
Using R for Monte Carlo statistical analysis

Stanley Humphries, Ph.D.

Field Precision LLC
E mail: techinfo@fieldp.com

Internet: https://www.fieldp.com

1

Contents

1 Introduction 3

2 Working with the R console: vectors and data frames 5

3 Creating and reading CSV files 10

4 Linear curve fitting and plotting, Part A 16

5 Linear curve fitting and plotting, part B 20

6 Working with RStudio: multi-dimensional fitting 24

7 Nonlinear fitting and parameter estimation 31

8 Importing GamBet files into R 36

9 Creating GamBet SRC files with R 43

10 Generating arbitrary distributions 51

2

1 Introduction

Statistical analysis is the core of Monte Carlo codes like GamBet. Although
our GenDist program performs basic calculations, high-power statistical
packages are useful for intensive work. There are dozens of statistical pro-
grams, many of them available for free. A comprehensive list is available
at

https://en.wikipedia.org/wiki/List_of_statistical_packages

In addition, mathematics programs like SciDAVis (https://sourceforge.net/projects/scidavis/
perform many statistical functions.

In general, the interfaces of technical programs center on a console window
where you may enter commands interactively. Commands range from simple
arithmetic to complex statistical operations. The programs can read data
from text files or spreadsheets and follow a sequence of commands from a
script file. There are several options to export results and most packages
have plotting capabilities. There are advantages to using standard programs
rather than writing your own:

They feature extensive computational resources, programed by experts.

There is less chance of error because routines have been thoroughly
tested.

In the long run, the setup times are short compared to building your
own programs.

On the other hand, the advantages come at a price.

Powerful technical packages have steep learning curves. Each program
has its own command structure, so learning a program is comparable
to acquiring a new computer language.

There are peculiarities of syntax and organization logic. Inexperienced
users may suffer hours of frustration searching for errors.

The power and numerous options of the programs can initially be a
drawback, overwhelming new users.

Matching program capabilities to your specific needs can be challeng-
ing.

3

Fortunately, perseverance pays off. After several days of effort, the moment
arrives where everything starts to make sense. One goal of this tutorial is
to help you reach that moment sooner. The other is to demonstrate how to
handle GamBet data and how to perform analyses for Monte Carlo calcu-
lations.

The first issue is which mathematics package to choose. There are dozens
available, each claiming to be the best. It is certainly not feasible to test
them all. I am going to concentrate on a single resource, the R package, for
the following reasons:

It is freely available for all computer platforms.

It has a large international user base.

R has powerful standard features with add-on packages for sophisti-
cated work.

An integrated development environment is available.

Most important, there is good documentation including textbooks and
online references.

You can obtain executables of the basicR package for most operating systems
at:

http://www.r-project.org/

There are links on the site to online documentation. The R Reference

Card is an invaluable resource:

http://cran.r-project.org/doc/contrib/Short-refcard.pdf

After installing the R package, I recommend downloading and installing the
RStudio integrated development environment:

https://www.rstudio.com/products/RStudio/

The following sections are in the form of short lessons. They demonstrate
essential R techniques for GamBet users. The emphasis is on curve fitting
and parameter estimation. A topic of particular importance is how to read
GamBet source (SRC) files directly into the R environment.

4

Figure 1: R console window.

2 Working with the R console: vectors and data

frames

To begin, we’ll work with the basic R console. Section 6 describes the en-
hancements available with the RStudio integrated development environ-
ment. Run R with the desktop shortcut to launch the window shown in
Fig. 1. The program writes a stock message that you’ll always want to
erase. Click the important Help menu entry to display options for learning
R. Clicking the Console option brings up a short window of information.
The command to clear the window is Control-L.

Program output is shown in blue and things you enter are shown in red.
The prompt > indicates that the program is ready for input. Type

Power = 2.4

followed by Enter. This operation defines a simple numerical variable Power
with the value 2.4. Anything you define is referred to as an object. Objects
may include string variables, vectors and more complex data assemblies. To
see a list of objects, type

objects()

To see the value of Power, type

Power

5

Figure 2: Combining string objects.

Because R is case sensitive, the capital P in Power is significant. The result
is

[1] 2.4

The initial [1] is a display index, useful if the object contains many items.
To illustrate arithmetic operations, type

Number = 3.558

Answer = Number^Power

defining two new objects. Entering the name of the final variable gives the
value

> Answer

[1] 21.03266

R also supports string variables and operations. For example,

S1 = "The first part of the sentence,"

S2 = "the second part of the sentence."

STotal = paste(S1,S2,sep=" ")

STotal

Here’s a useful shortcut – it’s not necessary to retype the examples in this
document. Simply copy the text information above and paste it into the con-
sole. R executes the commands as they are transferred from the clipboard.
The resulting console entries are shown in Fig. 2.
The R paste function combines two or more strings with the specified sepa-
ration character. In the example, a space was used. No characters are added
if sep="".

6

Except for the simplest calculations, working in the console mode is im-
practical. For serious calculations, the best approach is to build and to test
a sequence of commands with the option to save them. For this, we will
work with R scripts (filename.r). Choose File/New script to open a new
window for the script editor. Note that the console window remains active.
Copy and paste the following statement into the script window:

rm(list=objects())

Nothing happens in the console window. In the passive mode, the script
window acts as a basic text editor. Now, put the cursor on the first line and
press Control-R (run). The command is transmitted to the console, which
performs the action. Go back to the console and type

objects()

The response character(0) indicates that all defined objects have been re-
moved. The R interface is quite flexible. You can move back and forth
between the console and script editor, entering commands directly, editing
the script or sending selected commands from the script.

Copy and paste the following content to the script window:

Clear any objects loaded from a previous session

rm(list=objects())

Define two new vectors

xvals = c(1.0,1.5,2.0,2.5,3.0,3.5,4.0)

yvals = c(3.4,2.5,4.1,3.6,5.2,4.9,6.3)

Put them into a data frame

TestSet = data.frame(V1,V2)

Show the objects that were created

objects()

Calculate a function

mean(TestSet$yvals)

Plot the data frame

plot(TestSet$xvals,TestSet$yvals,type="b")

The set of commands illustrates some critical R concepts and defines a prac-
tical calculation. Save the script for future reference. Let’s discuss the mean-
ings of the commands before running them.

The rm() command removes objects specified by the list of names in the
argument. Here, a list is a collection of objects, a generalized vector. The
output of the function object() is a list of the names of all defined objects.
Hence, the form of the rm() command removes everything. The lines

7

xvals = c(1.0,1.5,2.0,2.5,3.0,3.5,4.0)

yvals = c(3.4,2.5,4.1,3.6,5.2,4.9,6.3)

create two vector objects named xvals and yvals. A vector is an ordered set
of like items. The c() function combines a group of items into a vector,
in this case a set of seven numbers. The expression yvals[4] returns the
number 3.6..

The data frame1 is an important object in R. It contains one or more
vectors of any type (numbers, strings,...). The restriction is that all vectors
must have the same length (number of entries). The data frame structure
is appropriate for holding experimental results as well as the contents of
GamBet SRC files. The command,

TestSet = data.frame(xvals,yvals)

combines the two vectors into a data frame named TestSet, which can be
thought of as a matrix with two columns and seven rows. It is important to
note that the names of things are important in R. By default, the column
names in TestSet are set to the names of the component vectors, xvals and
yvals2. You can refer to columns by their names. For example, the expression
TestSet yvals has the same content as the yvals vector. The command

mean(TestSet$yvals)

gives the average value of the components of the second vector, 4.285714.
The final command

plot(TestSet$xvals,TestSet$yvals,type="b")

calls for a simple plot of data points with TestSet xvals along the abscissa
and TestSet yvals along the ordinate. As with almost all R functions, the
user may set many options in plot() to over-ride defaults. In this case, the
option type="b" specifies that the plot should contain both point symbols
and connecting lines.

To step through each script command in sequence, put the script editor
cursor in the first line and then press Control-R several times. To execute the
full script, highlight all the lines and press Control-R once. Figure 3 shows
the final state of the console window with the display of defined objects and
the calculated mean. R has also opened up a graphics window to create the
plot.

1Some references use the term data set to refer to the content of the vectors and the
term data frame to refer to the object that holds the content. This distinction seems
unnecessary, so I will apply the term data frame to designate both the contents and the
container.

2The data.frame command has an option to set the column names explicitly.

8

Figure 3: State of the console, script and plot windows after executing the
script.

Finally, to run a script from the console without using the script editor,
use a command of the form

source("C:/RExamples/Exercise0101.R")

Note that the path specification must contain forward slashes rather than
the backslashes used in Windows. In the plot of Fig. 3, the data are crying
out for an estimate of the slope and intercept. We’ll tackle that issue after
we learn about loading data into R.

9

3 Creating and reading CSV files

Data from experiments and computer outputs may include thousands of
items, so it is clearly impractical to enter values in R by typing them. Gen-
erally, data are recorded in files and we use special R commands to read
them. R recognizes some binary formats like Excel, but the most reliable
approach is to record the data in a text file. Properly formatted text files act
as a universal data medium that can be created or read by almost any pro-
gram. There are no issues of software version changes and, most important,
there are no mysteries. You can check the files with any text editor.

The most common format for storing data in a text file is comma-separated-
variable, or CSV. In a general sense, CSV could apply to any file that uses
commas as a delimiter. We’ll use a more restrictive definition. A CSV file
contains a number of data lines (rows). A line consists of text terminated
by a carriage return and/or linefeed character. Each line is divided into the
same number of text entries (columns) separated by commas. The text en-
tries may represent strings or numbers. This organization is reminiscent of
spreadsheet data or R data frames – it is not surprising that both types of
programs can read and write directly to CSV files.

In this section we’ll use a spreadsheet to create data for a statistical
analysis, save the results as a CSV file, read the file into R and perform
several useful calculations. Figure 4 shows a spreadsheet setup to generate
points in the range 0.0 ≤ x ≤ 20.0 from the formula

y = 22.67 + 4.71x− 0.30x2 + 0.01x3. (1)

Random noise uniformly distributed over the range -2.5 ≤ ∆y ≤ 2.5 is added
to exercise the statistical analysis functions of R. Note that a header line
containing the strings x and y has been included. The choice of names will
be important inR – we will make consistent references to them when defining
R operations.

To create a CSV file from OpenOffice Calc, simply use SaveAs and
choose the format option Text CSV. Here is a section of the resulting file:

x,y

0,24.8324297602

0.25,21.8520734699

0.5,24.207368359

...

There are 2 data columns and 81 rows (not counting the header). Most
programs that read and write CSV files (including Calc and R) have flex-
ible input parsers that recognize strings and numbers in any valid format,
including scientific notation.

Here is the R script that we’ll be using:

10

Figure 4: Spreadsheet to generate the test data.

setwd("C:/RExamples/CSVStudies")

TestData = read.csv("csvdata.csv",header=TRUE)

plot(TestData$x,TestData$y)

Check15 = subset(TestData,x >= 12.5 & x <= 17.5)

Check15$x = Check15$x - 15.0

Fit15 = lm(y~x,Check15)

summary(Fit15)

plot(Check15$x,Check15$y)

abline(coef(Fit15))

write.csv(Check15,file="points15.csv",row.names=FALSE)

Run R and choose File/New script. Copy and paste the lines above into
the script editor window. (It’s a good idea to save the script file for later
reference.) We’ll step through the lines to learn some useful R operations.
Set the cursor in the script editor to the first line and press Control-R to
advance through each step.

It’s always a good idea to organize input/output files in a single directory.
The following command sets the working directory so you don’t have to enter
full paths for file operations:

setwd("C:/RExamples/CSVStudies")

The next command (the core of this section) loads the CSV data file into a
data frame named TestData with 2 columns and 81 rows.

11

TestData = read.csv("csvdata.csv",header=TRUE)

The columns have the names x and y. The option header=TRUE signals to
R that the first line of the file contains the column names. If the file has
no header, there are options in the read.csv command to set the names
explicitly. Go to the console window and type TestData to confirm that the
information was loaded. The next command

plot(TestData$x,TestData$y)

creates the plot of the input data shown as the top graph in Fig. 5. It is a
noisy version of the curve of Eq. 1.

In a following article, we’ll see how to get an estimate of all the polynomial
coefficients in Eq. 1. For now, we’ll concentrate on a local interpolation to
estimate the value and slope at a single measurement point, x = 15. For this,
we’ll include only data points near the measurement point. This command,

Check15 = subset(TestData,x >= 12.5 & x <= 17.5)

produces a data frame Check15 that is a subset of TestData. The selection
criterion is that values in the column named x must be greater than or equal
to 12.5 and less than or equal to 17.5. The range is shown by dashed red
lines in Fig. 5. Check15 contains 2 columns named x and y with 21 rows.
Again, type Check15 in the console to review the content.

We’ll use a routine that finds the slope and intercept of the most probable
straight line for the data. The intercept equals the desired interpolation if
the measurement point corresponds to x = 0.0. This command shifts all
values in the x column of the new data frame by -15.0:

Check15$x = Check15$x - 15.0

We’re ready to do the fit, using the powerful and versatile lm() command:

Fit15 = lm(y~x,Check15)

The command has two arguments: 1) a specification of the fitting formula
and 2) the data frame to be used. The formula specification y ∼ x is a subtle
concept and merits a detailed explanation. The important point is that a
formula is not the fitting equation, but rather an expression of dependencies
in the fit.

12

Figure 5: Top: input data, red lines show the range used for the interpolation.
Bottom: the local interpolation data and the fitting line.

13

The∼ symbol designates a functional relationship rather than an equal-
ity.

The y to the left of ∼ specifies that values in the column named y
correspond to the dependent variable.

The x to the right of ∼ specifies that values in the column named x
correspond to the independent variable.

The appearance of the single x to the right of ∼ indicates that the fit
should set a linear relationship, y = a+ bx.

We’ll have a chance to discuss more complex formula specifications in follow-
ing articles.

The lm() operation creates Fit15, a special object. It is neither a vec-
tor nor a data frame, but rather a set of fitting coefficients and tolerances
in a format specific to R. There are special operations in R to display or
to extract information from fitting objects. For example, the operation
summary(Fit15) produces the following display:

Call:

lm(formula = y ~ x, data = Check15)

Residuals:

Min 1Q Median 3Q Max

-2.3474 -2.1410 0.1371 1.1435 2.8666

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 59.7433 0.4041 147.851 < 2e-16 ***

x 2.5978 0.2669 9.732 8.13e-09 ***

Signif. codes:

0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.852 on 19 degrees of freedom

Multiple R-squared: 0.8329, Adjusted R-squared: 0.8241

F-statistic: 94.72 on 1 and 19 DF, p-value: 8.133e-09

This is probably more information than you’d want to know. The important
results are that 1) the interpolated value at the point is y = 59.7433±0.4041
and 2) the slope is dy/dx = 2.5978± 0.2669. The predictions from Eq. 1 are
y = 59.7557 and dy/dx = 4.71− 0.6× 15 + 0.03× 152 = 2.4600.

Another function to extract information from a fit is coef(). For a linear
fit, the routine returns two numbers, the intercept and slope. It happens that

14

there is a plotting command in R, abline(), that adds a straight-line plots
to an existing plot given an intercept and slope. We can therefore understand
the following command set:

plot(Check15$x,Check15$y)

abline(coef(Fit15))

The plot() command displays y versus x values for the data over the range
of x in Check15. The abline command adds the straight line determined by
the fitting operation. The lower plot in Fig. 5 shows the result.

Finally, we can create a CSV file with R:

write.csv(Check15,file="points15.csv",row.names=FALSE,quote = FALSE)

The options indicate that row names and quotation marks should be ex-
cluded. Here is the initial section of the file point15.csv:

x,y

-2.5,56.0587661858

-2.25,54.0067949137

-2,54.5795616217

-1.75,57.4048454528

-1.5,56.623110328

...

If we didn’t include the options, the output of the write.csv() function
would look like this:

"","x","y"

"51",-2.5,56.0587661858

"52",-2.25,54.0067949137

"53",-2,54.5795616217

"54",-1.75,57.4048454528

"55",-1.5,56.623110328

...

15

4 Linear curve fitting and plotting, Part A

In this section and the next, we’ll discuss linear curve fitting (or parameter
estimation). Here, the term linear does not mean we are restricted to linear
fitting functions, but rather that the parameters we seek are linear multi-
pliers of the functions. To illustrate the distinction, suppose we have a set
of measurements of a dependent quantity yi(xi). We hypothesize that the
measurements can be approximated by a variation of the form:

y = a1 f1(x) + a2 f2(x) + ..., (2)

where f1(x), f2(x), ..., are known functions of any type. The task is to find
the set of parameters a1, a2, ..., such that Eq. 2 has the highest probability
of matching the measured points. Given that Eq. 2 represents a linear fit,
what is a nonlinear fit? To illustrate, suppose we wanted to find a resonance
response buried in a noisy signal. In this case, the proposed function would
be

y = a1 exp

(

−
(x− a2)

2

2 a23

)

. (3)

We seek three parameters, only one of which is a linear multiplier of the func-
tion. The other two parameters are integrated within the function. While the
linear problem is deterministic, nonlinear calculations require iterative meth-
ods that may or may not not converge. Section 7 covers nonlinear fitting in
R.

This section and the next one cover univariate linear fitting, y = f(x).
In a subsequent section, we’ll advance to multivariate fitting, z = g(x, y).
To start, let’s revisit the example from the previous section. The points in
Figure 6 represent the raw data in the file csvdata.csv. The points follow a
curve with two inflection points, so we suspect that a third-order polynomial
would be a good guess:

y = a+ bx+ cx2 + dx3. (4)

This function satisfies the definition of a linear fit (Eq. 2).
Copy and paste the following text into the script window of R:

setwd("C:/RExcamples/LinFitStudies")

TestData = read.csv("csvdata.csv",header=TRUE)

FitPoly = lm(y~I(x)+I(x^2)+I(x^3),TestData)

summary(FitPoly)

CheckPoints = data.frame(x = c(0.0,5.0,10.0,15.0,20.0))

Pred = predict(FitPoly,newdata=CheckPoints)

Pred

16

Figure 6: Test data with a third-order polynomial fit.

plot(TestData$x,TestData$y,type="p")

PlotSeq = seq(from=0.0,to=20.0,length.out=201)

PlotPos = data.frame(x=PlotSeq)

lines(PlotPos$x,predict(FitPoly,newdata=PlotPos))

As before, we set a working directory. It contains a copy of the test data
prepared for the previous section. Save the script. Again we shall read the
file contents to a data frame named TestData and apply the lm() command
to produce the fitting object FitPoly :

FitPoly = lm(y~I(x)+I(x^2)+I(x^3),TestData)

The fitting formula is more complex than the first order function of the
previous article:

y~I(x)+I(x^2)+I(x^3)

It implies that values in the column named y of TestData depend on the
values in the column named x. The functional dependencies involve powers
of x up to x3. Note the appearance of the command I(). It signals that
the symbols inside the argument should be interpreted as arithmetic opera-
tions rather than formula specifications. There is some overlap between the

17

two. For example, in a formula specification the + symbol does not desig-
nate addition, but rather signals that R should include another functional
dependency3

The command summary(FitPoly) produces the following information:

Estimate Std. Error Generating function

(Intercept) 22.278672 0.672675 22.67

I(x) 4.877190 0.293093 4.71

I(x^2) -0.314646 0.034174 -0.30

I(x^3) 0.010301 0.001123 0.01

The coefficients of the original generating function have been included as the
last column.

There are two more tasks to complete this example:

Check the interpolated value returned by the fitting function for com-
parison to the linear interpolation of the previous article.

Superimpose a plot of the predicted curve on the original data for a
visual validity check.

The following command lines accomplish the first task:

[1] CheckPoints = data.frame(x = c(0.0,5.0,10.0,15.0,20.0))

[2] Pred = predict(FitPoly,newdata=CheckPoints)

[3] Pred

Line [1] uses the data.frame() and c() commands that we have already
discussed. The c() command combines several position values (including
x = 15.0) in a vector. The data.frame() command incorporates the vector
in a data frame named CheckPoints with one column named x. Line [2]
contains the command predict() which requires two arguments: 1) an R

fitting object and 2) a data frame with a named column that corresponds
to the independent variable of the fitting object. The predict() command
returns a value of y for each x value. The final line produces the following
listing of information in the console window:

1 2 3 4 5

22.27867 40.08612 49.88714 59.40764 76.37351

The fourth value corresponds to x = 15.0.
The following lines create the plot of Fig. 6:

3In the previous article, we used a function specification y x without the I() command
because the expression did not include any common symbols. To be safe, it is best to use
I() for all functional expressions.

18

[1] plot(TestData$x,TestData$y,type="p")

[2] PlotSeq = seq(from=0.0,to=20.0,length.out=201)

[3] PlotPos = data.frame(x=PlotSeq)

[4] lines(PlotPos$x,predict(FitPoly,newdata=PlotPos))

We’re already familiar with the plot() command of Line [1] – it opens
the plot and creates the set of points. The next three lines provide a useful
template for plotting any fitted line:

The seq() command creates a vector PlotSeq of uniformly-spaced po-
sition values over the plot range 0.0 ≤ x ≤ 20.0. The vector contains
201 values with interval ∆x = 0.1.

Line [2] incorporates PlotSeq into the data frame PlotPos. The single
column has the name x.

The lines() command adds a number of connected lines to an existing
plot. The arguments are two vectors of equal length giving values along
the abscissa and ordinate. We use PlotPos x as the first vector and
again use the predict() command to supply the second vector.

The result is the line in Fig. 6.

19

5 Linear curve fitting and plotting, part B

We’ll continue the examination of linear fitting and plots with another ex-
ample, a statistical Fourier analysis. It illustrates that 1) the lm() command
can deal with any function and 2) data frame components need not always be
called y and x. Here is the script to copy and paste in the R script window:

Function to generate test data

TrigDemo = function(z) {

Out = 1.4+2.30*sin(z)+0.75*cos(z)-1.80*sin(2*z)+2.15*cos(2*z)

+0.65*sin(3*z)-0.25*cos(3*z)

return(Out)

}

Set up some variables

zmin = 0.0

zmax = 5.0

Noise = 0.55

Plot the function without noise

curve(TrigDemo(z),zmin,zmax,xname="z")

Create a data frame of input data

zvector = seq(from=zmin,to=zmax,length.out=51)

phivector = TrigDemo(zvector)

TestData = data.frame(z=zvector,phi=phivector)

Add some noise

TestData$phi = TestData$phi + rnorm(length(TestData$phi),0,Noise)

Plot the raw data

plot(TestData$z,TestData$phi)

Fit the data and list the results

FitTrig = lm(phi~I(sin(z))+I(cos(z))+I(sin(2*z))+I(cos(2*z))

+I(sin(3*z))+I(cos(3*z)),TestData)

summary(FitTrig)

Add the fitted line to the plot

PlotSeq = seq(from=0.0,to=5.0,length.out=51)

PlotPos = data.frame(z=PlotSeq)

lines(PlotPos$z,predict(FitTrig,newdata=PlotPos))

We’ll generate data by adding statistical noise to the test function

φ = 1.4 + 2.3 sin(z) + 0.75 cos(z)− 1.8 sin(2z) + 2.15 cos(2z) + (5)

0.65 sin(3z)− 0.25 cos(3z),

defined over the interval 0.0 ≤ z ≤ 5.0. Equation 5 is a lengthy expression,
and it would be inconvenient to add it in command arguments. For efficiency,
we’ll define our own function to supplement the native functions of R. Here
are the corresponding lines:

20

Figure 7: Plot of the generating curve for the Fourier example.

TrigDemo = function(z) {

Out = 1.4+2.30*sin(z)+0.75*cos(z)-1.80*sin(2*z)+2.15*cos(2*z)

+0.65*sin(3*z)-0.25*cos(3*z)

return(Out)

}

The top definition line contains the name of the function, the keyword func-
tion and the names of the argument (or arguments) that will be used in the
calculation. Any number of command lines for calculations with the argu-
ment may be included between the braces. R functions have flexible output.
There is a single output value if the input argument is a scalar while, a vec-
tor argument gives a vector output. In other circumstances, the output may
even be the functional dependence itself. The type of output depends on the
context. To demonstrate the third case, we’ll use the TrigDemo() function
to create a plot of the variation of Eq. 5 using the curve() command:

curve(TrigDemo(z),zmin,zmax,xname="z")

The first argument is a definition of the mathematical expression to plot,
such as 18.67 + z2, the next two arguments are numerical values that give
the range of the independent variable and the last argument defines the name
of the independent variable. Figure 7 shows the resulting plot.

The following script command lines demonstrate a case where the function
produces vector output:

21

Figure 8: Points show the noisy input function. The line is the most probable
fit to the data for the given formula.

[1] zvector = seq(from=zmin,to=zmax,length.out=51)

[2] phivector = TrigDemo(zvector)

[3] TestData = data.frame(z=zvector,phi=phivector)

As we saw in the previous article, the seq() operator generates a vector
zvector that contains a set of z values over the desired range with interval
∆z = 0.1. We apply the function TrigDemo() with argument zvector to
generate phivector, a set of corresponding dependent values. The vectors
are combined into a data frame with column names z and phi. Finally, we
want to add some statistical noise:

TestData$phi = TestData$phi + rnorm(length(TestData$phi),0,Noise)

The function rnorm() generates random numbers in a normal distribution. R
includes a related set of random-number functions for different distributions
(runif(), rpois(),...). The output is a vector. The arguments in rnorm()

are 1) the length of the output vector, 2) the mean of the distribution and
3) the standard deviation. The points in Fig. 8 show the resulting noisy
representation of the generating function.

This form of the lm() command performs the fit:

FitTrig = lm(phi~I(sin(z))+I(cos(z))+I(sin(2*z))

+I(cos(2*z))+I(sin(3*z))+I(cos(3*z)),TestData)

22

Finally, this set of commands plots the best-fit line in Fig. 8 following the
method discussed in the previous section:

PlotSeq = seq(from=0.0,to=5.0,length.out=51)

PlotPos = data.frame(z=PlotSeq)

lines(PlotPos$z,predict(FitTrig,newdata=PlotPos))

Note how the column names of TestData, z and phi are used consistently
throughout all the commands.

23

6 Working with RStudio: multi-dimensional fit-

ting

RStudio is an integrated development environment (IDE) for working with
R, similar to the IDEs available for most computer languages. Figure 9 shows
a screenshot. There are work areas for the script editor, console and plots.
The difference is that they are combined in a single convenient workspace
rather than floating windows. RStudio is freely available and provides a
wealth of features, so it is hard to imagine why anyone would choose not to
use it. Here are some of the advantages:

RStudio remembers your screen setups, so it is not necessary to resize
and reposition floating windows in every session.

The script editor (upper left in Fig. 9) features syntax highlighting
and an integrated debugger. You can keep multiple tabbed documents
active.

An additional area at upper-right shows allR objects currently defined.
Double clicking a data frame opens it in a data editor tab in the script
window.

The area at the lower right has multiple functions in addition to plot
displays. Other tabs invoke a file manager, a package manager for
R supplements and a Help page for quick access to information on
commands.

I’ll assume you’re usingRStudio for the example of this section and following
ones.

We’ll see how to use R to fit a three-dimensional polynomial function to
noisy data. One application of the technique is making an accurate inter-
polation of radiation dose at a point, D(x, y, z), in a GamBet calculation.
Here, the dose in any single element is subject to statistical variations that
depend on the number of model input particles. The idea is to get an esti-
mate at a test point [x0, y0, z0] by finding the most probable smooth function
using values from a number of nearby elements. The approach is valid when
the quantity varies smoothly in space. The present calculation is the three-
dimensional extension of the interpolation method discussed in a previous
section.

As with previous examples, we’ll need to create some test data. The
measurement point is Xavg = 23.45, Yavg = 10.58 and Zavg = −13.70]. The
ideal variation of dose about the point is:

24

Figure 9: RStudio screenshot.

25

D = 19.45 + 2.52 (x−Xavg)− 0.25 (X −Xavg)
2 (6)

−4.23 (y − Yavg) + 0.36 (y − Yavg)
2

+1.75 (z − Zavg)− 0.41 (z − Zavg)
2.

The spacing of data points about the measurement point is ∆x = 1.00,∆y =
1.25 and ∆z = 0.90. In this case, we’ll use a computer program to record the
data in a CSV file. For reference, Table 6 shows the core of the FORTRAN
program. It creates a header and then writes 1331 data lines in CSV format.
Each line contains the position and dose, [x, y, z,D]. Here are the initial
entries in multiregress.csv:

x,y,z,D

18.45000076, 4.32999992, -18.19999886, 22.14448738

19.45000076, 4.32999992, -18.19999886, 28.94458199

20.45000076, 4.32999992, -18.19999886, 38.34004974

...

Run R, clear the console window (Control-L) and close any previous
script. Copy and paste the following text into the script editor:

rm(list=objects())

setwd("C:/RExamples/MultiRegress")

DataSet = read.csv("multiregress.csv",header=T)

Calculate the measurement point

XAvg=mean(DataSet$x)

YAvg=mean(DataSet$y)

ZAvg=mean(DataSet$z)

Reference spatial variables to the measurement point

DataSet$x = DataSet$x - XAvg

DataSet$y = DataSet$y - YAvg

DataSet$z = DataSet$z - ZAvg

Perform the fitting

FitModel = lm(D~x+y+z+I(x^2)+I(y^2)+I(z^2),DataSet)

summary(FitModel)

Plot a scan along x through the measurement point

png(filename="XScan.png")

xscan = subset(DataSet,y < 0.001 & y > -0.001 & z < 0.001 & z > -0.001)

plot(xscan$x,xscan$D)

lines(xscan$x,predict(FitModel,newdata=xscan))

dev.off()

The first three lines perform operations that we have previously discussed:
clear all R objects, set a working directory and read information from the

26

Table 1: FORTRAN program to create a CSV file.

OPEN(FILE=’multiregress.csv’,UNIT=30)

WRITE (30,2000)

XAvg = 23.45

YAvg = 10.58

ZAvg = -13.70

Dx = 1.00

Dy = 1.25

Dz = 0.90

! Main data loop

DO Nz = -5,5

z = ZAvg + REAL(Nz)*Dz

DO Ny = -5,5

y = YAvg + REAL(Ny)*Dy

DO Nx = -5,5

x = XAvg + REAL(Nx)*Dx

CALL RANDOM_NUMBER(Zeta)

Noise = 2.0*(0.5 - Zeta)

D = 19.45 &

+ 2.52*(x-XAvg) - 0.25*(X-XAvg)**2 &

- 4.23*(y-YAvg) + 0.36*(y-YAvg)**2 &

+ 1.75*(z-ZAvg) - 0.41*(z-ZAvg)**2 &

+ Noise

WRITE (30,2100) x,y,z,D

END DO

END DO

END DO

CLOSE (30)

2000 FORMAT (’x,y,z,D’)

2100 FORMAT (F14.8,’,’,F14.8,’,’,F14.8,’,’,F14.8)

27

CSV file. The information is stored in data frame DataSet. Use Control-R in
the script editor to execute the command lines. Note that DataSet appears
in the Environment list of RStudio. Double-click on DataSet to open it in
a data-editor tab. Here, you can inspect values and even modify them.

The first task in the analysis is to shift the spatial values so that they are
referenced to the measurement point, as in Eq. 6:

XAvg = mean(DataSet$x)

YAvg = mean(DataSet$y)

ZAvg = mean(DataSet$z)

DataSet$x = DataSet$x - XAvg

DataSet$y = DataSet$y - YAvg

DataSet$z = DataSet$z - ZAvg

We use the mean() function under the assumption that the data points are
centered about the measurement position. A single command performs the
linear fit:

FitModel = lm(D~x+y+z+I(x^2)+I(y^2)+I(z^2),DataSet)

The summary() command gives the following information:

Estimate Std. Error Generating

(Intercept) 19.540509 0.179142 19.45

x 2.560374 0.025733 2.52

y -4.226011 0.020587 -4.23

z 1.737097 0.028593 1.75

I(x^2) -0.265439 0.009214 -0.25

I(y^2) 0.358165 0.005897 0.36

I(z^2) -0.404630 0.011375 -0.41

As with all statistical calculations, a visual indicator is a quick way
to gauge the validity of the fit. The following commands create a two-
dimensional plot: a scan of data points and the fitting function along x
at y = 0.0, z = 0.0 (through the measurement point). The plot is saved as a
PNG file in the working directory.

[1] png(filename="XScan.png")

[2] xscan = subset(DataSet,y < 0.001 & y > -0.001 & z < 0.001 & z > -0.001)

[3] plot(xscan$x,xscan$D)

[4] lines(xscan$x,predict(FitModel,newdata=xscan))

[5] dev.off()

28

Line [1] opens a file for PNG output, while Line [5] flushes the plot information
to the file and closes it. Line [2] uses the subset() function to create a data
frame, xscan, that contains only data points where y = 0.0 and z = 0.0.
The first argument is the source data frame and the second argument is the
criterion for picking included row. There are two noteworthy features in the
command expression:

The symbol & denotes the logical and operation.

The inclusion criterion has some slack to account to floating point
round-off errors. An inspection of xscan with the data editor shows
some values on the order of 10−8 rather than 0.0

Line [3] plots the raw data points while the lines() command in Line [4]
applies the method discussed in a previous section to plot the fitting function.
Similar operations were applied to create scans through the measurement
point along y and z to produce the plots of Fig. 2.

29

Figure 10: Scans of the data and fitting function along x, y and z passing
through the measurement point.

30

Figure 11: Test data: resonance in a noisy signal.

7 Nonlinear fitting and parameter estimation

To this point, we have carried out basic statistical calculations with R. With
some effort, we could perform the operations in spreadsheets or our own
programs. In this article, we’ll turn to a much more sophisticated calculation
that would be difficult to reproduce: nonlinear parameter fitting. Despite the
complexity of the underlying calculations, it is simple to set up the R script.

Figure 11 illustrates the test calculation. Given a noisy signal, we want
to determine if there is a resonance hidden within it. Such a response usually
has the form of a Gaussian function

A exp

[

−
(x− µ)2

2σ2

]

. (7)

We want to determine values of A, µ and σ (the resonance width) such that
the function gives the most probable fit to the data of Fig. 11. This is clearly
a nonlinear problem because the parameters µ and σ are integrated in the
function.

The spreadsheet of Fig. 12 is used to generate data over the range 0.0 ≤

x ≤ 20.0. Values of y are determined from Eq. 7 with A = 20.0, µ = 8.58
and σ = 1.06. The noise level is set as an adjustable parameter. Rather

31

Figure 12: Spreadsheet to generate data pasted into a tab-delimited file.

than save the spreadsheet as a CSV file, we copy the data section as shown
and paste it into a text file file, peakdata.tab. In this case, the entries on a
line are separated by tab characters instead of commas. Therefore, we use a
different command form to read the file:

PeakData = read.table("peakdata.tab",header=T,sep="")

The file header sets the column names of the data frame PeakData to y and x.
The option sep="" means that any white-space characters (including tabs)
act as delimiters.

To run the example, copy and paste this text into the RStudio script
editor:

PeakData = read.table("peakdata_high.tab",header=T,sep="")

fit = nls(y ~ I(Amp*exp(-1.0*(Mu-x)^2/(2.0*Sigma^2))),data=PeakData,

start=list(Amp=5.0,Mu=5.0,Sigma=5.0))

summary(fit)

plot(PeakData$x,PeakData$y)

new = data.frame(x = seq(min(PeakData$x),max(PeakData$x),len=200))

lines(new$x,predict(fit,newdata=new))

confint(fit,level=0.95)

32

The critical command line for the nonlinear fit is

fit = nls(y ~ I(Amp*exp(-1.0*(Mu-x)^2/Sigma^2)),data=PeakData,

start=list(Amp=5.0,Mu=5.0,Sigma=5.0))

The first argument of the nls() command is a defining formula:

y ~ I(Amp*exp(-1.0*(Mu-x)^2/(2.0*Sigma^2)))

It implies that the variable y depends on the independent variable x as well as
parameters named Amp, Mu and Sigma. The dependence is declared explic-
itly and enclosed in the I() function. The second argument data=PeakData
defines the input data source. The third argument,

start=list(Amp=5.0,Mu=5.0,Sigma=5.0)

needs some explanation. The iterative calculation involves varying parameter
values and checking whether the overall error is reduced. The user must set
reasonable initial values for the search. The start option requires an R list,
a general set of values. The list() operator combines several objects into a
list. In the form shown, the first item in the list has name Amp and value 5.0.
Be aware that for some choices of parameters, the process may not converge
or may converge to an alternate solution.

The summary() command produces a console listing like this:

Formula: y ~ I(Amp * exp(-1 * (Mu - x)^2/(2 * Sigma^2)))

Parameters:

Estimate Std. Error t value Pr(>|t|)

Amp 22.45079 1.86245 12.05 1.49e-14 ***

Mu 8.63087 0.08361 103.22 < 2e-16 ***

Sigma -0.87288 0.08361 -10.44 1.02e-12 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.675 on 38 degrees of freedom

Number of iterations to convergence: 13

Achieved convergence tolerance: 5.277e-06

The next three commands plot the raw data and the fitting line following
methods that we discussed in previous sections. Finally, there is a new
command that gives the confidence interval:

confint(fit,level=0.95)

33

The output is a listing like this:

2.5% 97.5%

Amp 18.738008 26.3724502

Mu 8.460237 8.8129274

Sigma -1.071273 -0.7146478

The results have the following interpretation. What is the range where we
can have 95% confidence that the parameter value lies within it? In other
words, for the above example we can have 95% confidence that the peak
amplitude is between 18.738008 and 26.3724502.

With an understanding of the mechanics of the calculation, we can check
out some results. To begin, a high level of noise in the spreadsheet (Noise =
5.0) leads to the data points and fitting line of Fig. 13a. Here is a summary
of numerical results:

Noise level: 5.0

Estimate Std. Error 2.5% 97.5% Generating

Amp 22.45079 1.86245 18.738008 26.3724502 20.0

Mu 8.63087 0.08361 8.460237 8.8129274 8.5

Sigma -0.87288 0.08361 -1.071273 -0.7146478 1.06

The negative sign for Sigma is not an issue because the parameter always
appears as a square. Because the peak is barely discernible in the noise,
there is some error in the estimate of Sigma. Rerunning the example with
reduced noise level (Noise = 0.5) provides a check that the nls() command
is operating correctly. Figure 13b shows the data points and fitting line.
The results are much closer to the ideal values with no signal noise.

Noise level: 0.5

Estimate Std. Error 2.5% 97.5%

Amp 20.02893 0.17535 19.673012 20.386997

Mu 8.57904 0.01084 8.557082 8.600996

Sigma 1.07258 0.01084 1.050487 1.095135

34

Figure 13: Results with Noise = 5.0.

35

8 Importing GamBet files into R

In the previous sections, we studied R techniques that would be useful to
supplement most technical programs. In this section and the next, we’ll con-
centrate on integrating R with GamBet. The GamBet program produces
two types of text data files4 that can be analyzed with R:

Escape files have a name of the form FName.SRC. They record the pa-
rameters of electrons, photons and positrons that escape from the solu-
tion volume. An example is the distribution of bremsstrahlung photons
produced by an electron beam striking a target. Escape files may serve
as the particle source for a subsequent simulation. You can also use R
to prepare source files with mathematically-specified distributions, the
topic of the next section.

Files of the spatial distribution of deposited dose produced by the
MATRIX commands in GBView2 and GBView3.

We’ll begin with a discussion of theGamBet SRC file. Here’s an example,
the output from a bremsstrahlung target:

* GamBet Particle Escape File (Field Precision)

* Output from run: BremGen

* DUnit: 1.0000E+03

* NPrimary: 1

* NShower: 500

*

* Type Energy X Y Z ux uy uz

* ==

E 1.8276E+07 1.0000E+00 -2.2093E-01 -9.5704E-03 0.95867 -0.28441 -0.00726

P 1.0476E+06 1.0000E+00 -2.2099E-01 -9.6599E-03 0.96046 -0.27838 0.00421

P 1.4681E+07 1.0000E+00 -2.2079E-01 -9.4444E-03 0.96751 -0.24988 0.03846

P 1.1157E+05 1.0000E+00 -2.2125E-01 -9.0243E-03 0.93991 -0.33167 0.08099

...

P 3.7167E+06 1.0000E+00 -1.1189E-01 -6.2985E-02 0.99157 -0.11335 -0.06279

P 8.2996E+05 1.0000E+00 3.3150E-01 -2.6303E-01 0.91975 0.30757 -0.24386

ENDFILE

There is a file header consisting of eight comment lines marked by an asterisk.
The header is followed by a large number of data lines. The file terminates
with an ENDFILE marker. Each data line may contain 8 or 9 entries separated
by space delimiters. A data line contains the following components:

4The read.fortran() command of R provides a path to import information from the
binary output files of any Field Precision technical program.

36

The marker in the first column gives the type of particle, electron (E
or E−), photon (P) and positron (E+). In the example, the output is
a mixture of the primary electron beam and the secondary photons.

The kinetic energy in eV.

The position at the exit, (x, y, z).

Components of a unit vector giving the particle direction (ux, uy, uz).

A ninth column listing current or flux is present in runs where weighting is
assigned to the model input particles.

If we are going to perform a standard analysis on many files, it would be
an advantage to create an R script where the user could choose the working
directory and the SRC file interactively. Here is the section of the script to
specify and to load a file. It introduces several new concepts and commands.
Copy and paste the text to a script file window in RStudio:

library(utils)

if (!exists("WorkDir")) {

WorkDir = choose.dir(default = "", caption = "Select folder")

}

setwd(WorkDir)

FDefault = paste(WorkDir,"*.src",sep="")

FName = choose.files(default=FDefault,caption="Select GamBet SRC file",multi=FALSE)

CheckFile = read.table(FName,header=FALSE,sep="",comment.char="*",fill=TRUE,nrows=1)

NColumn = ncol(CheckFile)

if(NColumn==8) {

Standard column names

cnames = c("Type","Energy","X","Y","Z","ux","uy","uz")

} else {

cnames = c("Type","Energy","X","Y","Z","ux","uy","uz","Flux")

}

SRCFile = read.table(FName,header=FALSE,sep="",comment.char="*",

col.names=cnames,fill=TRUE)

NLength = nrow(SRCFile)

SRCFile = SRCFile[1:(NLength-1),]

The first command

library(utils)

occurs often in work with R. Many default commands are loaded when you
start the R console. Although they have been sufficient for our previous
work, they represent only a fraction of the available features. In this case, we
load a library utils that supports interactive file operations. The command
lines constitute an if statement:

37

Figure 14: Dialog for the choose.dir() operation.

if (!exists("WorkDir")) {

WorkDir = choose.dir(default = "", caption = "Select folder")

}

Simple if statements consist of a conditional line followed by any number
of commands in braces. In this case, the commands are executed only if the
object WorkDir does not exist (the exclamation point designates the logical
not operation). If we had a number of SRC files to analyze in the same
directory, we would not want to reset the working directory every time. The
choose.dir() operation brings up the standard Windows selection dialog
of Fig. 14 and returns the path as WorkDir. The path is then set as the
working directory.

After picking a directory, we’ll use the choose.files() command to pick
a file. One of the command parameters is a default file name. We again use
the paste operation to concatenate the path name and the default file name:

FDefault = paste(WorkDir,"*.src",sep="")

The result looks like this:

FDefault = "C:\\USINGRFORGAMBETSTATISTICALANALYSIS\\Examples\\Section08*.src"

The double backslash represents the forward slash used in R. The command:

FName = choose.files(default=FDefault,caption="Select GamBet SRC file",multi=FALSE)

38

opens a standard dialog to return the name of a a single file in the working
directory of type *.SRC (Figure 2). The example file contains 47,892 entries.

The read.table() command provides a simple option for reading the
file, but there are two challenges:

We don’t know whether there will be 8 or 9 data columns.

The line with ENDFILE does not contain any data.

These commands address the first problem:

CheckFile = read.table(FName,header=FALSE,sep="",comment.char="*",fill=TRUE,nrows=1)

NColumn = ncol(CheckFile)

if(NColumn==8) {

cnames = c("Type","Energy","X","Y","Z","ux","uy","uz")

} else {

cnames = c("Type","Energy","X","Y","Z","ux","uy","uz","Flux")

}

The read.table() command ignores the header comment lines and reads a
single data line (nrows=1) to the dummy data frame CheckFile. The ncol()
function returns the number of data columns as NColumn. Depending on
the value, we define a vector cnames of column names containing 8 or 9
components. The next read.table() command inputs the entire set of data
lines plus the ENDFILE line:

SRCFile = read.table(FName,header=FALSE,sep="",

comment.char="*",col.names=cnames,fill=TRUE)

Note that the number of columns and their names is set by col.names=cnames.
In the absence of the fill=TRUE option, the operation would terminate with
an error because the ENDFILE line has only one entry. The option specifies
that a line with fewer entries than specified should be filled out with N/A

values. The last line is meaningless, so we delete it with the commands:

NLength = nrow(SRCFile)

SRCFile = SRCFile[1:(NLength-1),]

Clearly, the procedure for loading a GamBet source file has several tricky
features. Discovering them takes some trial-and-error. The advantage of a
script program like R is that the effort is required only once. The script we
have discussed provides a template to load all SRC files.

Now that the file has been loaded as the data frame SRCFile, we can do
some calculations. Copy and paste the following information below the load
commands:

39

electrons = subset(SRCFile,Type=="E" | Type=="E-")

photons = subset(SRCFile,Type=="P")

elecavg = mean(electrons$Energy)

photavg = mean(photons$Energy)

hist(electrons$Energy,breaks=20,density=15,

main="Electron energy spectrum",xlab="T (eV)",ylab="N/bin")

hist(photons$Energy,breaks=20,density=15,

main="Photon energy spectrum",xlab="T (eV)",ylab="N/bin")

This command:

electrons = subset(SRCFile,Type=="E" | Type=="E-")

creates the data frame electrons that contains only rows where the Type is E
or E−. We calculate the mean kinetic energy of electrons emerging from the
target and create a histogram. Figure 15 shows the result. At this point, you
should be able to figure out the meanings of options in the hist() command.
Use the Help tab inRStudio and type in hist for more detailed information.

To conclude, we’ll discuss importing a matrix file from the two-dimensional
GBView2 post-processor. A matrix file is a set of values computed over a
regular grid (uniform intervals in x and y or z and r). In this case, the
quantity is total dose (deposited energy/mass), dose from primary electrons,
dose from primary photons, etc. Here is a sample of the first part of a file:

Matrix of values from data file alumbeam.G2D

XMin: 0.0000E+00 YMin: -5.0000E-02

XMax: 1.0000E-01 YMax: 5.0000E-02

NX: 20 NY: 20

X Y NReg DoseTotal DoseElecP DosePhotP

===

0.0000E+00 -5.0000E-02 1 3.3101E+04 2.6251E+04 0.0000E+00

5.0000E-03 -5.0000E-02 1 3.5977E+05 3.0285E+05 0.0000E+00

1.0000E-02 -5.0000E-02 1 3.5977E+05 3.0285E+05 0.0000E+00

1.5000E-02 -5.0000E-02 1 3.9705E+05 3.1705E+05 0.0000E+00

...

DosePosiP DoseElecS DosePhotS DosePosiS

==

0.0000E+00 6.8504E+03 0.0000E+00 0.0000E+00

0.0000E+00 5.6925E+04 0.0000E+00 0.0000E+00

0.0000E+00 5.6925E+04 0.0000E+00 0.0000E+00

0.0000E+00 8.0007E+04 0.0000E+00 0.0000E+00

...

40

Figure 15: Energy distributions of primary electrons and bremsstrahlung
photons determined from the test SRC file.

41

Figure 16: Fitted dose distribution determined from a GBView2 matrix
file.

The data lines are space delimited and can easily be loaded with the read.table()
command. The challenge is the header, where the lines are not comments.
Because the header information is not required for the R analysis, we can
simply omit it by using the skip option. The following code loads matrix
file information, limits data to a scan along x at y = 0.0, carries out a
fourth-order polynomial fit and plots the results (Figure 4).

cnames = c("x","y","NReg","DRate","DoseElecP","DosePhotP","DosePosiP",

"DoseElecS","DosePhotS","DosePosiS")

MatrixData = read.table(file="Demo.MTX",header=FALSE,sep="",col.names=cnames,skip=6)

AxisPlot = subset(MatrixData,y > -0.00001 & y < 0.00001)

plot(AxisPlot$x,AxisPlot$DRate)

DFit = lm(DRate~I(x)+I(x^2)+I(x^3)+I(x^4),AxisPlot)

PlotSeq = seq(from=0.0,to=0.10,length.out=101)

PlotPos = data.frame(x=PlotSeq)

lines(PlotPos$x,predict(DFit,newdata=PlotPos))

42

9 Creating GamBet SRC files with R

In this section, we’ll learn how to generate particle distributions with R and
how to export them in a file that can be used directly as input to GamBet.
A second topic is how to run R scripts directly from the Windows command
prompt or from batch files. With this capability, you can write scripts for
automatic analyses of output from GamBet and other technical programs.

The parameters of primary particles for Monte Carlo simulations inGam-

Bet are specified in source (SRC) files. Output escape files have the same
format, so the output from oneGamBet calculation can be used as the input
to a subsequent one. For initial GamBet simulations, the user usually pre-
pares a source file representing specific distributions in position, velocity and
energy. Although theGenDist utility can create several useful distributions,
the possibilities with R are greatly expanded.

As a test case, we’ll generate an input electron beam for a 3D calculation
with current CurrTotal = 2.5 A and average energy E0 = 20.0 keV. The
beam has a circular cross section with a Gaussian distribution in x and y of
width Xw = Yw = 1.4 mm. The average position is X0 = 0.0 mm, Y0 = 0.0
mm and Z0 = 0.0 mm. The parallel electrons move in z. There is a Gaussian
energy spread of Ew = 500 eV.

First, we set up a script that can be tested in the interactive environment
of RStudio and then convert it to an autonomous program that can be run
from a batch file. The first set of commands clears the workspace, sets a
working directory and defines parameters:

rm(list=objects())

WorkDir = "C:/Examples/Section09/"

setwd(WorkDir)

CurrTotal = 2.5

X0 = 0.0

Y0 = 0.0

Z0 = 0.0

Xw = 1.4

Yw = 1.4

E0 = 20000.0

Ew = 500.0

Ux0 = 0.0

Uy0 = 0.0

Uz0 = 1.0

NPart= 100000

The previous section discussed the SRC file format. The strategy will be
to set up a vector of length NPart for each quantity in the file data lines,

43

combine them into a data frame and then use the write.table() command
to make the file. These commands create the vector for the Type column:

Type = character(length=NPart)

for (n in 1:NPart) {

Type[n] = "E"

}

The first command creates a character vector called Type with NPart blank
entries. The loop fills the vector with the character E.

The quantities Z, Ux, Uy, and Uz are numerical vectors of length NPart
that contain identical values. it is convenient to create and to fill the vectors
with the seq() and c() commands:

Z = c(seq(from=Z0,to=Z0,length.out=NPart))

Ux = c(seq(from=Ux0,to=Ux0,length.out=NPart))

Uy = c(seq(from=Uy0,to=Uy0,length.out=NPart))

Uz = c(seq(from=Uz0,to=Uz0,length.out=NPart))

The position vectors X and Y and the Energy vector are created using the
rnorm() function. It generates NPart values following a specified normal
distribution:

X = rnorm(NPart,mean=X0,sd=Xw)

Y = rnorm(NPart,mean=Y0,sd=Yw)

Energy = rnorm(NPart,mean=E0,sd=Ew)

The set of vectors is assembled into a data frame. Note that the column
names are the same as the vector names, Type, Energy, X,...:

SRCRaw = data.frame(Type,Energy,X,Y,Z,Ux,Uy,Uz)

We must take some precautions using the normal distribution. There
is a small but non-zero probability of extreme values of the position and
energy. They could result in electrons outside the GamBet solution volume
or negative energy values. Both conditions would lead to a program error.
We create a subset of the raw data such that no electron has r > 7.0 mm or
Energy = 0.0:

SRCFile = subset(SRCRaw,((X^2+Y^2)<=25.0*Xw^2) & (Energy > 0.0))

We need to add the current per electron to complete the SRCFile data frame.
Note the use of NLength, the number of electrons in the modified data frame,
which may be less than NPart:

44

NLength = length(SRCFile$Type)

dCurr = CurrTotal/NLength

A column vector of identical current values is constructed and appended to
the SRCFile data frame with the cbind() command:

Curr = c(seq(from=dCurr,to=dCurr,length.out=NLength))

SRCFile = cbind(SRCFile,Curr)

We also define two plotting vectors for latter use:

RVector = sqrt(SRCFile$X^2 + SRCFile$Y^2)

EVector = SRCFile$Energy

We’re ready to write the file. Some variables are set up in preparation:

FNameOut = "TestSRCGeneration.SRC"

HLine1 = "* GamBet Particle Escape File (Field Precision)"

HLine2 = paste("* NPart:",NLength)

HLine3 = "* Type Energy X Y Z Ux ...

HLine4 = "* == ...

Note that the actual number of electrons was written to HLine2. The fol-
lowing commands open the file (over-writing any previous version) and write
the header using the cat() command:

cat(HLine1,file=FNameOut,append=FALSE,fill=TRUE)

cat(HLine2,file=FNameOut,append=TRUE,fill=TRUE)

cat(HLine3,file=FNameOut,append=TRUE,fill=TRUE)

cat(HLine4,file=FNameOut,append=TRUE,fill=TRUE)

We could add the table in its current form, but it would be nice to have
the fixed-width format illustrated in the previous section. This command
adds three initial spaces to the Type column:

SRCFile$Type = paste(" ",SRCFile$Type,sep="")

These commands convert the numbers in the columns to character represen-
tations with width 12 in either scientific or standard notation:

SRCFile$Energy = format(SRCFile$Energy,scientific=TRUE,digits=5,width=12)

SRCFile$X = format(SRCFile$X,scientific=TRUE,digits=5,width=12)

SRCFile$Y = format(SRCFile$Y,scientific=TRUE,digits=5,width=12)

SRCFile$Z = format(SRCFile$Z,scientific=TRUE,digits=5,width=12)

SRCFile$Ux = format(SRCFile$Ux,scientific=FALSE,digits=6,width=12)

SRCFile$Uy = format(SRCFile$Uy,scientific=FALSE,digits=6,width=12)

SRCFile$Uz = format(SRCFile$Uz,scientific=FALSE,digits=6,width=12)

SRCFile$Curr = format(SRCFile$Curr,scientific=TRUE,digits=6,width=12)

45

Note that RVector and EVector for making plots were defined before these
commands when the data entries were still numbers. Finally, this command
writes the SRC file:

write.table(SRCFile,file=FNameOut,sep=" ",append=TRUE,

col.names=FALSE,quote=FALSE,row.names=FALSE)

Here is a sample of the result:

* GamBet Particle Escape File (Field Precision)

* NPart: 100000

* Type Energy X Y Z

* ==

E 2.0448e+04 -6.8232e-01 8.4354e-01 0e+00

E 1.9949e+04 -4.8475e-02 1.5114e+00 0e+00

E 2.1422e+04 -6.9644e-01 -4.9890e-01 0e+00

E 1.9291e+04 -1.9870e+00 5.5780e-01 0e+00

E 2.0032e+04 -5.6534e-01 -2.0669e-01 0e+00

...

Ux Uy Uz Curr

===

0 0 1 2.5e-05

0 0 1 2.5e-05

0 0 1 2.5e-05

0 0 1 2.5e-05

0 0 1 2.5e-05

...

The format isn’t precisely the way we would like. For example, despite the
setting digits=6, the entries in Ux are 0 rather than 0.00000. This is a quirk
of R. The program will not write more significant figures than those in the
defined values, no matter what you tell it. Perhaps there is a solution, but
I haven’t found it. GamBet and GenDist will recognize the above form.
Figure 17 shows a GenDist scatter plot of model particles in the x-y plane.
The following commands create histograms to display the distribution of
electrons in radius and energy (Figure 18):

hist(RVector,breaks=100)

hist(EVector,breaks=100)

To conclude, we’ll modify the script so it may be called from a batch file.
Suppose we want to make a series of GamBet runs with incident beams of
differing width. For each run, we regenerate the input SRC file with R to
represent the new width, run GamBet and rename output files so they are
not over-written. Here’s a sample of a Windows batch file showing the first
operation:

46

Figure 17: Scatter plot in x-y produced from the SRC file by GenDist.

47

Figure 18: Variation of particle density with radius and the energy spectrum
created with the hist() command.

48

START /WAIT RScript Sect09DemoScript.R "C:\Examples\Section09\" "1.4"

START /WAIT C:\fieldp_basic\gambet\gambet BatchDemo

RENAME BatchDemo.GLS BatchDemo01.GLS

RENAME BatchDemo.G3D BatchDemo01.G3D

...

The /WAIT option in the START commands ensures that the SRC file is available
before starting GamBet and that there will not be a file access conflict when
GamBet is running. Consider the first command. RScript is a special form
of R to run scripts. To avoid typing the full path to the program every time,
I modified the Windows path to include

C:\Program Files\R\R-3.2.0\bin\

The next command-line parameter is the name of the script followed by
two character values that are passed to the script. The first is the working
directory for the data and the second is the value of Xw.

Here’s how the script we have discussed is modified to act as an au-
tonomous program. The first set of commands becomes:

rm(list=objects())

args = commandArgs()

WorkDir = args[6]

setwd(WorkDir)

The second command stores the command line parameters in a character
vector args. You may wonder, why start with args[6]? A listing of args
gives the following output:

[1] C:\PROGRA~1\R\R-32~1.0\bin\i386\Rterm.exe

[2] --slave

[3] --no-restore

[4] --file=Sect09DemoScript.R

[5] --args

[6] C:\Examples\Section09\

[7] 1.4

The first argument is the name of the running program, a typical convention
in Windows. The next four are the values of options that may be set in
RTerm. The values of interest start at the sixth component. The next
change is in the initialization section:

Xw = as.numeric(args[7])

49

Because command-line parameters are strings, we force the value to be in-
terpreted as a number to define Xw. Finally, suppose we want to inspect
the histograms, even though the program is running in the background. The
ending statements are modified to:

pdf(file="Test.pdf")

hist(RVector,breaks=100)

hist(EVector,breaks=100)

dev.off()

The results of all graphics operations between pdf() and dev.off() are sent
to the specified PDF file where they can be viewed after the run.

50

10 Generating arbitrary distributions

The R package includes functions to create a wide array of distributions of
interest in mathematics. Nonetheless, there are many particle distributions
of interest in physics (such as differential cross sections) that are not directly
represented. This section introduces a method to sample from any probability
function that can be approximated by a set of points.

Let’s start by creating some data to work with. We’ll model the kinetic
energy distribution of positrons emitted in the β decay of 22Na. The maxi-
mum value is 540 keV. To approximate the probability mass density, we’ll use
one half cycle of a sine function skewed toward higher energies to represent
Coulomb repulsion from the product nucleus. Copy and paste the following
commands to the RStudio script editor:

rm(list=objects())

xmax = 540.0

nmax = 50

MassDens = function(x) {

Out = sin(x*pi/(xmax))*(0.35+0.4*x/xmax)

return(Out)

}

xval = c(seq(from=0.0,to=xmax,length.out=(nmax+1)))

mdens = numeric(length=(nmax+1))

for (n in 1:(nmax+1)) {

mdens[n] = MassDens(xval[n])

}

plot(xval,mdens)

curve(MassDens,0.0,xmax,xname="x",add=TRUE)

The commands

MassDens = function(x) {

Out = sin(x*pi/(xmax))*(0.35+0.4*x/xmax)

return(Out)

}

define a function that follows the curve of Fig. 19. The command

xval = c(seq(from=0.0,to=xmax,length.out=(nmax+1)))

creates a vector of 51 points equally spaced along the energy axis from 0.0
to 540.0 keV. The commands

mdens = numeric(length=(nmax+1))

for (n in 1:(nmax+1)) {

mdens[n] = MassDens(xval[n])

}

51

Figure 19: Positron spectrum. The relative probability mass density is rep-
resented by 51 points.

create an empty vector to hold the probability mass density p(x) and fills
the values with a loop that uses the MassDens function. At this point,
the relative probability is sufficient – it is not necessary to worry about
normalization.

To assign energy values for a particle distribution, we need the cumulative
probability distribution, defined as

P (x) =
∫ x

xmin

p(x′)dx′. (8)

The function P (x) equals the probability that the energy is less than or equal
to x. It has a value of 0.0 at xmin and 1.0 at xmax. The following commands
use the trapezoidal rule to perform the integral of Eq. 8:

dx = xmax/nmax

cdens = numeric(length=(nmax+1))

cdens[1] = 0.0

for (n in 2:(nmax+1)) {

cdens[n] = cdens[n-1] + (mdens[n-1]+mdens[n])*dx/2.0

}

cdens = cdens/cdens[51]

Note that the final command normalizes the function. The result is a vector
cdens of 51 points to represent the cumulative distribution.

52

Figure 20: Plot of x versus P (x) (the cumulative distribution function) show-
ing data points and a spline interpolation.

The cumulative probability P (x) is a monotonically-increasing function
of x – there is a unique value of x for every value of P (x). Therefore, we
can view x as a function of P (x), as illustrated by Fig. 20 created with the
command:

plot(cdens,xval)

We can also make an accurate calculation of x for any P (x) using the spline
interpolation functions of R. The line in Fig. 20 was created with the com-
mand:

lines(spline(cdens,xval))

Figure 21 illustrates the principle underlying of the sampling method.
Suppose we want to create 10,000 particles. By the definition of the cu-
mulative probability distribution, a total of 1000 of the particles should be
contained within the interval 0.6 ≤ P ≤ 0.7. The graph show that these
particles should be assigned energies in the range 320 keV ≤ x ≤ 360 keV.
In other words, if ζ represents a uniform sequence of 10,000 numbers from
0.0 to 1.0, then the desired distribution will result if the energy values are
assigned according to

xn = P−1(ζn) (9)

53

Figure 21: Energy values associated with intervals of the cumulative distri-
bution function.

The R expression for the assignment operation uses a form of the spline()
function that creates values at specified points:

NMax = 10000

dpoints = numeric(length=NMax)

zetavals=c(seq(from=0.0,to=1.0,length.out=NMax))

ztemp = spline(cdens,xval,xout=zetavals)

dpoints = ztemp$y

hist(dpoints,breaks=35)

In this case, the spline() function returns a data frame containing both
the independent and dependent values. The assigned energies are set equal
to the dependent values, dpoints = ztemp y. The top graph in Figure 22
shows a histogram of the resulting distribution.

The routine creates the same distribution each time the script is run.
In some circumstances, you may want to add variations so that runs are
statistically independent. In this case, the uniform sequence of ζ values may
be replaced with a random-uniform distribution:

zetavals=runif(NMax,0.0,1.0)

The lower graph in Fig. 22 shows the result.

54

In conclusion, the R package has a vast set of available commands and
options that could occupy several textbooks. In this tutorial, I’ve tried to
cover the fundamental core. My goal has been to clarify the sometimes arcane
syntax of R so you have the background to explore additional functions. A
compendium of scripts and data files for the examples is available. To make
a request, please contact us at techinfo@fieldp.com.

55

Figure 22: Histograms of the energy spectra of 10,000 particles. Top: uniform
distribution of ζ. Bottom: Random-uniform distribution of ζ.

56

Index

batch file, 46
batch file START command, 46
beta decay, 51

command line varaibles, 49
confidence interval, 34
criterion, 12, 29, 39, 44
CSV file, 10

header, 10
reading, 11
write from FORTRAN, 26
writing from R, 15

cumulative probability distribution, 52
curve fitting, 16

data frame, 10
column names, 8, 10, 12, 20, 39,

44
create a subset, 12, 28
definition, 8
number of columns, 37
number of rows, 37
reference column values, 8
truncate, 37

differential cross section, 51
distribution generation, 43, 51
dose, 24

filtering by particle type, 40
fitting object, 14, 18, 28
for loop, 44, 52
formula syntax, 12, 17, 28, 33
Fourier analysis, 20
functions in R, 20, 51

GamBet, 3, 24, 36, 43, 46
escape file, 36, 43
matrix file, 36, 40
output file types, 36
SRC file, 36, 43

Gaussian function, 31, 43

GBView2, 36
GBView3, 36
GenDist, 3, 43, 46

how to
add a column to a data frame, 45
calculate fitted values, 18
clear the R console, 5
combine vectors in a data frame,

8
concatenate strings, 6
create a sequence of numbers, 19
create a vector, 8
create an empty vector, 44, 51
define a fitting formula, 14
define a function, 20, 51
delete all objects, 7
find confidence intervals, 33
find the size of a data frame, 37
force string to numerical value, 49
format numbers for output, 45
generate any distribution, 51
list objects, 5
make a linear fit, 14
make a nonlinear fit, 31, 32
make a normal distribution, 22
make a polynomial fit, 17, 24
make plots in background opera-

tion, 50
obtain example files, 55
pick a directory interactively, 38
pick a file interactively, 39
plot a fitting line, 19, 23
plot a histogram, 54
plot a mathematical curve, 21
plot a spline fit, 53
read a CSV file, 11
read command-line variables, 49
renormalize a vector, 12
run a script from the console, 9

57

run a script line, 7
run R from a batch file, 46
see the values of objects, 5
set the working directory, 11
set up a for loop, 44, 52
set up an if statement, 37
write a CSV file, 15
write a data frame to a file, 46
write a line to a file, 45

if structures, 37
integration, numerical, 52
interactive script

choose directory, 37
choose files, 37

inverse function, 53

linear fitting, 12
definition, 16

logical and, 12, 29, 44
logical not, 38
logical or, 39

Monte Carlo codes, 3
multivariate, 24

nonlinear fitting, 31
definition, 16
starting conditions, 33

normal distribution, 22, 44

OpenOffice Calc, 10

parameter estimation, 16, 31
plot, 12

connected lines, 19
fitting curve, 19, 23, 33
histogram, 39
mathematical curve, 21
set style, 8
simple y versus x, 8
slope/intercept line, 15
to PNG file, 28

plot fitting curve, 28

PNG file, 28
polynomial fit, 16, 24

R
advantages, 4
basic arithmetic, 5
case sensitive, 6
console, 5
data frame, 8
file input, 10
help, 5, 24
libraries, 24
object definition, 5
objects listing, 24
reference card, 4
script, 7
string variables, 6
where to obtain, 4

R command
lines(), 28
plot(), 28
subset(), 28

R commands
abline(), 15
as.numeric(), 49
c(), 8, 18, 44
cat(), 45
cbind(), 45
character(), 44
coef(), 15
commandArcs(), 49
confint(), 32
curve(), 21
data.frame, 8
data.frame(), 18, 22, 44
dev.off(), 28, 50
for(), 44
format(), 45
function, 20
hist(), 39, 46, 50
I(), 17
if(), 37

58

length(), 44
library(), 37
lines(), 19
list(), 33
lm(), 12, 17, 22, 28
mean(), 8, 28, 39
ncol(), 37
nls(), 32
nrow(), 37
numeric(), 51
objects(), 5
paste(), 6, 37, 45
pdf(), 50
plot(), 8, 12, 19
png(), 28
predict(), 18
read.csv(), 11, 28
read.table(), 32, 37, 42
rm(), 7, 28
rnorm(), 22, 44
seq(), 19, 22, 44
setwd(), 11, 28
source(), 9
spline(), 53
sqrt(), 45
subset(), 12, 39, 44
summary(), 14, 18, 28, 33
write.csv, 15
write.table(), 46

random noise, 20
spreadsheet, 10

round-off errors, 29
RScript, 46
RStudio, 43

features, 24
screen layout, 24
where to obtain, 4

scientific notation, 45
script

as template, 39
automatic analysis, 43

run all lines, 8
run from console, 9
starting, 7, 11
step through lines, 8, 11

slope/intercept line, 14
splines, 53
spreadsheet, 10, 32
square root function, 45
statistical software

choosing, 4
list link, 3

straight line fit, 14
summary of fitting object, 14

tab/space delimited file
reading, 32

technical software
advantages and drawbacks, 3
interface, 3

trapezoidal rule, 52

univariate, 16
utils library, 37

vector, 8
empty, 44
shift values, 12, 28

Windows
batch file, 46
command line variable, 49
path environmental variable, 49

59

	Introduction
	Working with the R console: vectors and data frames
	Creating and reading CSV files
	Linear curve fitting and plotting, Part A
	Linear curve fitting and plotting, part B
	Working with RStudio: multi-dimensional fitting
	Nonlinear fitting and parameter estimation
	Importing GamBet files into R
	Creating GamBet SRC files with R
	Generating arbitrary distributions

