
(zero kinetic energy at the cathode) is familiar and easily understood. It
was developed in 1911 by C.D. Child[1]. The theory becomes much more
difficult when electrons are emitted from a high-temperature cathode with an
initial kinetic-energy distribution[2, 3, 4]. The analytic theory of Langmuir[5]
describes the physics of thermal sheath formation and electron selection.
Although the theory is important in the history of science, it involves so
many equations, variables and limiting conditions that it is doubtful that it
is generally applied. Nonetheless, thermal effects are important in the design
of electron injectors and modeling codes:

For low-voltage injectors, initial electron thermal energy increases the
space-charge-limited current density.

Transverse components of thermal energy limit the emittance of the
extracted beam.

This paper describes numerical solutions for the space-charge-limited flow
of hot electrons. With a numerical method, approximations that limit the
range of validity are not necessary. My primary goal was to create a set of
equations and graphs that could be applied easily by design engineers. The
results apply to both non-relativistic electron and ion extractors. In addition,
I wanted to determine whether selection processes at a thermal sheath could
influence the transverse temperature of extracted electrons.

Consider an acceleration gap of width d in the z direction with infinite
extent in x and y. The cathode at position z = 0.0 has potential φ = 0.0
V. The anode at z = d has φ = −V0. Suppose there is an unlimited source
of electrons with zero kinetic energy at the cathode surface. Some of these
electrons are extracted from the cathode by the applied electric field. The
negative space-charge of the transported electrons lowers the average poten-
tial in the gap, reducing the magnitude of the electric field at the cathode.
At a limiting value of current density, the surface field is reduced to zero
(Fig. 1a) A higher value of current density would create a decelerating sur-
face field, inconsistent with the extraction of the zero-energy electrons. The
Child limit[1] is given by
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Figure 1: Variation of electrostatic potential near the surface of a cathode
under the condition of space-charge-limited emission. a) Zero-temperature
electrons. b) Hot electrons. The quantity Vm is the height of the potential
barrier and xm is the sheath width, the point where dφ/dz = 0.0.
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The zero-energy model raises some logical issues:

If all electrons on the surface are identical, what determines whether
an individual electron enters the flow?

How can we account for a flux to the surface if the electrons are cold?

For a realistic model, we must consider a thermal distribution of incident
electrons. If the thermal flux of current, jt, exactly equals the current den-
sity of Eq. 1, then every electron is extracted and Ez is almost zero at the
cathode surface. If we raise the cathode temperature so that jt > jc, a re-
gion of depressed potential is created as in Fig. 1b. The potential barrier
−Vm allows only a fraction ∼ jc/jt of the incident electrons to pass. The
other electrons reflect back to the cathode. This process is described by the
Langmuir theory[5] and by the calculations of this paper.

2 Numerical model

The goal is to find equilibrium solutions, so I applied ray-tracing [6] rather
than the particle-in-cell method. For a given run time, ray tracing gives
higher statistical accuracy for steady-state particle flows. The idea is to
generate a distribution of Np model electrons near z = 0.0 with appropriate
values of speed and direction to represent a thermal distribution. If the target
thermal flux of current is jt, then each model particle is assigned a current
density j0 = jt/Np. The code tracks orbits in the electric field, advancing by
time step ∆t to determine a sequence of small trajectory segments for each
electron. At each time step, the space-charge-density in the mesh cell at the
center of the segment is incremented by

∆ρ =
j0∆t

∆z
, (2)

where ∆z is the width of the cell. The electrostatic potential is recalculated
with the contribution of beam space charge and the trajectories are retraced
in the modified field. The process continues for multiple iterations until the
potential converges to a self-consistent solution.

I used a mesh ofNm elements of uniform width ∆z = d/Nm. The potential
with space charge was calculated using the back-substitution method[7] with
the fixed potential conditions φ(0) = 0.0 and φ(D) = V0. Trajectories for the
non-relativistic electrons were calculated using the two-step method[7], with
current-density assignment at the center point of each step. I picked the time
step ∆t to ensure that the highest energy electrons crossed only half a cell
per time step.
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Incident electrons at the cathode had an isotropic, Maxwell-Boltzmann
distribution. Initial directions were assigned with respect to a polar angle
θ (the angle with respect to the z direction) and an azimuthal angle φ (the
projected direction in the x-y plane). If ξ is a random variable in the range
0.0 ≤ ξ ≤ 1.0, then the azimuthal angle is given by

φ = 2πξ. (3)

Assignment of the polar angle was weighted so that there were equal numbers
of electrons per solid angle in the emission hemisphere:

θ = sin−1(ξ). (4)

Given the angles, the initial direction-vector components were

ux = cos(θ) cos(φ), (5)

uy = cos(θ) sin(φ), (6)

uz = sin(θ). (7)

To assign kinetic energy, I used a package for cubic spline interpolations
of tabular functions. A table consists of ordered values of an independent
variable (X) and dependent variable (Y ). For a given value ofX, the routines
return an accurate interpolation of Y . For a Maxwell-Boltzmann distribution
with temperature Te

oK, the probability distribution of kinetic energy U
scales as [8]

f(U) ∼
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. (8)

I set up a spreadsheet to carry out a numerical integration to create set of
100 values of the normalized function

F (U) =

∫ U
0
f(U ′)dU ′

∫ Umax

0
f(U ′)dU ′

(9)

I used a high-energy cutoff Umax = 6kTe. The values were inserted into a
tabular function to perform an inversion, Y = U , X = F (U). The procedure
to assign kinetic energy was to set the X value equal to a normalized random
variable ξ and then to find the return value of U from a table interpolation.

To test the method, the code recorded the initial electron parameters in
the standard format of the Field Precision GenDist program for distribution
analyses. Figure 2 shows results for 10,000 model electrons with kTe = 1.0
eV. The probability distribution in θ is proportional to sin(θ) as expected
for a uniform distribution in solid angle. The distribution in kinetic energy
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Figure 2: Initial distribution of particles at the cathode. a) Angle with
respect to the surface normal vector. b) Kinetic energy for kT = 1.0 eV.
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follows Eq. 8. The average kinetic energy of the electron distribution is 1.455
eV. The small difference from the theoretical value of 1.500 is a consequence
of truncation of the distribution at high energy.

3 Results

Calculations were performed for the specific parameters d = 0.01 m and
V0 = 100.0 V. Nonetheless, the results may be applied to any electron or ion
extraction gap by identifying scaling parameters:

kTe/eV0, the ratio of the injected thermal energy to the energy gained
by acceleration.

jt/jc, the ratio of the injected thermal charge flux to the Child current
density at zero temperature. For the baseline parameters, Eq. 1 gives
a zero-temperature current density jc = 23.3 A/m2.

We can also define scaling laws for the Langmuir parameters (defined in
Fig. 1). The height of the potential barrier should be proportional to the
incident electron kinetic energy,

eVm ∼ kTe (10)

The following scaling law is useful for the sheath width:

xm

D
∼

kTe

eV0

. (11)

Both quantities should increase with (jt/js).
A goal of the calculations was to find the effect of electron temperature

on the space-charge-limited current density. I investigated a range of relative
electron temperatures 0.001 ≤ kTe/eV0 ≤ 0.100. An accurate resolution of
the sheath was necessary for numerical stability, ∆z ≪ xm. At the lowest
values of temperature, I used a mesh with small elements (Nm = 2500). For
good statistics, the runs included 5000 model electrons. To avoid the cycle-
to-cycle oscillations that sometimes occur in ray-tracing solutions, I adjusted
the mesh space-charge values gradually according to

ρ = αρnew + (1− α)ρold. (12)

In Eq. 12, ρnew is the space-charge density of particles in the present cycle and
ρold is an average over previous cycles. Good convergence was obtained with
α = 0.20 and 100 cycles. The code kept a convergence record, recording the
quantity ∆ρRMS/ρavg averaged over all cells. The residual was quite small
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Figure 3: Transmitted and reflected current as a function of (jt/jc) for
kTe/eV0 = 0.05.

(∼ 10−8) for jt/jc = 1.0, but was typically 10−3 when there were reflected
electrons. With tiny changes in the sheath potential, a few of the model
electrons with initial energy close to eVm oscillated between transmission
and reflection on different cycles. The effect was small, and the convergence
level corresponded to good overall accuracy.

For each value of (kTe/eV0), the code carried out a series of runs over
the range 1.0 ≤ jt/jc ≤ 5.0. The upper limit reflects the fact that it would
be impractical to run a cathode at very high temperates to create a ther-
mal current flux much higher than the extractable current density. Figure 3
shows raw data for (kTe/eV0) = 0.05. At (jt/jc) = 1.0, all electrons were
transmitted. Reflected electrons occurred when the thermal flux exceeded
the temperature-adjusted space-charge limit. At high values of (jt/jc), the
reflected current increased without limit while the transmitted current den-
sity approached a constant value. For lower values of (kTe/eV0), saturation
occurred at lower values of (jt/jc).

Figure 4 gives a normalized plot of saturated transmitted current den-
sity for the full set of runs. Note that the values converged to 1.00 when
(kTe/eV0) ≪ 1.0, a good check of the numerical accuracy of the code. The
dashed line is a fit to the data:
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Figure 4: Normalized transmitted current density as a function of normalized
temperature for (jt/jc) ≫ 1.0. Dashed line shows the function of Eq. 13. The
point at (0.0, 1.0) was added.
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Figure 5: Sheath potential near the cathode for (kTe/eV0 = 0.05) and
(jt/jc) = 1.0, 2.0, 3.0, 4.0 and 5.0.

js/jc ∼= 1.0 + 3.68

(

kTe

eV0

)

0.55

. (13)

Figure 5 shows how the potential barrier increases with the available
thermal flux. The code results can be used to create plots of the Langmuir
sheath properties, Vm and xm. From plots like Fig. 5, it is possible to estimate
the depth and position of the point where dφ/dz = 0.0. Results for the full set
of solutions are displayed in Fig. 6 using the scaling of Eqs. 10 and 11. In both
plots, the abscissa is the ratio of incident thermal charge flux to the zero-
temperature Child limit. The scaling relations proved useful, compressing
data corresponding to a factor of 100 variation in electron temperature to a
limited plot range. As expected, Vm and xm increased with (jt/jc).

The final issue was to investigate whether sheath processes contributed to
changes in the transverse temperature of the transmitted beam. My original
hypothesis was that velocity selection at the sheath could contribute to beam
cooling. At high values of (jt/jc), only electrons with the highest longitudinal
energy could cross the potential barrier to contribute to the transmitted
beam. Perhaps these electrons would, on average, have lower transverse
energy. Under this theory, the angular divergence of the transmitted beam
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Figure 6: Calculated sheath properties. a) Normalized potential barrier
height as a function of (jt/jc). b) Normalized sheath width as as a function
of (jt/jc).
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would decrease with increasing (jt/jc). Accordingly, I included routines in
the code to collect only transmitted electrons in the converged solution and
to analyze their root-mean-squared divergence angle. The results are plotted
in Fig. 7. The divergence increased with kTe as expected, but there was
no dependence on (jt/jc) whatever. In retrospect, this was precisely the
behavior one would expect from theory. Because there are no forces in the x
and y directions, the transverse temperature of the electrons was invariant.
In the presence of a potential barrier, the density of particles in a Maxwell-
Boltzmann distribution changes, but the temperature does not. In other
words, the velocity distribution of electrons f(vz) is the same at all positions
z ≤ xm. Therefore, the ratio of transverse to longitudinal spread does not
depend on the height or position of the sheath. Note that the slight decrease
in angle at the highest temperature is the result of truncating the Maxwell-
Boltzmann distribution.

In summary, there are three results of this work:

Figure 4 and Eq. 13 may be applied to estimate the magnitude of space-
charge-limited current density in an acceleration gap with a relatively
high electron temperature.

Figure 6 is useful to estimate the height and width of the extraction
sheath for thermal electrons.

There is no velocity-selection process in the thermal sheath of a space-
charge-limited extraction gap. Therefore, the cathode temperature can
be used to estimate the divergence angle of extracted beams in codes
like Trak and OmniTrak.
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Figure 7: Root-mean-squared divergence angle of the transmitted beam as a
function of (jt/jc) and (kTe/eV0).
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