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Preface to the electronic edition

There were many texts available on finite-element methods for electromagnetic fields when the
print version of this book was released in 1997, and there are even more now. Most of them are
mathematically oriented, presenting a generalized, sophisticated theoretical framework. This
book differs in two respects:

• It emphasizes the physical properties of electric and magnetic fields and how they can be
translated to a numerical representation.

• It shows how to do useful things, concentrating on the nuts-and-bolts of numerical solu-
tions.

At the time I wrote the book, I was involved in 2D solutions for charged-particle devices, so
there is an emphasis on techniques with conformal triangular meshes. I have since moved to
3D solutions on conformal hexahedron meshes so I expect to release additional materials in the
future.

The book content was originally published by CRC Press (now a division of Taylor and Fran-
cis) under the title Field Solutions on Computers (ISBN 0-8493-1668-5). Much of the work
preparing this book was performed on a sabbatical leave from the University of New Mexico.
I would like to thank Ashley Gasque of Taylor and Francis for arranging permission to create
and to distribute this electronic text. The PDF file was generated from my original manuscript
and illustrations using Latex. The conversion effort was supported by Field Precision LLC.

-Stanley Humphries, Albuquerque, New Mexico, U.S.A., January 2010
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Chapter 1

Introduction

1.1 Overview

Numerical techniques often give straightforward answers to problems that are difficult or impos-
sible to solve with analytic methods. This book is a toolbox of practical numerical methods for
scientists and engineers who deal with electric and magnetic fields. It is designed for self-study
or as a one-term course for advanced undergraduates. The emphasis is on representing phys-
ical problems by numerical simulations and understanding the results. We shall concentrate
on finite-element techniques that can handle complex geometries and materials. The methods
apply to a broad range of systems, including biological media, plasma processing reactors, accel-
erators, solid-state devices, and rotating electrical equipment. The material can help you write
your own programs, either for direct field solutions or analyses of results from other programs.
It can also help you apply packaged software more effectively.

The goal of this book is to act as a bridge between introductory texts on electromagnetism
and the growing list of advanced references on numerical field techniques. Standard texts
emphasize analytic techniques and usually include exercises that are solvable on hand calcula-
tors. Despite the growing importance of computers in electromagnetic design, limits on time
and hardware often preclude detailed coverage of numerical techniques in introductory courses.
This book addresses the problem partly by coordinating the material with integrated software
for personal computers. Furthermore, electromagnetic theory is cast in a form aligned to nu-
merical techniques. This approach has an added advantage – it can help enhance your intuitive
grasp of field theory. Computer solutions are concrete representations of the abstract concepts
of vector calculus. The viewpoint of fields as the interactions of simple elements is particularly
valuable to students familiar with circuit theory. Another feature of the book is an emphasis
on interdisciplinary applications. We shall touch on related areas of physics and engineering
including gas dynamics, thermal transport, and charged particle optics. One motivation is to
demonstrate the versatility of the numerical methods, which extend to a remarkable variety of
applications. A second goal is to encourage a broad viewpoint that can be helpful working with
electromagnetic devices. For example, in the design of a magnet we can apply similar techniques
to calculate field strength, magnetic forces, strain components and cooling requirements.
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2 Finite-element Methods for Electromagnetics

The literature on numerical techniques for electromagnetism has grown considerably in the
past decade. With few exceptions, available books are comprehensive reviews of advanced work
aimed at experienced readers. A consequence is that it is often difficult to find practical guide-
lines for applying the methods. In contrast, this book has the modest goals of summarizing
underlying physics and describing methods that are easy to use. To achieve a manageable
length, many topics are not covered, including moment methods and high order finite-elements.
Nonetheless, the book can serve as an introduction to the literature when your application de-
mands more advanced techniques. The criterion for choosing topics was that solutions could be
accomplished on standard personal computers. For example, although we shall study conformal
triangular meshes in two dimensions, the discussion of three-dimensional solutions is limited to
box elements.

1.2 Summary of material

The material roughly follows the order of an introductory electromagnetism course, starting
with electrostatics and progressing to electromagnetic waves. The topics are arranged in a linear
progression – early chapters provide a groundwork for more involved treatments that follow.
Numerical techniques are introduced as needed for the increasingly challenging solutions. The
book includes sections on good design practices such as choosing run parameters, applying
dimensionless variables, making effective benchmark tests, and interpreting results. There are
also sections on auxiliary numerical techniques such as interpolation and matrix inversion.

We begin with boundary value problems where the goal is to find static solutions in space
that are consistent with conditions on surrounding boundaries. We then proceed to initial
value problems . Here, we start from a given state of a system and follow its evolution in
space and time. The first eight chapters emphasize electrostatic solutions. Electrostatics has
a strong intuitive appeal, and the derivations create a foundation of theory for applications
that follow. Chapter 2 immediately addresses finite-element solutions on arbitrary triangular
meshes. This method gives two-dimensional solutions with high accuracy because a set of
triangles can conform to curved and slanted boundaries of electrodes and dielectrics. To begin,
the chapter reviews the differential and integral equations of electrostatics with dielectrics. The
first task in a numerical solution is to convert the continuous equations into a set of difference
equations suitable for digital computers. The approach in Chapter 2 is to apply Gauss’s law
over a volume defined by triangular elements surrounding a mesh vertex. In contrast, Chapter
3 derives the finite-element equations from the principle of minimum field energy. Although
the approach is less intuitive, the formulation is more easily extended to higher order field
approximations and three-dimensional solutions.

Chapter 4 introduces electrostatic solutions on regular meshes with emphasis on finite-
difference methods. Here, the idea is to generate difference equations by direct conversion of
differential equations. The conversion is straightforward when the solution space is divided
into box volumes with rectangular sides parallel to the coordinate axes. This type of mesh
limits the solution accuracy but minimizes the amount of information that must be stored in
memory. Finite-difference expressions play an important role in the time-dependent solutions
of Chapters 12, 13 and 15.
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Figure 1.1: Conformal two-dimensional mesh. The solution area is divided into triangular
elements to represent different materials. A numerical solution gives field quantities at the
nodes.

The following three chapters concentrate on techniques for solution and analysis. Chapter
5 covers the preliminary task of mesh generation. The term mesh refers to the way that a so-
lution area or volume is divided. Figure 1.1 shows an example of a two-dimensional mesh. The
triangles constitute elements , the fundamental spatial unit. Material properties, like the dielec-
tric constant, are assumed uniform over each element volume. Vertices are the intersections
of element boundaries. Solutions of the difference equations yield values for the electrostatic
potential at the vertices. Values at intervening points and the field components can be esti-
mated by interpolation. The chapter describes techniques to set up regular rectangular meshes
in three dimensions. It also covers the more challenging task of defining a set of irregular
triangular elements for two-dimensional solutions. Here, the triangle sides closely follow the
boundaries of physical objects. Another task is to set up a mesh indexing system so that we can
determine the elements surrounding a vertex, the neighboring vertices and the material identity
of elements. The result of mesh generation and difference conversion is a large set of coupled
linear equations. The final section of Chapter 5 covers solution of equation sets by relaxation
methods. These methods are easy to program and run rapidly, but they may fail with difficult
geometries or complex materials. As an alternative, Chapter 6 reviews direct inversion of linear
equation sets by matrix methods. Initial sections cover familiar techniques like Gauss-Jordan
inversion that apply to moderate equation sets. The chapter concludes with a discussion of
block matrix methods to solve the large equation sets associated with field problems.

Chapter 7 covers the important topic of what to do with electrostatic potential values
after you find them. The first sections deal with the calculation of gradients to determine
electric fields. The least-squares-fit method is useful for arbitrary meshes because the number of
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available data points may vary. The remaining sections cover techniques for graphical display of
data, including plots of boundaries, meshes and element properties. The chapter also describes
finding equipotential contours, making field line plots, and displaying potential as a three-
dimensional wireframe elevation.

Chapter 8 addresses field solution techniques for materials with complex properties. The
topic is an important preliminary for the magnetic solutions of the following chapter. Non-
linear materials have local properties that depend on the field quantities. Because the fields
are not known in advance, we must employ a cyclic process to derive solutions. This usually
involves an initial field approximation, calculation of the local material properties, correction
of the fields, and so forth. The chapter addresses the convergence of cyclic calculations and
interpolation methods to extract non-linear material parameters from numerical tables. The
response of anisotropic materials (such as birefringent crystals or permanent magnets) to fields
depends on orientation. The final section reviews finite-element equations for these materials.

We proceed to magnetostatics in Chapter 9. The first section reviews Ampere’s law in
differential and integral form. The relationships lead respectively to finite-difference and finite-
element equations. The chapter concentrates on two-dimensional solutions in planar and cylin-
drical geometries. In this limit, the vector potential plays a role analogous to the electrostatic
potential. We can directly apply the solution methods developed in previous chapters. The
chapter also discusses the properties of permanent magnets, materials with both non-linear and
anisotropic properties. The final section covers cyclic methods to find self-consistent operating
points in permanent magnet devices.

Chapter 10 reviews several applications for static field solutions. Initial sections deal with
volume and surface integrals of electric and magnetic field quantities over the regions of a trian-
gular mesh. The integrals yield useful quantities like field energy and forces on structures. For
electrostatic solutions we can find induced surface charge to determine self and mutual capaci-
tance. Integrals over magnetic solutions yield information on inductance, force and torque. The
remaining sections review three applications. Sections 6 and 7 cover charged-particle devices.
The first section addresses relativistic equations of motion and time-centered solutions for or-
dinary differential equations. The next section covers advanced techniques like self-consistent
space-charge forces and field-limited flow in electron guns. Section 8 reviews advanced boundary
conditions in finite-element solutions with application to the design of Hall effect sensors.

Chapter 11 initiates our study of electric and magnetic fields that change in time. We
first address frequency-domain solutions where steady-state fields vary harmonically. The as-
sumption is that the frequency is low enough so that the effects of radiation are small. The
approximation allows neglect of inductively-generated electric fields in electrical problems and
displacement currents in magnetic problems. In this limit, electric and magnetic field solutions
are separable. The governing equations are similar to those for static fields and we can adapt
methods of previous chapters. The models of Chapter 11 apply to a variety of applications in-
cluding eddy currents in AC transformers, RF electric fields in biological media, and inductive
coupling in microcircuits. Chapter 12 introduces the topic of initial value solutions through
a detailed study of the diffusion equation. This relationship is critical to almost all areas of
physics and engineering. We use thermal transport as a framework to develop time-dependent
finite-element equations. These are applied to simulations of pulsed magnetic fields in the pres-
ence of conducting materials. The chapter also addresses issues of numerical stability for initial
value problems.
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The final two chapters remove limits on frequency to model radiation effects with coupled
electric and magnetic fields. The numerical techniques incorporate the full set of Maxwell’s
equations. Applications include microwave devices, RF shielding and communications. Elec-
tromagnetic solutions encompass a much broader range of possibilities than the static and
quasi-static results of previous chapters. Often, solutions are easy to generate but challenging
to understand. We shall take a step-by-step approach, starting from an extensive discussion
of one-dimensional solutions in Chapter 13. The advantage is that we can address the ba-
sic physics issues without worrying about details of mesh generation and complex interacting
waves. With confidence in the validity of the methods, we proceed in Chapter 14 to two and
three-dimensional solutions.

The first section of Chapter 13 reviews the theory of plane waves. The material is useful
for constructing benchmark tests for the numerical approaches that follow. Electromagnetic
solutions are divided into two main classes: time-domain and frequency-domain. Section 2
covers numerical time-domain solutions. Here, electromagnetic pulses with arbitrary time vari-
ations propagate in ideal or absorbing media. The process involves direct solution of Maxwell’s
equations by replacing time derivatives with time-centered difference operators. There are im-
portant limits on the time-step so that the solutions do not violate the principle of causality.
We shall use the integral form of the equations to derive finite-element representations of spa-
tial variations. The section reviews an important issue, the simulation of infinite space by a
finite solution volume. To represent free space we shall concentrate on the method of absorbing
boundary layers, physically equivalent to matched terminations on transmission lines.

Frequency-domain calculations apply to continuous excitation of systems at a single fre-
quency, f = 2πω. Here, we replace time derivatives by jω and solve the resulting complex
number difference equations to find the amplitude and phase of field quantities. It is straight-
forward to model generalized material losses by taking complex values for the dielectric constant
ǫ and magnetic permeability µ. Frequency-domain solutions divide into two types: scattering
and resonant. Scattering solutions, discussed in Section 3, apply to open systems where radia-
tion in the form of traveling waves can escape. Section 4 covers solutions for resonators, closed
structures that support a standing wave pattern. Applications include waveguides and particle
acceleration structures. Although we can find valid solutions for any frequency, we are usually
interested in specific values that correspond to resonant modes. In this case, waves interfere
constructively giving strong fields for moderate drives. The calculation of resonant modes
involves finding several solutions at different frequencies to identify the interference condition.

Chapter 14 extends the numerical methods to two and three-dimensional electromagnetics.
The foundation developed in previous chapters makes this a relatively easy process. We need
make only a few extensions to theory, such as optimizing absorbing boundaries for waves incident
at an angle. We can create a wealth of interesting solutions with moderate effort. Initial sections
concentrate on two-dimensional solutions on triangular meshes. Figure 1.2 shows an example
of a scattering-type frequency-domain solution, the electric fields in the radiation pattern of
an electric dipole antenna. The final topic is three-dimensional time-domain solutions. We
shall apply a finite-element viewpoint on a regular mesh. In comparison to the popular finite-
difference time-domain method, the resulting difference equations are easy to interpret and
provide an accurate representation of material boundaries.
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Figure 1.2: Radiation from an electric dipole antenna, electric field lines for λ = 0.5 m. The
geometry is cylindrical with the axis at the bottom. One half of the solution is shown with a
symmetry boundary on the left. A thin ideal absorbing boundary defines an anechoic chamber
of radius 2.0 m.

1.3 Some precautions

A prevailing myth of our age is that computer simulations of increasing complexity lead to a
better understanding of the universe. It reality, it often works the other way. People with the
most prodigious codes and supercomputers may not have the most acute physical insight. This
is because they must spend so much time buying cutting-edge hardware, improving graphical-
user-interfaces, and converting working codes to C++. Finances also contribute to the problem:
methods that circumvent complexities through insight seldom attract money. Funding agencies
are most comfortable funneling resources to definable trends like massive parallel processing .
Finally, it is more pleasant to sit at a computer than to visit experimentalists in the trenches.

Computers are an undeniably powerful tool to expand our design capabilities in science and
engineering if we already know the topic thoroughly. When used with a solid grasp of analytic
theory, numerical solutions can amplify our understanding of complex systems. The power to
make rapid parameter searches can build valuable physical intuition if we know what to look for
in the results. On the other hand, the computer has proved to be the twentieth century’s most
profound contribution to the art of wasting time. A computer can ingest an endless supply of
hours while generating nothing but PowerPoint presentations. I offer the following guidelines:

• The validity of code results depends more on the identification of the relevant physical
processes and the soundness of approximations than on the sophistication of the numerical
methods or the capabilities of the computer.
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• Extensive analytic benchmark testing of new or existing technical software is essential
because bugs are everywhere. Equally important, the creation of tests is a good way to
bracket the parameter space and to learn more about the physics.

• Well-organized programming is essential for any technical task. With common sense,
good programs can be written in any language.

• A technical code without comprehensive documentation of the underlying equations and
approximations ranges from useless to dangerous.

• Anyone who has fought the quirks of packaged routines knows that libraries are not the
answer to all problems. You can often save time by writing your own routines. An added
benefit is that the process may have educational value.

• Buying software to solve engineering problems is not an alternative to knowing how to
solve engineering problems.

• If your simulation brings forth an amazing potentially-publishable result, look for a nu-
merical instability.

• Beware the illusion of simplicity. Codes that appear to have all the data at hand and to
make all the decisions are often collections of bad habits and questionable approximations.
In such programs, initial demonstrations may appear effortless but real design problems
become nightmares.
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Chapter 2

Finite-element Electrostatic Solutions

Electrostatic calculations provide a good introduction to numerical solutions because they are
relatively easy to understand. The goal is to find electric forces that act in regions containing
distributions of charge. The charge can be distributed in free space, on metal electrodes, or in
dielectric materials. In this chapter, we concentrate on two-dimensional solutions using finite-
element methods with triangular elements. Integral relationships applied over the elements lead
to a set of coupled difference equations for electrostatic potential values at the vertices.

The first four sections review principles of electrostatics. Section 2.1 covers Coulomb’s law,
the foundation of electrostatics. The empirical relationship specifies forces between charges.
The section introduces the electric field, a vector quantity defined throughout the solution
volume that gives forces associated with a distribution of charge. Section 2.2 shows how to
represent forces resulting from large numbers of charged particles. Here, the direct applica-
tion of Coulomb’s law is impractical. Instead, we approximate the charge with a continuous
distribution in space and derive an alternative relationship, Gauss’ law. Section 2.3 applies
Gauss’ law to small volumes to find differential relationships, the electrostatic Maxwell equa-
tions. The section also introduces the electrostatic potential, a scalar (single-valued) function
of space from which vector fields can be calculated. Because the scalar function satisfies simple
boundary conditions, it is easier to determine fields indirectly by first calculating the potential.
Section 2.4 discusses the classes of charge density that arise in electrostatics, emphasizing the
charge displacement in dielectric materials.

Section 2.5 initiates the discussion of finite element techniques. The section introduces the
computational mesh, where the solution volume is divided into elements. The set of element
boundaries look like a mesh or screen. In two dimensions, the best choice of elements is a
set of flexible triangles with sides aligned along the boundaries of electrodes and dielectrics.
This gives an accurate representation of material discontinuities. The section also discusses
the general strategy of numerical solutions and the importance of boundaries. Section 2.6
reviews useful relationships from analytic geometry for triangles. Section 2.7 contains the
most important derivation in the book. The section shows how the application of Gauss’
law in Cartesian coordinates over the elements surrounding a vertex yields a simple difference
relationship between the potential at the point and its neighbors. The resulting set of coupled
linear equations can be solved on a digital computer. Section 2.8 discusses solution strategies
and boundary conditions, while Section 2.9 extends the derivations to three-dimensional systems
with cylindrical symmetry.

9
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Figure 2.1: Coulomb’s law – force between two point charges.

2.1 Coulomb’s law

Electrostatics describes the forces between charged bodies at given positions. We denote the
charge on an object, a positive or negative quantity, by the symbol q . Throughout this book,
we shall use the International System of Units where the charge is given in coulombs . The
charge of a single electron is −1.60219 × 10−19 coulombs. The empirical relationship for the
forces between stationary charges was discovered by Coulomb in 1771. Suppose there are two
small objects with charges q1 and q2. As shown in igure 2.1, the unit vector n21 points from
Object 2 to Object 1 and the distance between the charges is r21. The electric force on Object
1 from Object 2 is

F1 = n21
q1q2

4πǫo r221
. (2.1)

Equation 2.1 is a vector equation that gives force components in three directions. It implies
that 1) the force is parallel to the line between the charges, 2) the strength is proportional
to the product of the charges and decreases as the inverse square of their separation, and
3) like charges repel one another while opposite charges attract. The constant ǫ0 with value
8.854× 10−12 farads/m ensures that the force is in newtons if distances are measured in meters
and charges in coulombs.

The principle of superposition is a second experimental result that allows extension of
Coulomb’s law to multiple charges. It states that the total force on a test charge from several
charges is the vector sum of individual forces. Suppose we have a test charge q0 at location
(x0, y0, z0) in the presence of a set of charges qi. The quantities ni are unit vectors that point
from the surrounding charges to the test charge and the quantities ri are the corresponding
separations. The total force on the test charge is

F(x0, y0, z0) = q0
N
∑

i=1

ni
qi

4πǫ0r2i
. (2.2)
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Figure 2.2: Electric field lines between two charged spheres, positive on the left and negative
on the right.

For a given distribution of surrounding charges, we could define a normalized force

F(x0, y0, z0)

q0
=

N
∑

i=1

ni
qi

4πǫ0r2i
. (2.3)

The summation on the right-hand side is a function of space that depends on the charge
distribution and not on the properties of the test charge. After evaluating the summation we
could find the force on any test charge at position (x0, y0, z0) by multiplying the normalized
force by q0. The process can be extended by calculating the normalized force for a charge
distribution at all points in space, generating a vector field . The field information gives the
force on any test charge at any position. The normalized force distribution, called the electric
field , is given at position (x0, y0, z0) by

E(x0, y0, z0) =
∑

i

ni
qi

4πǫ0r2i
. (2.4)

The electric field has units of volts per meter (V/m). Given the electric field for a charge
distribution, the force on a test charge q at location x = (x, y, z) is

F(x) = q E(x). (2.5)

We usually illustrate electric fields with plots of field lines . These are a set of curves aligned
along the local field direction with spacing inversely proportion to the field strength. The field
is strong in regions where the lines are closely packed. Figure 2.2 shows the electric field lines
between two charged spheres. By convention they point from regions of positive to negative
charge.
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Figure 2.3: Derivation of Gauss’ law. Left: point charge centered in a spherical surface of radius
R. Right: Point charge inside a closed surface composed of several spherical segments.

2.2 Gauss’ law and charge density

he direct application of Eqs. 2.4 and 2.5 may be useful for atomic scale problems involving
interactions between a few ions or electrons. The procedure is impractical for macroscopic
problems that may include more than 1010 charged particles. To deal with large numbers of
charges, we need an alternative mathematical expression of the content of Equation 2.4. Gauss’
law specifies electric field properties over the surface of a macroscopic volume in terms of the
enclosed charges, independent of their position:

∫ ∫

S
E · n dS =

∑

i qi
ǫ0

. (2.6)

The left-hand side is a surface integral of the normal component of electric field. Here, dS is
the area of a segment of the surface and n is a local unit vector pointing out of the volume.
The summation on the right-hand side extends over all charges inside the volume.

Gauss’s law follows from the inverse square variation of electric field with distance from a
charge. Figure 2.3a shows a point charge q surrounded by a spherical surface of radius R. The
electric field is normal to the surface and has the uniform magnitude

Er(R) =
q

4πǫ0R2
. (2.7)

Multiplying Equation 2.7 by the surface area of the sphere, the surface integral assumes the
value (q/4πǫ0R

2)(4πR2) = q/ǫ0, consistent with Equation 2.5. Next, consider a test charge
surrounded by an irregular volume like that shown in Figure 2.3b. The surface consists of a
number of small elements that are either parallel with or normal to r , the direction pointing
away from the charge. There are no contributions to the integral from portions of the surface
parallel to r . Consider the integral on a normal surface segment a distance R′ from the charge
compared to that of a segment covering the same solid angle on the reference sphere of Figure
2.3a. The field is lower by the ratio (R/R′)2, but the surface area is higher by (R′/R)2.
Therefore, the segments make the same contribution to the surface integral. Integrating over
all solid angle, we find that the integral for the surface in Figure 2.3b also equals q/ǫ0. By
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making stair-step approximations with smaller divisions, we can extend the result to surfaces
of any shape. Similarly, we can show that the integral does not depend on the position of the
charge inside the volume. Furthermore, the principle of superposition implies that if there are
several charges inside the volume, the total surface integral is Σqi/ǫ0.

In most applications on a macroscopic scale, it is unnecessary to preserve information about
the discrete nature of charges. For example, consider the field at a distance of 1 µm from two
electrons with an atomic scale spacing of 1 Å. The difference in the field amplitude compared
to two coincident charges is only about one part in 107. Usually we can approximate a large
number of discrete charges as a continuous cloud represented by a charge density ρ(x, y, z).
The quantity ρ is a scalar field with units of coulombs/m3. It equals the sum of charge in a
differential element at location (x, y, z) divided the element volume:

ρ(x, y, z) ∼=
∑

iqi
∆x∆y∆z

. (2.8)

The summation in the numerator extends over all charges in the range x ≤ x′ ≤ x + ∆x, y ≤
y′ ≤ y +∆y and z ≤ z′ ≤ z +∆z.

We can rewrite Equation 2.4 in terms of a volume integral over the charge density. If the
vector x gives the coordinates where the field is calculated and x’ is the position of the charges,
then

E(x) =
∫ ∫ ∫

dV
ρ(x′)

4πǫo

x− x′

|x− x′|3 . (2.9)

Similarly, we can rewrite Gauss’ law as
∫ ∫

S
E · n dS =

∫ ∫ ∫

V
dV

ρ

ǫ0
. (2.10)

Electric field lines have fluid-like geometric properties. Equation 2.10 shows that the total
flux of lines out of a volume is proportional to the total charge enclosed. If there is no enclosed
charge, every field line that penetrates a volume must exit. The condition that electric field
amplitudes are finite implies that lines flow smoothly. They cannot cross each other or kink
back on themselves (Figure 2.4a).

2.3 Differential equations for electrostatic fields

In this section we derive differential relationships equivalent to Eqs. 2.9 and 2.10 that are useful
for the finite-difference derivations of Chapter 4. An equation for the divergence of electric field
follows from Equation 2.10 in the limit of small volumes. Suppose that we apply Gauss’ law over
the box shown in Figure 2.4b. The box is small enough to neglect variations in ρ; therefore, the
volume integral on the right-hand side of Equation 2.10 is approximately ρ(x, y, z)∆x∆y∆z.
We must evaluate the surface integral over the six faces. First, consider the two faces normal
to the x-axis with area ∆y∆z. The contribution to the surface integral is

− Ex(x, y, z)∆y∆z + Ex(x+∆x, y, z)∆y∆z. (2.11)
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Figure 2.4: Derivation of the differential equations of electrostatics. a) Geometric constraints
on field lines – kinked or crossing lines give infinite field magnitude. b) Application of Gauss’
law over a differential volume to find the divergence equations. c) Definition of a line integral
around a closed curve. d) Evaluation of a line integral around a differential volume in the x-y
plane to find one component of the curl equation.
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If the box is small, variations of Ex in y and z are nearly the same on both faces and we can
approximate the variation in x with a Taylor expansion,

Ex(x+∆x, y, z) ∼= Ex(x, y, z) +
∂Ex

∂x
∆x. (2.12)

Substituting Equation 2.12 into Equation 2.11 gives

∂Ex

∂x
∆x∆y∆z (2.13)

Contributions on the faces normal to the y and z axes have similar form. Setting the surface
integral of field equal to the volume integral of charge density and canceling the common factor
of ∆x∆y∆z gives

∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
=

ρ

ǫo
. (2.14)

We recognize the left-hand side of Equation 2.14 as the divergence of electric field. Therefore,
the differential form of Gauss’ law is

∇ · E =
ρ

ǫo
. (2.15)

We can find another useful vector relationship that represents the condition that electric
field lines can not curve back on themselves (Figure 2.4a). An equivalent statement is that the
line integral of electric field around any closed curve in space equals zero,

∮

E · dl = 0. (2.16)

Figure 2.4c illustrates the meaning of Equation 2.16. A closed curve is divided into a number
of vector segments dl that point in the direction of positive rotation. The line integral is the
sum of values for the dot product of segment vectors with the local electric field. Consider an
integral around the small rectangle shown in Figure 2.4d normal to the z axis near the point
(x, y, z):

Ex(x, y, z)∆x+ Ey(x+∆x, y, z)∆y − Ex(x, y +∆y, z)∆x− Ey(x, y, z)∆y = 0. (2.17)

Applying a Taylor expansion, Equation 2.17 becomes

− ∂Ex

∂y
+
∂Ey

∂x
= 0. (2.18)

The left-hand side of Equation 2.18 is the z component of the vector curl operator. We can
derive similar expressions in planes normal to the x and y axes. Therefore, Equation 2.16
implies the differential relationship,

∇× E = 0. (2.19)

It is easy to prove that the curl of any vector field that can be expressed as the gradient of
a scalar field is identically zero,
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∇× (∇φ) = 0. (2.20)

An analogy to a contour map makes the physical meaning of Equation 2.20 clear. Here, elevation
is the scalar field and the gradient gives lines of the slope. The lines may radiate away from
a point (a peak or depression) or flow smoothly between locations, but can never curl or cross
each other if we exclude cliffs and overhangs. An integral of slope around a closed curve must
return to the same elevation.

Comparison of Eqs. 2.19 and 2.20 shows that the electric field may be written as

E = −∇φ. (2.21)

The minus sign is a convention – we shall discuss the motivation shortly. The quantity φ (the
electrostatic potential) is a scalar field with values defined over a region of space. It has units
of volts (V). To understand the physical meaning of potential, consider the work performed
moving a test charge q in an electric field from point x1 to x2:

∆W = −
∫

x2

x1

F · dl = −q
∫

x2

x1

E · dl. (2.22)

Noting that the change in potential energy of the charge, ∆U , equals the work performed
and substituting from Equation 2.21, we find that

∆U = q
∫

x2

x1

∇φ · dl = q [φ(x2)− φ(x1)] . (2.23)

Therefore, the quantity qφ equals the relative potential energy of charged particles in a static
electric field.

Combining Eqs. 2.15 and 2.22 gives the Poisson equation for the electrostatic potential:

∇ · (∇φ) = − ρ

ǫo
. (2.24)

Equation 2.24 gives an alternative means to find electric fields. We can solve the equation for φ
and extract fields using Equation 2.21. In applications such as the evaluation of fields between
biased metal electrodes, the method has the following advantages.

• The function φ is single valued while E has three components.

• The electrostatic potential varies continuously through space. In contrast, we shall see
that the electric field has discontinuities at the surfaces of dielectric materials.

• The boundary condition for electrostatic potential on a metal is simple – the potential
has a uniform value.

It is easy to prove the third point. The electric field must equal zero inside a metal; otherwise,
it would drive large currents. Therefore, the integral of Equation 2.23 must be zero between
any two points in the conductor implying constant potential.

Figure 2.5 shows the field distribution between a rod electrode and grounded plate to illus-
trate the constant potential boundary condition. The electrode and its support rod (lower left)
are at potential φ = 50, 000 V while all points on the plate and surrounding chamber (right and
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Figure 2.5: Electrostatic calculation of a rod and support at 50,000 V inside a grounded box.
Neumann conditions apply on the symmetry boundaries on the bottom and on the left. Bound-
aries: xmin = 0.0 cm, xmax = 10.0 cm, ymin = 0.0 cm, ymax = 7.5 cm. a) Equipotential lines
with 2000 V intervals. b) Electric field lines.

top boundaries) are at φ = 0.0 V. Figure 2.5a shows constant potential lines separated by equal
increments ∆φ = 2000 V while 2.5b is a plot of electric field lines. Both plots give complete
information about the field. In the equipotential plot the electric field direction is normal to
the lines and the field magnitude is inversely proportional to the distance between the lines.

2.4 Charge density distributions and dielectric materials

In principle, we can find electric fields using the methods of the previous sections given the
charge density distribution. Sometimes we have this information. One example is a charged-
particle beam with specified properties. Charge that has a predefined distribution in the solution
space is called space charge and is denoted ρs. The challenge is to handle other types of charge
where the spatial distribution depends on the field solution. For example, consider the charges
on a metal electrode, denoted by ρe. Electric fields are created by moving these charges to the
electrode with a power supply. The charge distributes itself over the electrode surface to ensure
zero electric fields inside. Because we are unsure of the layer thickness, it is more convenient
to refer to a surface charge density,

σe =
∫

Layer
ρe ds, (2.25)

with units of coulombs/m2. For complex electrode shapes it is difficult to predetermine the
distribution σe(x, y, z) that makes the parallel component of electric field zero everywhere on
the surface.

Fortunately, there is a strategy that makes this foreknowledge unnecessary. Because the
fields inside electrodes equal zero we are interested only in fields in the space between. The
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Figure 2.6: Electrostatic calculations using the Poisson equation. a) Field produced by a surface
charge density on an electrode. b) Electric field between infinite parallel plates.

procedure is to solve the Poisson equation for φ in the intervening space where ρe is zero, taking
the electrode surfaces as equipotential boundaries. Then, we can use the calculated values of
electric fields near the electrodes to find the surface charge density from the formula,

σe = ǫ0E⊥. (2.26)

The quantity E⊥ is the amplitude of the field pointing out of the electrode. Figure 2.6a shows
the origin of Equation 2.26. Gauss’ law is applied to the volume shown, a thin box with cross-
section area dA that encompasses the charge layer on an electrode. Because the field is zero
inside the electrode, the surface integral of electric field is E⊥dA while the total enclosed charge
is σsdA.

As an example, we shall calculate the electric field between parallel plates of area A and
spacing d (Figure 2.6b). The right-hand plate is set to a voltage V0, the left-hand plate is at
ground potential, and there is no charge in the enclosed space. In the limit that d≪ A, we can
neglect variations in y and z. The solution of Poisson’s equation gives the potential variation,

φ(x) = Vo

(

x

d

)

. (2.27)

The electric field has the constant value −V0/d. The surface charge densities are almost uniform
over the inner surfaces of the left and right plates. Applying Equation 2.26, the total charges
on the plates are ±(ǫ0A/d)V0.

The charges in dielectric materials behave differently from those on conductors. Nonethe-
less, we can use an analogous technique to find fields in the presence of dielectrics with no
foreknowledge of the associated charge density ρd(x, y, z). While the electrons in metals move
freely through the material, the charges in gaseous, liquid or solid dielectrics are bound in polar
molecules. These molecules, shown schematically in Figure 2.7a, are electrically neutral but
have a spatial separation of position and negative charges. Normally, thermal motions ran-
domize the molecular orientations so there is no net charge density in the medium. An applied



Finite-element Electrostatic Solutions 19

Figure 2.7: Dielectric materials. a) Polar molecules with random orientation. b) Effect of
dielectric charge on the electric field inside a small volume.

electric field causes a small fractional alignment of molecules. Suppose we create a field Ex0 in
the volume element shown in Figure 2.7b. The element is small enough so that the material
is approximately homogenous and the field is uniform. Inside the volume, there is no charge
density because the positive and negative charges of adjacent molecules cancel. On the other
hand, there is a surface charge density on the faces normal to the x axis. The charge induced on
the element and its neighbors in y and z creates an electric field with magnitude proportional
to Ex0 that points in the opposite direction. This implies that the total field in the dielectric,
Ex, points in the same direction as Ex0 and has a smaller magnitude,

Ex =
Exo

ǫxr
. (2.28)

The quantity ǫxr in Equation 2.28 is called the relative dielectric constant . It has a value greater
than unity that depends on the properties of the material.

For moderate applied fields at ambient temperature, the change in potential energy associ-
ated with the orientation of a molecule is much less than its thermal energy. As a result, the
fractional orientation in a material is small and ǫxr is almost independent of the field magnitude.
In this case, we say that the medium is linear because Equation 2.28 is a linear relationship. In
crystals, the relative dielectric constant may have different values along material axes. In gases,
liquids and amorphous solids (most ceramic and plastic insulators), the dielectric constant is
the same in all directions. In such isotropic materials, the total electric field vector points in
the same direction as the applied field,

E =
Eo

ǫr
. (2.29)

In this chapter we will concentrate on linear, isotropic dielectrics. Chapter 8 covers numerical
methods for non-linear, anisotropic dielectrics.

We can use Equation 2.29 to convert the electrostatic equations we have derived to a form
that automatically includes the effects of dielectric charge. For example, consider the form of
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Figure 2.8: Boundary conditions at a dielectric interface.

Equation 2.15 in a region between electrodes that may include both dielectric and space charge:

∇ · E =
ρd
ǫ0

+
ρs
ǫ0
. (2.30)

Equation 2.30 explicitly shows the contribution of the dielectric charge density. By the super-
position principle, we can also write an equation for the applied field that arises from space
charge and surface charges on electrodes,

∇ · E0 =
ρs
ǫ0
. (2.31)

Substituting Equation2.29 into Equation 2.31 gives an equation that implicitly includes the
contribution of dielectric charge,

∇ · (ǫrE) =
ρs
ǫ0
. (2.32)

We can solve Equation 2.32 to find the total electric field without advanced information on
ρd(x, y, z). It is important to remember that spatial variations of ǫr(x, y, z) must be included
when calculating the left-hand-side of Equation 2.32.

In the presence of isotropic dielectrics, Gauss’ law takes the form

∫ ∫

S
ǫrE · n dS =

∫ ∫ ∫

V dV ρs
ǫ0

. (2.33)

Similarly, the generalized Poisson equation is

∇ · (ǫr∇φ) = −ρs
ǫ0
. (2.34)

Although the electrostatic potential is continuous across a dielectric boundary, the electric
field is discontinuous because of the dielectric surface charge. Changes in the field can be
expressed as boundary conditions at the surface. The left-hand side of Figure 2.8 shows a thin
box that encloses the interface between two medium with relative dielectric constants ǫ1 and
ǫ2. The electric field on each side is resolved into components parallel and perpendicular to the
surface. Applying Gauss’ law (Equation 2.33) to the box shown gives the following relationship
for the normal field component,
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Figure 2.9: Equipotential lines of an electrostatic field solution with a dielectric material.
Dielectric block with ǫr = 10.0 between parallel plate electrodes, Neumann boundaries on the
left and right. Boundaries: xmin = 0.0 cm, xmax = 10.0 cm, ymin = 0.0 cm, ymax = 8.0 cm.

ǫr1E⊥1 = ǫr2E⊥2. (2.35)

The application of Equation 2.16 to a line integral around the boundary on the right-hand side
of Figure 2.8 gives a relationship for the parallel field components,

E‖1 = E‖2. (2.36)

The numerical solution of Figure 2.9 illustrates the nature of fields at dielectric boundaries.
An isotropic dielectric slab with ǫr2 = 10 is suspended in a vacuum space (ǫr1 = 1.0) midway
between parallel electrodes with φ = 1.0 V at the top and φ = 0.0 V on the bottom. Only
half the solution is shown – a symmetry boundary is used on the left-hand side (see Section
2.8). The equipotential plot shows that the slab assumes a potential equal to the average of the
electrode values and that there is a substantial reduction of the field inside the material. Note
that the electric fields are consistent with Eqs. 2.35 and 2.36 on the right-hand slab boundary.
Because the normal field component is relatively small inside the dielectric, the internal field
lines are almost parallel to the surface.

2.5 Finite elements

Because digital computers handle discrete numbers, it is impossible to solve the differential or
integral equations of electrostatics directly. Computers cannot deal with continuous variations
of charge density and electric field. The strategy we shall follow for computer field solutions is
to divide the solution space into a large number of volume elements. The quantities ρ and E
have approximately uniform values over the small elements. In this limit the field relationships
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transform to a large set of simple linear equations that can be handled on a computer. The
result is a good approximation to the continuous solution. Because the volumes have finite size,
this approach is called the finite element method. We must address three tasks to employ the
method.

• Optimum division of the solution volume into elements .

• Derivation of linear equations to represent electrostatics in the limit of small volumes.

• Solution of large sets of simultaneous linear equations.

In this section, we will discuss some of the terminology and philosophy related to element
generation. Chapter 7 covers this topic in detail. The remainder of this chapter concentrates
on the second task – finite-element expressions that are equivalent to Gauss’ law.

The set of elements that comprise the division of a solution volume is called the computa-
tional mesh. There are two possible two-dimensional geometries. In planar geometry, material
properties vary in x and y with no variation in z. Therefore, the field component Ez is either
zero or constant and there are non-trivial solutions for Ex and Ey. The volume element is a
shape projected in the x-y plane that extends a unit distance along z. The second option is the
cylindrical geometry with variations in r and z and symmetry in θ. The field components are
Er and Ez . A volume element is a toroidal object where a projected element shape in the r-z
plane extends around the axis. To create meshes, we must decide on the best element shape
for division of the x-y or r-z planes. It is difficult to handle curves in analytic geometry so
we shall concentrate on polygons with straight-line boundaries. The triangle is a fundamental
shape because any polygon can be decomposed into two or more triangles. In this book, we will
use only triangular elements – any set of polygons can easily be converted to a pure triangular
mesh.

There is no set procedure to divide a solution space into elements. Nonetheless, there are
two general guidelines to create good meshes. The first has to do with the shape of the triangles.
A critical condition in the derivation of finite-element equations (Section 2.7) is that material
properties are uniform in an element. Therefore, we should choose the shapes of triangles so that
they are either completely inside or outside the volumes of electrodes and dielectrics. The result
is that triangle sides closely follow the contours of material boundaries. The term conformal
mesh means that we change the shape of elements so that they conform to the boundaries of
objects.

The second guideline applies to the size of triangles. An assumption in the derivation of
Section 2.7 is that the electric field is uniform in an element. Clearly, we must create several
triangles to resolve a significant change in the field. A good mesh has small elements in regions of
strong field changes and large elements where the field changes gradually. A mesh with regions
of different average triangle sizes is called a variable resolution mesh. With the high speed and
memory capacity of modern computers, we might be tempted to skip a careful analysis and
simply use a large number of small elements. Fortunately, a limitation of numerical solutions
punishes such inelegance. Because of roundoff errors, the validity of solutions may actually
degrade with extremely fine meshes. The art of mesh generation resides in picking appropriate
element shapes and understanding how the choice affects the solution accuracy.
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Figure 2.10: Relationships for triangles. a) Calculating of the area of a triangle. b) Division
of a triangle into three equal parts connecting the centroid to the vertices. c) Division of a
triangle into three equal parts connecting the centroid to the midpoints of the sides.

2.6 Coordinate relationships for triangles

This section reviews some mathematical relationships for triangles. The equations will be useful
for the derivation of Section 2.7. First, we shall find an expression for the area of a triangle
in terms of the coordinates of its vertices. Consider a triangle lying in the x-y plane with one
vertex at the origin (Figure 2.10a).The triangle is defined by the vectors x1 = (x1, y1) and
x2 = (x2, y2), where the vectors are ordered in a sense of positive rotation about the z axis.
The enclosed area equals one half the cross product of the vectors,

a =
x1 y2 − x2 y1

2
. (2.37)

The formula also applies to triangles projected in the r-z plane for cylindrical problems. By
convention, we shall illustrate most derivations in Cartesian coordinates and use the correspon-
dence

x→ z, y → r. (2.38)

If the reference vertex is at a point (x0, y0), we can generalize Equation 2.37 to

a =
(x1 − x0) (y2 − y0)− (x2 − x0) (y1 − y0)

2
. (2.39)
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Figure 2.11: Definition of quantities to derive the triangle cotangent relationships.

To ensure a positive value for the area, it is important to take the points 0,1 and 2 in the order
of positive rotation (counter-clockwise), as in Figure 2.10.

In Section 2.7, we shall apportion the space charge contained in elements equally to their
three vertices. For this we need to divide the area of a triangle into three equal parts. Consider
the triangle of Figure 2.10b with one vertex, (x0, y0), at the coordinate origin. The center-of-
mass position is the average of the vertex coordinates,

x3 =
(x0 + x1 + x2)

3
=

(x1 + x2)

3
,

y3 =
(y0 + y1 + y2)

3
=

(y1 + y2)

3
. (2.40)

The final form holds when x0 = y0 = 0. One way to divide the triangle is to draw lines from
the center-of-mass point to the three vertices, as shown in Figure 2.10b. The area of Triangle
a is one-half the cross product of the vectors from the origin to points 1 and 3,

aa =
|x1 × x3|

2
. (2.41)

Substituting the components of x3 from Equation 2.40 and comparing aa with the expression
of Equation 2.37 confirms that Triangle a covers one-third the original triangle area. A second
way to divide the triangle is to draw lines from the center-of-mass to the midpoints on each
side. Figure 2.10c shows that these lines bisect the triangles of Figure 2.10b. Therefore, the
area of Triangled equals the sum of half the areas of Triangles a and b, or one-third the full
triangle area.
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Our final task is to find formulas that relate the angles between triangle sides to the vertex
coordinates. To simplify the mathematics we start with the triangle of Figure 2.11 with one
vertex at the origin and the others at points (x1, y1) and (x2, y2). The quantities θa and θb
are the enclosed angles opposite the main vertex. Note that the vertex points and angles are
ordered with positive rotation. Figure 2.11 defines two additional angles, ξ and ψ, at Vertex 1.
The enclosed angle at this vertex can be written as

cot θa = cot
(

π

2
− ξ − ψ

)

= tan (ξ + ψ) . (2.42)

A trigonometric identity gives the tangent for the sum of two angles,

tan(ξ + ψ) =
tan ξ + tanψ

1− tan ξ tanψ
. (2.43)

We can express the ξ and ψ in terms of vertex coordinates,

tan ξ = −y1
x1
, (2.44)

and

tanψ =
(x1 − x2)

(y2 − y1)
. (2.45)

Substituting Eqs. 2.43, 2.44 and 2.45 into Equation 2.42 gives the desired relationship for the
enclosed angle:

cot θa =
−y1(y2 − y1)− x1(x2 − x1)

x1y2 − x2y1
. (2.46)

Recognizing that the denominator of Equation 2.46 as twice the triangle area leads to the final
expression

cot θa =
−y1(y2 − y1)− x1(x2 − x1)

2a
. (2.47)

Figure 2.11 shows alternate angles ξ′ and ψ′ for Vertex 2. We can use the relationship,

cot θb = cot(π − ξ′ − ψ′), (2.48)

to show that

cot θb =
y2(y2 − y1) + x2(x2 − x1)

2a
. (2.49)
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2.7 Gauss’s law for elements at a vertex point

We now have enough background to derive the finite-element equations for electrostatic fields.
The following assumptions are used in the model.

• The system has a planar geometry where φ is a function of x and y. The projected
solution space is divided into a number of small triangular elements.

• The material properties are uniform over each element area. In electrostatic problems
these quantities are the space charge density ρ and the relative dielectric constant ǫr.

• For a numerical solution, we seek discrete values of φ at the mesh vertices such that
interpolations approximate the ideal values.

• Elements are the fundamental units of division, and we cannot attain a knowledge of
φ(x, y) on a finer scale. Because three points determine a plane, the values of φ at
the vertices of a triangle define a linear function of x and y with a constant gradient.
Therefore, the model implies constant values of E in each element.

Figure 2.12 shows a sample vertex in the mesh at position (x0, y0) surrounded by elements
and neighboring vertices. We shall take the test vertex at the origin of a local coordinate system
and measure X and Y relative to this point. To generalize the calculation, we can make the
substitution,

X → (x− x0), Y → (y − y0). (2.50)

The triangles and vertices are labeled with positive rotation. Although the figure shows six
triangles, the number is arbitrary. The goal is to apply Gauss law (Equation 2.33) to a volume
surrounding the vertex point. The volume is bounded by a closed curve in theX-Y plane around
the reference vertex that extends vertically an arbitrary distance ∆z. Figure 2.12 shows a
particular boundary choice that makes if easy to find the enclosed charge. The surface consists
of twelve straight line segments connecting the midpoints of the mesh lines to neighboring
vertices to the element mass centers. Section 2.6 showed that this path encloses one-third of
the area of each triangle. We can immediately write an expression for the right-hand side of
Equation 2.33,

6
∑

i=1

ρiai∆z

3ǫo
. (2.51)

In Equation 2.51, the quantity ρi is the charge density of Triangle i and ai is the element area
projected in the X-Y plane.

Turning next to the surface integral on the left-hand side of Equation 2.33, we need values
for the electric field in each triangle. To illustrate the calculation, consider Triangle 2 in Figure
2.12. The potential in the element is a linear function of position,

φ(x, y) = φ0 + uX + vY, (2.52)
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Figure 2.12: Gauss’s law on a conformal triangular mesh. a) Elements surrounding a vertex
point, illustrating numbering conventions for elements, element angles and vertices. b) Detailed
view of Triangle 2 showing the surface integral path.
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where φ0 is the potential at the reference vertex and u and v are constants. The electric field
in Triangle 2 is

E2 = −ux− vy. (2.53)

where x and y are unit vectors along the coordinate axes. The values of u and v ensure that
Equation 2.52 has the correct values at the triangle vertices. Applying the condition at Vertices
1 and 2 of gives the two equations

uX1 + vY1 = φ1 − φo. (2.54)

and

uX2 + vY2 = φ2 − φo. (2.55)

The solution of Eqs. 2.54 and 2.55 gives the value of the quantity u,

u =
−φ0(Y2 − Y1) + φ1Y2 − φ2Y1

X1Y2 −X2Y1
. (2.56)

Recognizing that the denominator is twice the area of Triangle 2, Equation 2.56 becomes

u =
−φ0(Y2 − Y1) + φ1Y2 − φ2Y1

2a2
. (2.57)

Similarly, the quantity v is given by

v =
φ0(X2 −X1)− φ1X2 + φ2X1

2a2
. (2.58)

We can represent portions of the Gaussian surface by a set of vectors ordered with positive
rotation. In Triangle 2, the vector La extends from (X1/2, Y1/2) to [(X1 +X2)/3, (Y1 + Y2)/3]
and the vector Lb from the center of mass to (X2/2, Y2/2). The Gaussian integral over the first
section of surface is

∆z|La|ǫ2 E2 · na, (2.59)

where na is a unit vector pointing outward normal to La. The unit vector is

na =
La × z

|La|
. (2.60)

where z is a unit vector along the z axis. The cross product in the numerator gives the correct
direction and the length in the denominator normalizes the vector. Applying a vector identity,
we can write the contribution to the integral

∆z E2 · (La × z) = ∆z (E2 × La) · z. (2.61)

Extending the results to the surface section defined by Lb, we can write and expression for the
total surface integral in Triangle 2 as,

∆z ǫ2[(E2 × La) + (E2 × Lb)] · z = ∆z ǫ2[E2 × (La + Lb)] · z. (2.62)
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The sum of the line vectors is a vector that points from (X1/2,Y1/2) to (X2/2,Y2/2),

La + Lb =
X2 −X1

2
x+

Y2 − Y1
2y

. (2.63)

Substituting from Equation 2.53 and Equation 2.63, Equation 2.62 becomes

∆zǫ2

(

−Y2 − Y1
2

u+
X2 −X1

2
v
)

. (2.64)

Substituting for the quantities u and v from Eqs. 2.57 and 2.58, we can write the surface
integral over Triangle 2 in terms of the potential values at the vertices,

∆zǫ2

[

(φo(Y2 − Y1)− φ1y2 + φ2y1)(Y2 − Y1)

4a2
+

(φo(X2 −X1)− φ1X2 + φ2X1)(X2 −X1)

4a2

]

.

(2.65)
Finally, we can use the cotangent expressions of Equation 2.47 and 2.49 to simplify Equation
2.65 to

∆z ǫ2 [φo(cot θ2b + cot θ2a)− φ1 cot θ2b − φ2 cot θ2a] . (2.66)

Similar expressions hold for the other triangles.
Summing terms for all surrounding elements to find the left-hand side of Equation 2.33

and substituting from Equation 2.51 for the right-hand side, we can write the finite-element
equivalent of Gauss’ law,

φ0

6
∑

i=1

Wi −
6
∑

i=1

φiWi =
6
∑

i=1

ρiAi

3ǫ0
. (2.67)

The dimensionless numbers Wi, called the coupling coefficients at the vertex point, are given
by

W1 =
ǫ2 cot θ2b + ǫ1 cot θ1a

2
,

W2 =
ǫ3 cot θ3b + ǫ2 cot θ2a

2
,

...

W6 =
ǫ1 cot θ1b + ǫ6 cot θ6a

2
. (2.68)

The coupling constant to a neighboring vertex depends on the relative dielectric constants and
geometries of the triangles adjacent to connecting line.

We can write Equation 2.67 in an alternate form that illustrates the physical content

φ0 =

∑6
i=1 φiWi +

∑6
i=1 ρiAi/3ǫ0

∑6
i=1Wi

. (2.69)

In the absence of space-charge, Gauss’ law implies that the potential value at a vertex is a
weighted average of the potentials at neighboring vertices. The weighting factor depends on
the material properties and shapes of surrounding elements. A nearby accumulation of positive
space charge elevates the potential at a vertex.
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2.8 Solution procedure and boundary conditions

In this section we shall discuss the general strategy for applying finite-element equations to find
global electrostatic field solutions. The methods will be covered in detail in following chapters.
The first step in a solution is mesh generation – the solution volume is divided into a large
number of elements and vertices. Next, we set up an equation similar to Equation 2.67 for
each vertex point. The result is a large set of coupled linear equation, typically 50,000 for a
two-dimensional problem. The variables are the potential values at the vertices.

Equation 2.67 gives the condition for potential at a point in vacuum or dielectric internal to
the solution region. To carry out electrostatic solutions, we must also deal with electrodes in
the volume and vertex points on the boundaries. Representing internal electrodes is easy. We
simply assign a constant value of potential at the point and remove the vertex equation from
the set. This reduces both the number of variables and number of equations by one. Because
there is no equation for vertices in and on electrodes, the properties of internal elements play
no role.

Because finite-element solutions deal with limited volumes, we must address the question
of what to do with points on the boundary. Some of these points may represent a surface of
constant potential. For example, the right and top boundaries of the solution region of Figure
2.5 are part of a grounded chamber wall. For a fixed boundary, we set specified values for
the vertex potentials and eliminate the associated equations. In this case, there is no need to
consider field values or material properties outside the solution volume. This type of boundary
satisfies a Dirichlet condition where the value of the unknown function (electrostatic potential)
is specified.

To complete the process, we must consider how to handle boundary points that do not have
fixed potential. The convention in finite-element solutions is to apply Equation 2.67 at the
point as though there were additional vertices and elements outside the solution volume. For
electrostatic solutions, we assign the following material properties to the external elements,

ρi = 0, (2.70)

ǫi = 0. (2.71)

To understand the implications of the procedure, consider the finite-element equation for the
boundary vertex of Figure 2.13. The elements marked 2 and 3 are inside the solution volume,
and there are four arbitrary external elements. The dark lines represent the boundary. Suppose
we carry out the Gaussian volume and surface integrals over the full path described in Section
2.7 that includes the external elements. Equation 2.70 implies that only the internal elements
contribute to the space-charge integral. Similarly, an inspection of Eqs. 2.66 and 2.71 shows
that only the internal elements contribute to the surface integral.

Next, consider Gaussian integrals around the alternate path shown as a dashed line in
Figure 2.13. This path includes the internal elements and follows the boundary. The enclosed
space-charge is the same as that of the previous path; therefore, the surface integrals are equal.
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Figure 2.13: Gauss’ law integration path at a vertex on a Neumann boundary. Elements 2 and
3 are inside the solution volume, while Elements 4,5,6 and 1 are outside. The boundary lies on
the lines from Vertex 3 to 0 to 1.

The implication is that the surface integral of the normal component of electric field along the
boundary is zero. An equivalent statement is that the potential satisfies the equation,

∂φ

∂n
= 0, (2.72)

along the boundary. The quantity on the left-hand side is the derivative of potential normal
to local direction of the boundary. Equation 2.72 is a special case of a Neumann boundary
condition, where a derivative of the unknown quantity is specified.

The procedure described ensures that unspecified boundary points in a finite-element solu-
tion automatically assume the specialized Neumann condition of Equation 2.71. An inspection
of Eqs. 2.68 and 2.71 shows that all coupling constants to the hypothetical external vertices are
zero. The condition of Equation 2.72 means that electric field lines are parallel to the boundary.
The potential at a boundary vertex assumes the value that would occur if the external potential
variation mirrored potential values inside the solution volume. For this reason, the specialized
Neumann condition can be used to represent a reflection plane so that it is necessary to simulate
only half of a symmetric system. For example, the specialized Neumann conditions applies on
the left-hand boundary of Figure 2.9.
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Figure 2.14: Modification of the volume and surface integrals in Gauss’ law for cylindrical
coordinates.

2.9 Electrostatic equations in cylindrical coordinates

We can make some simple modifications to extend the derivation of Section 2.7 to cylindrical
coordinates. Figure 2.14 illustrates an element projected in the r-z plane. The hatched region
is the area included within a Gaussian surface around the vertex at the left. The triangle
represents a toroidal shape with approximate volume

2πriai, (2.73)

where ai is the cross section area and ri is the center-of-mass radius,

ri =
roi + r1i + r2i

3
. (2.74)

Equation 2.73 implies that the charge contained inside the surface is approximately,

6
∑

i=1

2πriρiai
3ǫo

. (2.75)

In the discussion of planar elements in Section 2.7, the areas of the Gaussian surfaces equaled
the segment lengths multiplied by ∆z, an arbitrary length in z. For the cylindrical case, we must
multiply by 2πR, where R is the average radial position of the segment. It is usually sufficient
to take the segment average radius equal to the center-of-mass element radius of Equation 2.74,
R ≈ ri. With this convention, the contribution to the surface integral from Triangle 2 is

2πr2ǫ2 [φo(cot θ2b + cot θ2a)− φ1 cot θ2b − φ2 cot θ2a] . (2.76)

Equation 2.76 is similar to Equation 2.66 with the replacement ∆z → 2πr2. Extending the
equation to the other surrounding triangles, setting the result equal to Equation 2.75 and
canceling the common factor of 2π gives the cylindrical form of Gauss’ law,
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Figure 2.15: Benchmark test – electric field between coaxial cylinders. Bottom boundary: inner
electrode with radius 0.02 m and potential 1000 V. Top: Outer electrode with radius 0.05 m
and potential 0 V. Equipotential lines at 25 V intervals.

φ0 =

∑6
i=1 φiWi +

∑6
i=1 riρiai/3ǫ0

∑6
i=1Wi

. (2.77)

Note the factor of ri in the space-charge term. The coupling coefficients have the modified form

W1 =
ǫ2r2 cot θ2b + ǫ1r1 cot θ1a

2
,

W2 =
ǫ3r3 cot θ3b + ǫ2r2 cot θ2a

2
,

...

W6 =
ǫ1r1 cot θ1b + ǫ6r6 cot θ6a

2
. (2.78)

Here, the cotangents of the element angles are multiplied by the average triangle radius.
Figure 2.15 shows a benchmark test of the method, equipotential lines from a numerical

solution for the field between long coaxial cylinders. Neumann boundaries on the left and right
represent the infinite extent of the rod. A solution of the cylindrical Poisson equation gives the
radial field as

Er(r) =
Vo

r ln
(

ro
ri

) . (2.79)

In Equation 2.79, ri is the radius of the inner cylinder with voltage V0 and ro is the radius of
the outer cylinder. For a choice of parameters ri = 0.02 m, ro = 0.05 m and V0 = 1000 V,
Equation 2.75 predicts a field of 54.568 kV/m on the inner electrode. A numerical solution
with 80 elements in the radial direction gives a value of 54.543 kV/m, correct to 0.046 per cent.
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Exercises

2.1. Find the force per unit area on each of two large parallel plates with separation d and
voltage difference V0.

a) Show the force density is attractive with magnitude V 2
0 ǫ0/2d.

b) Give a value for d = 0.02 m and V0 = 105 V.
c) Compare the value of Part b) to the force per unit area corresponding to one atmosphere.

2.2. Use Coulomb’s law to find the components of force on the test charge q0 = 10−6 C in the
figure. (All charges are in the plane z = 0).

2.3. A line charge extending along the z axis has linear charge density Σ coulombs/m. Use
Coloumb’s law to show that the electric field outside the line is Er(r) = Σ/2πǫ0r. (Divide the
line into a set of individual charges Σdz and integrate electric field contributions at the point
[r, 0, 0]).

2.4. An electric field is generated between coaxial cylinders of radii Ri and Ro by applying a
voltage −V0 to the center conductor.
a) Find an expression for the kinetic energy of a proton of mass mp that moves azimuthally
in a circular orbit of radius (Ri +Ro)/2. (Balance the electric and centrifugal forces).
b) Find a value for the kinetic energy for mp = 1.67× 10−27 kg, V0 = 5000 V, Ri = 0.02 m
and Ro = 0.05 m.

2.5. A cylindrical electron beam of radius R0 has charge density ρ(r) = ρ0(1 − r2/R2
0, where

R0 = 0.005 m and ρ0 = 10−8 C/m3.
a) Find a value for Σ, the charge per unit axial length of the beam.
b) Use Gauss’ law to find the value of the radial electric field at the beam envelope, r = R0.
c) The current of the beam is the charge that crosses a plane normal to the z axis per unit
time. If the beam velocity is vz, show that the current equals I = Σvz.
d) Give a value for the current if vz = 1.5× 107 m/s.

2.6. Two concentric metal spheres have radii Ri and Ro. The inner sphere carries a charge Q0.
a) Apply Gauss’ law to find an expression for the radial electric field between the spheres.
b) Integrate the electric field from Ri to Ro to confirm the following expression for the
voltage difference:
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V0 − Vi =
Q0

4πǫ0

[

1

Ri

− 1

Ro

]

.

c) Considering the properties of metals, how is the charge distributed on the inner sphere?
2.7. Extend the derivation of the divergence equation in Section 2.3 to cylindrical coordinates.
Apply Gauss’ law to a volume element with dimensions ∆r, r∆θ and ∆z to show that

1

r

∂

∂r
(rEr) +

1

r

∂Eθ

∂θ
+
∂Ez

∂z
=

ρ

ǫ0
.

2.8. Prove that the curl of any vector function that can be written as the gradient of a scalar
function equals zero by directly evaluating the expressions in Cartesian coordinates:

∇× (∇φ) = 0.

2.9. A spherical plastic bead of diameter 0.001 m with density 700 kg/m3 has charge Q on its
surface. The bead is in a region of vertical electric field of magnitude E = 5 × 106 V/m. For
what value of Q does the electric force balance the force of gravity?
2.10. Apply the Poisson equation to find the distribution of potential in a planar region of
width d between two grounded metal plates filled with uniform space charge ρ0. Give a value
for the maximum potential when d = 0.02 m and ρ0 = 2.5x10−6 coulombs/m.
2.11. A cylindrical charged-particle beam of radius R0 with uniform charge density ρ0 propa-

gates along the axis of a grounded pipe of radius Rw.
a) Use Gauss’ law to find expressions for the electric field within the beam and in the space
between the beam and the wall.
b) By integrating Er from r = 0 to Rw, show that the on-axis electrostatic potential is

φ0 =
ρ0r

2
o

4ǫ0

[

1 + 2 ln
(

ro
ri

)]

2.12. The equipotential lines in Figure 2.5a are spaced at 2000 V intervals. Use a scale to
estimate the electric field amplitude at the tip of the spherical electrode and compare the
results to the numerical prediction of 2.498× 106 V/m.
2.13. A high-voltage coaxial transmission line has electrode radii Ri = 0.075 m and Ro = 0.150

m. We want to reduce the electric field stress near the center conductor by using a radial
distribution of dielectrics.
a) Suppose the space between the electrodes is divided into two dielectric layers with a
boundary at (Ri + Ro)/2. The outer layer has ǫr = 2. What value of ǫr in the inner layer
gives Er(Ri = Er(Ro)?
b) Suppose we had an ideal material that could be fabricated with any desired spatial
variation of relative dielectric constant. If the value at the center conductor is ǫro, give the
functional form ǫr(r) that maintains a radially uniform electric field.

2.14. A parallel plate capacitor has the dielectric distribution shown in the figure. The bottom
plate is grounded and the top plate is at voltage V0 = 2000 V. Dielectric 1 has ǫr1 = 3.5
and d1 = 0.002 m while Dielectric 2 has ǫr2 = 5.0 and d2 = 0.003 m.
a) Find the values of electric field in each of the layers. b) Give values of surface charge
density for the free and dielectric charges at the top electrode.
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2.15. A triangle that lies in the x-y plane has the following vertex coordinates: [2.0,2.0], [4.6,3.5],
[2.0,5.0].
a) Find the area of the triangle using 2.39.
b) Show that the triangle is equilateral by computing θa and θb from Eqs. 2.47 and 2.49.
c) Show that the area of an equilateral triangle with sides of length a is A = a2 tan(60o)/2.
Compare the predicted value to that of part a).

2.16. The vertices of a triangle have coordinates [0.010,0.010], [0.034,0.014] and [0.028,0.030],
where the dimensions are given in meters. The corresponding values of potential are 45.6, 57.8,
and 72.0 V. Find values of Ex and Ey in the element.
2.17. Find the six coupling coefficients at the point marked A in the figure. Give an interpre-
tation of the results.

2.18. The figure shows an electrostatic sextupole. The system has six-fold symmetry in the x-y
plane and the electrodes have alternate potentials ±V0. Show that the fields can be calculated
by simulating one twelfth of the system and applying symmetry conditions. Sketch a possible
simulation volume and indicate Neumann and Dirichlet boundaries.



Chapter 3

Minimum-energy Principles in
Electrostatics

In this chapter we shall study an alternative derivation of the electrostatic finite element equa-
tions using the principle of minimum energy. There are several reasons to understand this
approach. First, it gives insight into the physical implications of the Poisson equation. Second,
the method is used in many advanced references on finite element methods. Third, it is easier
to extend the procedure to three-dimensional calculations with mesh of tetrahedrons. Finally,
the material gives a good opportunity to review concepts of electric field energy.

The potential energy stored in a distribution of charge can be written as a volume integral
over a function of the electric field. Section 3.1 derives this function and shows how the con-
tribution of dielectric charges is automatically included. Section 3.3. shows that the spatial
distribution of electric field given by a solution of the Poisson equation corresponds to a state of
minimum field energy integrated over the system volume. In preparation, Section 3.2 reviews
results from the calculus of variations that are necessary for the derivation.

The minimum energy principle is applied to the fields of two-dimensional triangular ele-
ments in Section 3.4. The electrostatic energy in elements surrounding a vertex depends on
the electrostatic potential at the vertex and at neighboring points. The finite-element relation-
ship that represents an energy minimum is identical to the equation derived from Gauss’ law
in Section 2.7. Section 3.5 extends the procedure to a three-dimensional mesh consisting of
contiguous tetrahedrons of arbitrary shape. To conclude, Section 3.6 summarizes the motiva-
tions and procedures to derive finite-element equations from high-order polynomial expansions
of the potential. This approach offers enhanced accuracy in applications where materials have
uniform properties.

3.1 Electrostatic field energy

Section 2.3 showed that the amount of work necessary to move a charge from position 1 to
position 2 in an electric field is

∆W = q(φ2 − φ1), (3.1)

37
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where φ is the electrostatic potential. Taking φ = 0 V at an infinite distance, the work to move
a test charge to position x in a region of electric field is

∆W = qφ(x). (3.2)

Consider two point charges, Q1 and Q2. Applying Coulomb’s law, the electric field and potential
created by the second charge are given by

φ(r) =
Q2

4πǫ0r
, (3.3)

where r is the distance from the charge. The work to move Q1 to a distance R from Q2 is

∆W = Q1
Q2

4πǫ0R
= Q1φ1. (3.4)

where φ1 is the potential at the position of Q1. Conversely, we could view the process as moving
charge Q2. In this case, the energy could be written

∆W = Q2
Q1

4πǫ0R
= Q2φ2. (3.5)

The work to assemble the charge distribution can be written in a symmetric form by combining
Eqs. 3.4 and 3.5,

∆W =
Q1φ1 +Q2φ2

2
. (3.6)

In general, the work to assemble a collection of N charges Qi at positions xi is

W =
1

2

N
∑

i=1

Qiφ(xi). (3.7)

When there are large numbers of charges we can write Equation 3.7 in terms of charge density

W =
1

2

∫ ∫ ∫

dV ρ(x)φ(x). (3.8)

Equation 3.8 is the potential energy of the charge distribution. Because the assembly process
creates an electric field, we often refer to the potential energy as the field energy . Nonetheless,
we should remember that the electric field is a mathematical abstraction – the energy resides
in the particles.

Often it is convenient to express the field energy entirely in terms of the electric field.
Consider a sample volume where the charges that comprise the density ρ have entered from
infinity. These charges could be placed on electrodes by a power supply or injected into the
volume as a charged particle beam. The charge density is related to the field through Equation
2.15,

ρ = ǫ0∇ · E. (3.9)

Substituting Equation 3.9 in Equation 3.8 gives the field energy as

W =
1

2

∫ ∫ ∫

dV (ǫ0∇ · E)φ. (3.10)
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Applying the vector identity

∇ · (φE) = φ∇ · E+ E · ∇φ, (3.11)

Equation 3.10 becomes

W =
1

2

∫ ∫ ∫

dV ǫ0∇ · (φE)− 1

2

∫ ∫ ∫

dV (ǫ0 E · ∇φ). (3.12)

Application of the divergence theorem to convert the first term on the right hand side of
Equation 3.12 gives the relationship,

W =
1

2

∫ ∫

dS ǫoφ E · n+
1

2

∫ ∫ ∫

dV ǫoE · E. (3.13)

The first integral can be taken over any surface enclosing the volume – we choose a sphere of
large radius R. Depending on the distribution of charge, the potential must decrease at least as
fast as R−1 and the electric field magnitude drops off as R−2 or faster. Therefore, the product
of the potential and electric field must decrease at least as fast as R−3 while the surface area
increases only as R2. Therefore, the term must equal zero. The total field energy is

W =
∫ ∫ ∫

dV
ǫ0E · E

2
. (3.14)

The system energy of Equation 3.14 is the volume integral of the electrostatic energy density ,

ue =
ǫ0E

2

2
. (3.15)

We must take care including the contributions of dielectric charges to the system energy.
While the non-dielectric charges enter from infinity, the dielectric charges are already inside
the volume. The resolution is to calculate the total work to assemble the non-dielectric charge
distribution including the modification of φ by the presence of the dielectric charges. For a
linear isotropic material, the difference is that the non-dielectric charge density is related to the
electric field by

ρ = ǫrǫ0∇ · E. (3.16)

rather than by Equation 3.9. More charge must be moved to create the same electric field. The
result is that the generalized field energy density (for linear dielectrics) is given by

ue =
ǫrǫ0E

2

2
. (3.17)

To illustrate the basis of the field energy density expression, consider the parallel electrodes
of Figure 3.1a. The plates have surface area A and are separated by a vacuum region of width
d, where d ≪

√
A. A power supply moves charge between the plates to create a voltage V0.

Following the discussion of Section 2.4, the total displaced charge is ǫ0V0A/d. The potential
energy of the charges equals the work performed by the power supply. When the electrodes are
at voltage V , the work to move an increment of charge dρ is

dW = V dρ =
ǫ0A

d
V dV. (3.18)
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Figure 3.1: Energy transfer to a parallel plate capacitor. a) Air-gap capacitor. b) Dielectric-
filled capacitor.

Integrating Equation 3.18 from V = 0 V to V0 gives the total work

W =
ǫ0A

d

V 2
0

2
. (3.19)

Dividing the energy of Equation 3.19 by the volume, Ad, and writing the result in terms of the
electric field, E = V0/d, gives an expression for the average energy density identical to Equation
3.15.

We can extend the model to clarify the role of dielectrics. Figure 3.1b shows the parallel
plates with a dielectric with ǫr in the intervening space. Because the shifted dielectric charge
does not pass through the power supply, an increment of work equals the product of an in-
crement of non-dielectric charge times the voltage between the plates. In the presence of the
dielectric charge, more non-dielectric charge must pass through the supply to create the volt-
age. For a linear dielectric, the flow of non-dielectric charge must increase by a factor of ǫr.
Therefore, the total system energy is

W =
ǫrǫ0A

d

V 2
0

2
. (3.20)

Equation 3.17 follows from Equation 3.20.

3.2 Elements of the calculus of variations

One application of differential calculus is the identification of values for one or more independent
variables that give minima and maxima of functions. In contrast, the calculus of variations seeks
unknown functions that give extreme values of functional expressions. In this book, we shall
apply the calculus of variations to investigate minimization of electrostatic field energy. The
energy is the volume integral of the energy density (Equation 3.17), a function of the electric
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fields. The electric field components are taken as unknown function of the spatial variables
(x, y, z).

For simplicity, consider a one-dimensional region of space in the range x1 ≤ x ≤ x2. A
function φ(x) and its derivative, φ′ = dφ/dx, are defined over the region along with F (φ, φ′, x),
a general expression containing the functions and independent variable. Consider the volume
integral of the expression

I =
∫ x2

x1

F (φ, φ′, x)dx. (3.21)

The quantity I takes on a value for each choice of the function φ. It is called a functional of
φ. We seek a particular form for φ that gives a maximum or minimum value of the functional.

Assume that φ(x) has an arbitrary variation over the range but that the end values are
clamped

φ(x1) = φ1, φ(x2) = φ2. (3.22)

The constraint is equivalent to fixing boundary values in an electrostatic solution. To seek a
minimum, we investigate variations of the functional form of φ(x). Let φ0(x) represent the
desired minimizing function and define an arbitrary function η(x) that satisfies the boundary
conditions

η(x1) = 0, η(x2) = 0. (3.23)

Let ǫ be a small number and add the quantity ǫη(x) to define a variation of φ(x) about the
optimum form. The functional becomes

I(ǫ) =
∫ x2

x1

F (x, φ, φ′) dx =
∫ x2

x1

F (x, φ0 + ǫη, φ′
0 + ǫη′) dx. (3.24)

The condition dI/dǫ = 0 means that φ0(x) corresponds to a minimum (or maximum) of the
functional. The derivative of Equation 3.24 is

dI

dǫ
=
∫ x2

x1

dF

dǫ
dx =

∫ x2

x1

[

∂F

∂φ
η +

∂F

∂φ′
η′
]

dx = 0. (3.25)

We simplify Equation 3.25 using integration by parts,
∫

v du = uv −
∫

u dv. (3.26)

Taking v = ∂F/∂φ′ and du = η′, modification of the second term in brackets in Equation 3.25
gives

∫ x2

x1

[

∂F

∂φ
η − η

d

dx

∂F

∂φ′

]

dx+
∂F

∂φ
η

∣

∣

∣

∣

∣

x2

x1

= 0. (3.27)

The last term on the right hand side equals zero by the condition of Equation 3.23. Therefore,
the remaining bracketed term in the integral must equal zero for any choice of η(x). The
function φ(x) that gives a minimum of the functional I therefore satisfies the equation

∂F

∂φ
− d

dx

(

∂F

∂φ′

)

= 0. (3.28)
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Equation 3.28 is one form of the Euler equation. When the function φ(x, y, z) depends on three
independent variables, the three-dimension form of the Euler equation is1

∂F

∂φ
− d

dx

(

∂F

∂(∂φ/∂x)

)

− d

dy

(

∂F

∂(∂φ/∂y)

)

− d

dz

(

∂F

∂(∂φ/∂z)

)

= 0. (3.29)

3.3 Poisson equation as a condition of minimum energy

In this section we shall apply the Euler equation to show that the Poisson equation is equivalent
to the condition of minimum electrostatic field energy. Here, the functional is the volume
integral of energy density. To begin, we must carefully analyze the form of the energy function,
making distinctions between the contributions of charge densities. An electrostatic solution may
include charges on electrodes, charges on dielectrics, and free charges. The latter, called space
charge and denoted as ρs, could represent a charged particle beam or a prescribed charge layer
in a semiconductor. The field energy density expression of Equation 3.17 includes contributions
from all charges. In the search for a minimum energy state, the procedure is to allow electrode
and dielectric charges to shift, but to maintain the space charge in a fixed configuration. Simply
minimizing the volume integral of Equation 3.17 allows all charges to shift. This process leads
to the trivial conclusion that the minimum (or maximum) field energy occurs when ρs = 0.

The correct procedure is to minimize the energy integral of electrode and dielectric charges
only. The associated energy density equals the field energy density minus the contribution of
fixed particles, ρsφ. Substituting E = −∇φ in Equation 3.17 for the field energy, the energy
functional is

I =
∫ ∫ ∫

dV





ǫrǫ0
2





(

∂φ

∂x

)2

+

(

∂φ

∂y

)2

+

(

∂φ

∂z

)2


− ρsφ



 , (3.30)

where ǫr(x, y, z) may vary in space. Noting that ∂F/∂φ = ρs and ∂F/∂(∂φ/∂x) = ǫ∂φ/∂x, the
Euler equation (Equation 3.29) implies that

∂

∂x

(

ǫr
∂φ

∂x

)

+
∂

∂y

(

ǫr
∂φ

∂y

)

+
∂

∂z

(

ǫr
∂φ

∂z

)

+
ρs
ǫ0

= 0. (3.31)

Moving the space-charge term to the right-hand side, we see that Equation 3.31 is identical to
the Poisson equation (Equation 2.34).

1See, for instance, F.B. Hildebrand, Methods of Applied Mathematics (Prentice-Hall, Englewood Cliffs,
1965), 137.



Minimum-energy Principles in Electrostatics 43

Figure 3.2: Calculation of electrostatic energy in triangular elements surrounding a vertex.

3.4 Finite-element equations for two-dimensional elec-

trostatics

This section derives the finite-element equations for electrostatics in a two-dimensional system
by seeking a minimum of adjustable field energy in a volume surrounding a mesh vertex. Here,
the term adjustable refers to the contributions from electrode and dielectric charges as discussed
in the previous section. Figure 3.2 shows the geometry. As in Chapter 2, the vertex is sur-
rounded by six triangles of arbitrary shape with the same labeling conventions. The procedure
is to construct an expression for the adjustable field energy in the surrounding elements in terms
of the potentials at the test vertex (φ0) and its neighbors. Fixing the neighboring potentials, we
seek the value of φ0 that minimizes the energy. The process leads to the same linear equation
derived in Section 2.7.

Following Sects. 3.1 and 3.3, the adjustable field energy for Element 2 of Figure 3.2 is

∆U2 = ∆za2

[

ǫ2ǫ0E
2
2

2
− ρ2

φ0 + φ1 + φ2

3

]

. (3.32)

The quantity ∆z is an arbitrary element height and a2 is the cross-section area. The quantities
ǫ2 and E2 are the uniform values of relative dielectric constant and electric field in the element.
The second term in brackets is the negative of the potential energy density of fixed charges in
the triangle, the product of the uniform charge density ρ2 times the average value of electrostatic
potential. Following Equation 2.53, the square of the electric field is

E2
2 = u2 + v2, (3.33)
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where u and v are given by Eqs. 2.56 and 2.57. Substitution gives an expression for the energy
contribution of Equation 3.32 in terms of φ0, φ1, and φ2 and factors that depend on the element
geometry.

The total adjustable energy in the surrounding triangles is given by an expression of the
form

U(φ0, φ1, φ2, φ3, φ4, φ5, φ6) =
6
∑

i=1

∆Ui, (3.34)

where U is a function of the vertex potential. We seek an extreme value of U by varying φ0

and holding the other potentials fixed,

∂U

∂φ0

= 0. (3.35)

The partial derivative of U equals the sum of derivatives for individual elements. Consider the
energy expression for Element 2,

∆U2 =
∆za2ǫrǫ0

8a22
[φ2

0(y
2
2 − y21)

2 − 2φ0φ1y2(y2 − y1)

+2φ0φ2y1(y2 − y1) + φ2
0(x2 − x1)

2 − 2φ0φ1x2(x2 − x1)

+2φ0φ2x1(x2 − x1) + ...]−∆za2ρ2
φ0

3
. (3.36)

Terms that do not explicitly contain φo have been omitted from Equation 3.36. The derivative
is

∂∆U2

∂φ0

=
φ0ǫ2ǫ0∆za2

4a2
[y2(y2 − y1) + x2(x2 − x1)− y1(y2 − y1)− x1(x2 − x1)]

−φ1ǫ2ǫ0∆za2
4a2

[y2(y2 − y1) + x2(x2 − x1)]

−φ2ǫ2ǫ0∆za2
4a2

[−y1(y2 − y1)− x1(x2 − x1)]−
∆zA2ρ2

3
. (3.37)

Equation 3.37 can be simplified using the cotangent expressions of Section 2.6,

∂∆U2

∂φ0

=
φ0ǫ0∆z

2
(ǫ2 cot θ2b + ǫ2 cot θ2a)

−φ1ǫ0∆z

2
ǫ2 cot θ2b −

φ2ǫ0∆z

2
ǫ2 cot θ2a −

∆zA2ρ2
3

. (3.38)

Summing over all triangles and dividing terms by ǫ0∆z gives Equation 2.67 with the same
definition of coupling constants (Eqs. 2.68). It is not surprising that we arrive at the same
result for the finite element equations because the principle of minimum energy is physically
equivalent to Gauss’ law.
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Figure 3.3: Labeling conventions for three-dimensional electrostatic calculations on a mesh
composed of tetrahedrons.

3.5 Three-dimensional finite-element electrostatics on

arbitrary meshes

Three-dimensional electrostatic solutions involve geometric variations along all three coor-
dinate axes and field components Ex, Ey and Ez. Although the extension of the derivation
of the previous section is conceptually simple, the mathematical expressions are considerably
more complex. The tetrahedron is the simplest solid body. For arbitrary meshes, the approach
to three-dimensional finite-element solutions is to divide the volume into a contiguous set of
tetrahedrons that may have different shapes. The choice of shapes ensures that element facets
lie along the boundaries of material regions. Figure 3.3 shows one of the tetrahedrons sur-
rounding a target vertex. We denote the vertex at position (x0, y0, z0) as Point 0 and mark the
tetrahedron with the index m. The element is defined by three points, x1 = (x1m, y1m, z1m),
x2 = (x2m, y2m, z2m) and x3 = (x3m, y3m, z3m). Note that the points are labeled with positive
rotation looking toward the test vertex. The volume of the tetrahedron is given by evaluating
the determinant,

Vm =
1

6
det











1 x0m y0m z0m
1 x1m y1m z1m
1 x2m y2m z2m
1 x3m y3m z3m











. (3.39)

Following the previous section, the electrostatic potential in element m can be written as a
linear function of the spatial coordinates,

φm(x, y, z) = α0m + α1mx+ α2my + α3mz. (3.40)

Equation 3.40 can also be written in vector notation as
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φm =
[

1 x y z
]











α0m

α1m

α2m

α3m











. (3.41)

The element electric field is a constant with the value

Em = α1mx+ α2my + α3mz. (3.42)

The coefficients in Equation 3.42 satisfy the equation











φ0m

φ1m

φ2m

φ3m











=











1 x0m y0m z0m
1 x1m y1m z1m
1 x2m y2m z2m
1 x3m y3m z3m





















α0m

α1m

α2m

α3m











. (3.43)

Solving for Equation 3.43 gives the coefficients as











α0m

α1m

α2m

α3m











=











1 x0m y0m z0m
1 x1m y1m z1m
1 x2m y2m z2m
1 x3m y3m z3m











−1 









φ0m

φ1m

φ2m

φ3m











. (3.44)

Rather than write out the involved expressions for the coefficients, we note that the inverse
matrix of Equation 3.44 can be evaluated numerically using routines discussed in Section 6.1.

To apply the minimum energy principle in three dimensions, it is more effective to write
Equation 3.40 in an alternate form that displays the vertex potential values explicitly,

φm(x, y, z) = N0m(x, y, z)φ0m +N1m(x, y, z)φ1m

+N2m(x, y, z)φ2m +N3m(x, y, z)φ3m. (3.45)

The pyramid functions , Nim, are described in P.E. Allaire, Basics of the Finite Element
Method (Wm.C. Brown, Dubuque, Iowa, 1985). They are functions of position inside the
element that equal unity at the corresponding vertex and go to zero at the other vertices . We
can derive the pyramid functions by writing them in the form

N0m = a0m + b0mx+ c0my + d0mz,

N1m = a1m + b1mx+ c1my + d1mz,

N2m = a2m + b2mx+ c2my + d2mz,

N3m = a3m + b3mx+ c3my + d3mz. (3.46)

Substituting in Equation 3.45, the interpolated potential can be written in matrix form as

φm =
[

1 x y z
]











a0m a1m a2m a3m
b0m b1m b2m b3m
c0m c1m c2m c3m
d0m d1m d2m d3m





















φ0m

φ1m

φ2m

φ3m











. (3.47)
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A comparison of Eqs. 3.41, 3.44 and 3.47 shows that the coefficients of the pyramid functions
are given in terms of the inverse of the vertex matrix











a0m a1m a2m a3m
b0m b1m b2m b3m
c0m c1m c2m c3m
d0m d1m d2m d3m











=











1 x0m y0m z0m
1 x1m y1m z1m
1 x2m y2m z2m
1 x3m y3m z3m











−1

(3.48)

Again, the coefficients can easily be determined from the coordinates of the element vertices by
a numerical inversion. The electric field components are

Ex = −(b0mφ0 + b1mφ1m + b2mφ2m + b3mφ3m),

Ey = −(c0mφ0 + c1mφ1m + c2mφ2m + c3mφ3m),

Ez = −(d0mφ0 + d1mφ1m + d2mφ2m + d3mφ3m). (3.49)

We shall concentrate on the Poisson equation in the absence of space charge (Laplace equa-
tion). Following Section 3.3, the procedure is to form the field energy expression for the M
tetrahedrons surrounding the test vertex and then to minimize the quantity with respect to φ0.
The resulting difference equation relating the potential to the values at nearest neighbors is

φ0

M
∑

m=1

ǫm(b
2
0m + c20m + d20m) =

−
M
∑

m=1

ǫm[(b0mb1m + c0mc1m + d0md1m)φ1m

+(b0mb2m + c0mc2m + d0md2m)φ2m

+(b0mb3m + c0mc3m + d0md3m)φ3m] (3.50)

The expressions in Equation 3.50 are involved but can be attacked step-by-step on a computer.
The resulting set of equations can be cast in a form that relates the potential at each vertex
point to a weighted average of the potentials at neighboring points. The large set of linear
equations can then be solved using either relaxation methods (Section 5.5) or block matrix
inversion (Section 6.5).

There are two main challenges in three-dimensional finite element solutions on an arbi-
trary mesh. The first is setting up the computational mesh, a procedure that is considerably
more challenging for three-dimensional tetrahedrons than two-dimensional triangles. Second,
the storage requirements are daunting. Adding the third dimension multiplies the number of
vertices by a large factor (∼ 100). Furthermore, the number of quantities that must be stored
at each vertex to represent the geometry and material characteristics is 2-3 times larger. As a
result, except in the simplest geometries it is difficult to perform three-dimensional solutions
with free-form meshes on personal computers. Therefore, in the remainder of the book we
shall apply arbitrary meshes only in two dimensions and concentrate on regular meshes for
finite-difference or finite-element techniques in three-dimensional problems.
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Figure 3.4: Nodes of a triangular element for second-order finite-element field calculation.

3.6 High-order finite-element formulations

The finite-element derivations of previous sections were based on an approximation of the
potential by a linear function in each element. It is important to recognize that it is possible to
define a hierarchy of approximations where potential variations are represented by quadratic,
cubic and higher order expansions. In principle, the advantage is that it is possible to achieve
the target accuracy with fewer elements. The price is that it is more difficult to derive the
finite-element equations and to apply them in a code. Furthermore, larger elements may not
be advantageous if we are trying to model small scale variations of material properties.

The mathematics is challenging even for a derivation of the second-order finite-element equa-
tions on a two-dimensional triangular mesh. It is necessary to use more abstract methods than
the Gauss’ law treatment of Chapter 2. Here, we shall outline the steps. A detailed description
is given in Chapter 6 of M.N.O. Sadiku, Numerical Techniques in Electromagnetics (CDC
Press, Boca Raton, 1992). The idea is to represent the potential variation in an element by a
second order function. For two-dimensional solutions, the expression must have six terms,

φ(x, y) = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2. (3.51)

The coefficients are determined from the potential values at six points (or nodes) in an element.
Figure 3.4 shows the standard choice for a triangular element: the three vertices and three
midpoints on the sides. The procedure is to apply Equation 3.51 to form expressions for the
electrostatic field energy in each element in terms of potential values at the nodes and then
to minimize the global energy to derive equations that connect the potential at a node to the
values at neighboring points. As before, this leads to a large set of linear equations that can
be solved by the methods discussed in Chaps. 5 and 6. The algebra involved is facilitated by
matrix methods and the use of shape functions for the elements These are the extensions of the
pyramid functions discussed in Section 3.5.

High order methods have advantages for certain types of problems. One example is the
evaluation of mechanical strain in a homogeneous object with a complex three-dimensional
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shape like a crankshaft. As discussed in Section 3.5, an accurate linear solution could require
a large number of elements, exceeding the memory capacity of the computer or degrading
accuracy through round-off errors. On the other hand, there are reasons to avoid high order
calculations for many of the applications in the following chapters. Consider, for example, a
finite-element electrostatic solution. If the dielectric constant is uniform through a macroscopic
region, then there may be an advantage to large elements. On the other hand, suppose we have
a non-linear dielectric where ǫ varies with the field amplitude, |E|. A linear solution with small
elements presents no problem – the constant element electric field defines a unique value of ǫ
with good spatial resolution of variations. In contrast, Equation 3.51 implies that |E| varies
over the volumes of elements in a second order treatment. Here, the choice is to determine
spatial variations of ǫ within elements or to use a constant values based on an average of
|E|. Regarding the former, derivation of finite element equations by energy minimization in
elements with an arbitrary non-linear dependence of the relative dielectric constant would be
extremely difficult. At the other extreme, a simple average over large elements gives a poor
representation of material properties, leading to an inaccurate field solution. Generally, first
order methods are much easier to apply in solutions that depend on the resolution of self-
consistent material properties. Examples that we shall study in this book include magnet fields
with ferromagnetic materials and permanent magnets (Chapter 9) and thermal transport with
temperature-dependent conductivity (Chapter 12). Even in solutions with simple materials,
the accuracy advantage of second-order methods is not so clear-cut if we apply second-order
interpolation techniques to linear solutions (Section 7.3). In the end, the choice of computational
methods is similar to the choice of a tool for any job. Even though a thirty horsepower tractor
mower may not be the ideal choice for the plot of grass out front, it does make a statement to
the neighbors.

Exercises

3.1. Confirm Equation 3.7 by calculating the energy to assemble a distribution of three charges.
3.2. Given a spherical distribution of charge of form

ρ(r) = ρ0 exp(− r

R
) ,

find an expression for the total electrostatic energy in space. Give a value for ρ0 = 10−8

coulombs/m3 and R = 0.02 m.
3.3. A non-linear isotropic dielectric has a relative dielectric constant that varies with the
amplitude of the electric field, ǫr(E). Show that the field energy density in the medium is given
by

ue =
1

2
ǫ0

∫ E

0
E ′d(E ′ǫr(E

′)).

3.4. Show that the distance between two points in the x-y plane is given by the expression

D =
∫ x2

x1

dx
√

1 + (dy/dx)2.



50 Finite-element Methods for Electromagnetics

Use the Euler equation to prove mathematically that the shortest distance between the points
is a straight line.
3.5. A geodesic on a surface is a curve where the distance between two points is a minimum.
The geodesic on a plane is a straight line. Find the equation of a geodesic on a right circular
cylinder. Take ds2 = a2dθ2 + dz2 and minimize the functional

D =
∫

dz
√

1 + a2(dθ/dz)2.

3.6. Confirm that minimizing the field energy functional

I =
∫ ∫ ∫

dV
ǫ0ǫrE

2

2
.

leads to the Laplace equation for electrostatics in the absence of space-charge,

∇ · (ǫr∇φ) = 0.

3.7. Extend the derivation of Section 3.4 to cylindrical coordinates. Minimize the adjustable
energy for toroidal elements that extend 360o around the axis and show the derivation leads to
Eqs. 2.77 and 2.78.
3.8. Consider a one-dimensional planar gap with applied voltage V (0) = 0.0 V and V (1.0) = 1.0
V. The lower half of the gap is filled with a dielectric with ǫr = 2.5.

a) Find an expression for the potential as a function of position in the gap.
b) Set up a spreadsheet with a column of the analytic potential values at 21 positions (0.00,
0.05, 0.10, ..., 1.00). Set up a second column with the field energy per unit length calculated
from Equation 3.17 for the 20 elements .
c) Set up an interactive cell that sums the field energy contributions. Experiment and show
that any variation of potential from the analytic values results in an increase in field energy.

3.9. Find expressions for the pyramid functions of the right isosceles triangles with the following
vertices.
a) x1 = (0, 0), x2 = (d, 0) and x3 = (d, d).
b) x1 = (0, 0), x2 = (d, d) and x3 = (0, d).

3.10. Find the three pyramid functions in a two-dimensional system for a triangle with the
following vertices: x1 = (0, 0), x2 = (3, 0) and x3 = (3, 5). Give values for Ex and Ey in the
element if the potentials at the three vertices are φ1 = 30.0 V, φ2 = 35.0 V and φ3 = 42.0 V.
3.11. A two-dimensional mesh consists of square elements with sides of length d. Use the results
of problem 3.10 to find a expression for the field energy of an element in terms of potential
values at the four vertices by dividing the space into two right triangles.



Chapter 4

Finite-difference Solutions and Regular
Meshes

The finite-difference method is an alternative approach to derive difference equations for phys-
ical systems. It is based on the direct conversion of the governing differential equations for
a physical system by the substitution of difference operators . These operators act over small
divisions of space (∆x,∆y,∆z) or time (∆t). There are several ways to make the conversion.
The solutions approach the exact results in the limit that ∆x,∆y,∆z,∆t→ 0.

Both finite-element and finite-difference techniques seek a set of difference equations to
represent a continuous physical system in terms of discrete quantities. In the finite-element
method these equations are derived by application of conservation principles over a volume. In
contrast, finite-difference equations follow from the application of physical laws at a point. The
differential equations underlying the finite-difference method are usually referenced to Carte-
sian, cylindrical or spherical coordinates. Therefore, difference operators are usually defined on
a regular mesh. The term regular mesh means that space is divided into rectangles or boxes
determined by sets of vertex coordinates along each axis. Figure 4.1 shows an example of a
two-dimensional regular mesh with vertices at the set of coordinates (xi, yj). In contrast to the
conformal meshes of Chapter 2, regular meshes require less storage of geometrical information.
Given the coordinate sets xi, yj and zk, we can immediately find the location of any vertex
point (xi.yj , zk) from the indices (i, j, k). The disadvantage is clear in Figure 4.1. A regular
mesh gives a poor representation of slanted or curved boundaries.

Finite-difference techniques are difficult to apply on arbitrary meshes. On regular meshes
we can choose finite-element or finite-difference methods. We shall see in this chapter that it
is usually better to adopt the finite element viewpoint for spatial differencing. The method
ensures unambiguous identification of material boundaries and avoids non-physical divergences
at the axes of cylindrical or spherical systems. On the other hand, difference operators are
essential for time-dependent problems. In contrast to spatial problems, nature dictates that
we must advance in one-direction parallel to the time axis. In the remainder of this book,
we shall represent spatial variations with finite-element equations and advance in time with
finite-difference operators. The material introduced in this chapter will be important for the
diffusion problems of Chapter 12 and electromagnetic pulse solutions of Chapter 13.

Section 4.1 covers methods to convert differential equations to a discrete set of linear equa-
tions on a regular mesh. We shall see how the choice of difference operator can affect the ac-
curacy and stability of the solution. Section 4.2 illustrates the procedure with the application

51



52 Finite-element Methods for Electromagnetics

Figure 4.1: Two-dimensional regular mesh with indices for finite-element calculations.

to initial value solutions of ordinary differential equations. Section 4.3 covers the differencing
techniques for a boundary value problem, the one-dimensional Poisson equation. The simple ge-
ometry provides a good illustration of contrasts between the finite-difference and finite-element
approaches. Section 4.4 shows how to solve the set of linear equations for the one-dimensional
Poisson equation through the method of back-substitution. The discussion also reviews the
implementation of boundary conditions. Section 4.5 extends the difference equations to two-
dimensional field variations on regular meshes, both in Cartesian and cylindrical coordinates.
Finally, Section 4.6 derives finite-difference and finite-element equations for three-dimensional
electrostatics.

4.1 Difference operators

Figure 4.2a shows a continuous function f(x) defined over a spatial region. The function has
an infinite set of values. In numerical calculations we must approximate its behavior with a
finite set of quantities. The standard approach is to divide the space into intervals and to store
discrete function values at the interval boundaries. We denote the boundary positions as xi
and the corresponding function values as fi. The one-dimensional mesh in Figure 4.2a has 10
intervals with a total of I = 11 boundaries. If the function varies smoothly, we can estimate
intervening values with linear or higher order interpolations (Section 8.3). The procedure is
accurate when the scale length for variations of the function extends over many intervals as in
the region marked A in Figure 4.2a. On the other hand, a numerical calculation gives poor
results in region B . We could improve the approximation by using finer spacing as in Figure
4.2b.

We can determine a criterion for the validity of discrete approximations from the theory of
Fourier series. We can represent a continuous function in the region x1 ≤ x ≤ xI as

f(x) = Ao +
∞
∑

n=1

(

An cos
2πnx

L
+ Bn sin

2πnx

L

)

(4.1)
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Figure 4.2: Discrete representations of continuous functions. a) One-dimensional function f(x)
defined on a uniform mesh. b) Non-uniform mesh to improve the function resolution in regions
of fine scale variations.

where L = xI − x1. The coefficients in Equation 4.1 are given by

Ao =
1

L

∫ xI

x1

f(x)dx,

An =
2

L

∫ xI

x1

f(x) cos
2πnx

L
dx,

Bn =
2

L

∫ xI

x1

f(x) sin
2πnx

L
dx. (4.2)

The wave number of a Fourier component is kn = 2πn/L. The summation in Equation 4.1
extends to infinity; therefore, the series can represent arbitrary functions with short scale vari-
ations. The content of Eqs. 4.1 and 4.2 can be written succinctly in complex number notation
as

f(x) =
∞
∑

n=−∞

gn exp
(

2πjnx

L

)

. (4.3)

where

j =
√
−1. (4.4)

The complex Fourier coefficients are given by

gn =
1

L

∫ xI

xo

f(x) exp
(−2πjnx

L

)

dx. (4.5)

Note that the summation of Equation 4.3 extends over negative values of n. The negative
components are a mathematical requirement to cancel the imaginary parts of terms.
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We can derive analogous expressions for a discrete data set that approximates a continuous
function. Consider a set of I values fi at locations xi separated by the uniform interval ∆,
where (I − 1)∆ = L. For convenience, we shift the values of x so that they lie in the range
−L/2 ≤ x ≤ L/2. In this case, x = n∆. The function values constitute a vector with I
components. A familiar result from linear algebra is that such a set can be represented by an
expansion in terms of I orthogonal functions. The following form of the discrete Fourier series
is analogous to that of the continuous series (Equation 4.3),

fi =
J/2
∑

n=−J/2

gn exp
(

2πjni

I

)

(4.6)

where

gn =
1

I

I
∑

i=1

fi exp
(−2πjni

I

)

. (4.7)

Although Equation 4.6 appears to have I+1 components there are actually only I independent
entries. Applying the periodic properties of the exponential function, we can show that g−I/2 =
gI/2.

Equation 4.7 follows from the orthogonality condition for the base functions,

I
∑

i=1

exp
(

2πjni

I

)

exp

(

−2πjn′i

I

)

= Iδnn′ . (4.8)

The discrete delta function on the right-hand side of Equation 4.8 has the properties

δnn′ = 1, (n = n′), δnn′ = 0, (n 6= n′). (4.9)

We can confirm Equation 4.8 by writing the summation on the left-hand side as

exp

(

2πj(n− n′)

I

)

I−1
∑

i=0

[

exp

(

2πj(n− n′)

I

)]j

=

exp

(

2πj(n− n′)

I

)





1− exp(2πj(n− n′))

1− exp
(

2πj(n−n′)
I

)



 . (4.10)

The conversion of the bracketed term in Equation 4.10 follows from the following formula for a
geometric progression,

N
∑

j=0

xj =
1− xN+1

1− x
. (4.11)

Applying Euler’s formula, exp(jωt) = cos(ωt) + j sin(ωt), the right-hand side of Equation 4.10
becomes

exp

(

πj(I + 1)(n− n′)

I

)

sin[π(n− n′)]

sin[π(n− n′)/I]
(4.12)

The expression of Equation 4.12 satisfies the delta function properties of Equation 4.9.
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To conclude the proof, we can use Equation 4.8 to verify Equation 4.7. Multiplying both
sides of Equation 4.6 by exp(−2πjn′i/I) and summing over the data values gives the equation

I
∑

i=1

fi exp

(

−2πjn′i

I

)

=
I
∑

i=1

I/2
∑

n=−I/2

gn exp
(

2πjni

I

)

exp

(

−2πjn′i

I

)

=

I/2
∑

n=−I/2

gn
I
∑

i=1

exp
(

2πjni

I

)

exp

(

−2πn′j

J

)

. (4.13)

Applying the delta function relationship of Equation 4.8 to the final expression in Equation
4.13 yields the relationship,

I
∑

i=1

fj exp

(

−2jπn′i

I

)

=
I/2
∑

n=−I/2

gnδnn′ = gn′ , (4.14)

which is identical to Equation 4.7.
An important implication of Equation 4.6 is that there is a maximum value of the spatial

wave number in a discrete Fourier series,

kmax =
πL

2∆
. (4.15)

The quantity kmax is called the Nyquist wave number . The corresponding minimum wavelength
is λmin = 2∆. Figure 4.3a shows the physical interpretation of Equation 4.15. The Fourier
component at the Nyquist wavelength varies between positive and negative values at sequential
points. The data set cannot represent the small scale variations shown in Figure 4.3b.

Next, we shall discuss difference expressions for derivatives of a function f . First, consider
approximations for the first derivative at the point xi. As shown in Figure 4.4, a good choice is

∆′
xfi =

fi+1 − fi−1

2∆
. (4.16)

The symbol ∆′
x stands for the difference operator that corresponds to the first derivative along

x. The expression of Equation 4.16 gives an approximation for the derivative that is centered
at the point of interest. Here, we say that the difference operator is space-centered . A centered
operator clearly gives better accuracy than an skewed expression like (fi+1 − fi)/∆. We can
use Fourier analysis to check the accuracy of Equation 4.16. Let u(x) be a Fourier mode with
wave number k of a known function f(x),

u(x) = gk exp(jkx). (4.17)

The exact derivative of the mode at xi is

du

dx
= jk gk exp(jkxi). (4.18)

The difference formula of Equation 4.16 gives the expression

∆′
xu =

gk exp(jkxi+1)− gk exp(jkxi−1)

2∆
. (4.19)
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Figure 4.3: Discrete representations of continuous functions on a uniform mesh. a) Fourier
mode of a one-dimensional function at the Nyquist wavelength. b) Function that cannot be
represented with the given mesh.

Figure 4.4: Centered difference operator for the derivative of the function f(x) at xi.
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Noting that xi+1 = xi +∆ and xi−1 = xi −∆, we can write Equation 4.19 as

∆x′u =
gk
2∆

[exp(jkxi + j∆)− exp(jkxi − j∆)] =

gk
∆

exp(jkxi)
1

2
[exp(jk∆)− exp(−jk∆)]. (4.20)

Applying Euler’s formula, the last form becomes

∆′
xu = ju

sin(k∆)

∆
. (4.21)

Replacing the sin function with a Taylor expansion gives the final result

∆x′u = jku

(

1− k2∆2

6
+ ...

)

. (4.22)

The expression of Equation 4.22 differs from the exact derivative by an error of about k2∆2/6.
Because the error scales as ∆2, the space-centered expression of Equation 4.16 is said to be
second-order accurate.

The second derivative at xj equals the change in the derivative per length along x. From
the previous discussion, we expect that the difference in the derivatives at x+∆/2 and x−∆/2
divided by ∆ would give a space-centered estimate with good accuracy,

∆x”yj =
(yj+1 − yj)/∆− (yj − yj−1)/∆

∆
=
yj+1 − 2yj + yj−1

∆2
. (4.23)

We can analyze the effect of the operator on a Fourier mode and compare the result to the
exact second derivative, d2u/dx2 = −k2u. The error is approximately (k∆2/12).

The expressions for difference operators are more complex on a non-uniform mesh. Suppose
the mesh spacings near the point xi are ∆xi = xi − xi−1 and ∆xi+1 = xi+1 − xi. Taylor
expansions give approximations for function values at neighboring mesh points,

fi+1
∼= fi +

[

df

dx

]

xi

∆xi+1 +

[

d2f

dx2

]

xi

∆x2i+1

2
,

fi−1
∼= fi −

[

df

dx

]

xi

∆xi +

[

d2f

dx2

]

xi

∆x2i
2
. (4.24)

Solving Equation 4.24 for the derivatives gives the following expressions for the difference op-
erators,

∆′
xi =

(fi+1 − fi)∆x
2
i + (fi − fi−1)∆x

2
i+1

∆xi∆xi+1(∆xi +∆xi+1)
, (4.25)

and

∆xi” = 2
(fi+1 − fi)∆xi+1 − (fi − fi−1)∆xi

∆xi∆xi+1(∆xi +∆xi+1)
, (4.26)

Equation 4.26 can be rewritten as
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Figure 4.5: Advancing a function with the leapfrog method.

∆xi” =
(fi+1 − fi)/∆xi+1 − (fi − fi−1)/∆xi+1

(∆i+1 +∆i)/2
. (4.27)

The numerator is the difference of first derivatives estimated at the midpoints of adjoining
intervals and the denominator is the distance between the midpoints.

4.2 Initial value solutions of ordinary differential

equations

In following chapters, we shall apply difference operators to calculate the time evolution of
physical systems from a known state. In preparation, this section covers numerical methods to
solve ordinary differential equations. Here, time is the single independent variable. To begin,
consider a first-order differential equation with one dependent variable.

dx

dt
= f(x, t). (4.28)

A numerical solution gives a set of values for x at points in time. For simplicity, we shall advance
the solution with uniform interval ∆t. Applying Equation 4.16, the time-centered difference
form of Equation 4.28 is 69

xn+1 − xn−1

2∆t
= f(xn, tn), (4.29)

where xn is the value of x at time tn = n∆t. Equation 4.29 gives an algorithm to advance the
dependent variable,

xn+1 = xn−1 + 2∆tf(xn, tn). (4.30)

Figure 4.5 shows how values of the function f advance the quantity x in increments of 2∆t – the
scheme is called the leapfrog method . For accuracy, the function should not change significantly
over the interval, or

∆t <
∆xn
∆fn

∼= 1

∂f/∂x|n
(4.31)
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Figure 4.6:

Equation 4.31 is also a sufficient condition for numerical stability for oscillatory solutions [see,
for instance, D. Potter, Computational Physics (Wiley, New York, 1973), 35].

Although Equation 4.30 is easy to apply and gives second-order accuracy, there are two
drawbacks. First, the algorithm may exhibit numerical instability for certain types of growing
or damped solutions. Second, a good solution demands an accurate knowledge of the system
state at the initial time t0 and the advanced time t1. An alternate method must be applied to
find x1.

In most cases, it is more convenient to use a solution method that is stable for all physical
problems and only involves a knowledge of quantities at the initial time. The simplest approach
to estimate changes in a function over an interval tn to tn+1 is the Euler method . The algorithm
uses the known value of f(xn, tn) to estimate xn+1 and f(xn+1, tn+1),

xn+1 = xn + f(xn, tn)∆t. (4.32)

The Euler method is clearly not time-centered. We can get an ideal of the accuracy by com-
paring Equation 4.32 to the exact solution of the differential equation,

xn+1 = xn +
∫ tn+1

tn
f(x, t)dt. (4.33)

The Euler method approximates the integral of f over the interval as f(xn, tn)∆t. Inspection of
Figure4.6a shows that the approximation has a first-order error in ∆t. Therefore, it is necessary
to use very small intervals and a large number of steps to achieve good accuracy.

Figure 4.6b suggests that we could get a much better estimate of the integral if we knew
the value of the function in the middle of the interval, f(xn+1/2, tn+1/2). The explicit two-step
method achieves second-order accuracy in ∆t by first using the Euler method for an initial
estimate of f at tn +∆t/2. The mathematical expression is

xn+ 1

2

= xn + f(xn, tn)(∆t/2), [Step1]

xn+1 = xn + f(xn+ 1

2

, tn +∆t/2)∆t. [Step2] (4.34)
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The condition for accuracy and stability of Equation 4.31 also applies to the two-step method.
To illustrate the advantage in accuracy over the Euler method, consider numerical solutions of
the exponential equation

dx

dt
= x. (4.35)

The exact solution is x = exp(t) for x(0) = 1, giving a value of x = 20.0855 at t = 3. A two
step integration with 10 intervals (∆t = 0.3) gives x(3) = 19.3741, an error of 3.5 per cent. In
contrast, the Eulerian integration gives x(3) = 13.7858, a 31 per cent error.

The two-step method is a specific instance of the second-order Runge-Kutta procedure. To
understand this method, consider a Taylor expansion of x(t) in time about the value xn,

xn+1 = xn + fn∆t+

[

∂fn
∂t

+
∂fn
∂x

fn

]

∆t2

2
+ ... (4.36)

In Equation 4.36, the quantity fn corresponds to f(xn, tn). The goal is to find an approximation
for x(t) of the form

xn+1 = xn + λ1∆tfn + λ2∆tf(tn + µ1∆t, xn + µ2fn∆t) (4.37)

We seek parameters λ1, λ2, µ1 and µ2 such that Equation 4.37 is consistent with the Taylor
expansion of Equation 4.36. The third term on the right-hand side of Equation 4.37 can be
approximated with a first order Taylor expansion of f(x, t),

f(tn + µ1∆t, xn + µ2fn∆t) ∼= f(tn, xn) + µ1
∂fn
∂t

∆t+ µ2
∂fn
∂x

fn∆t (4.38)

Substitution in Equation 4.37 gives

xn+1
∼= xn + (λ1 + λ2)fn∆t+ λ2

(

µ1
∂fn
∂t

+ µ2
∂fn
∂x

fn

)

∆t2 (4.39)

There is an infinite set of parameters that will make Eqs. 4.36 and 4.39 consistent. The choice
λ1 = λ2 = 1/2 and µ1 = µ2 = 1 gives the standard symmetric form of the second-order
Runge-Kutta integration,

xn+1
∼= xn +

∆t

2
[f(tn, xn) + f(tn +∆t, xn + fn∆t)] . (4.40)

The choice λ1 = 0, λ2 = 1 and µ1 = µ2 = 1/2 corresponds to the two-step method of Equation
4.34.

Extensions of the above derivation lead to higher order Runge-Kutta schemes. A popular
choice for a high accuracy solution with a known function f(x,t) is the fourth order method
defined by the following equations.

xn+1
∼= xn +

1

6
(β1 + 2β2 + 2β3 + β4), (4.41)

where
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Figure 4.7: Numerical electric field calculation in a one dimensional gap – index conventions
for finite-difference and finite-element treatments.

β1 = f(xn, tn)∆t,

β2 = f(xn + β1/2, tn +∆t/2)∆t,

β3 = f(xn + β2/2, tn +∆t/2)∆t,

β4 = f(xn + β3, tn +∆t)∆t. (4.42)

Powerful tools for the solution of ordinary differential equations can be created by combining
high-order integration schemes with routines to optimize ∆t continuously. Methods to imple-
ment adaptive step size are described in W.H. Press, S.A. Teukolsky, W.T. Vettering and B.P.
Flannery, Numerical Recipes in Fortran, Second Edition (Cambridge University Press,
Cambridge, 1992), Chapter 16.

4.3 One-dimensional Poisson equation

This section reviews difference equations for the one-dimensional Poisson equation,

∂

∂x
ǫr
∂φ

∂x
= − ρ

ǫo
. (4.43)

We shall compare finite-difference and finite-element viewpoints using the index conventions of
Figure 4.7. To begin, we shall find a discrete form for Equation 4.43 using difference operators
applied at points. Suppose that ǫr and ρ are continuous functions in space and have the
following set of values at mesh positions:

ǫi = ǫr(xi), ρi = ρ(xi). (4.44)

An approximation for the left-hand side of Equation 4.43 at position xi follows from the differ-
ence between centered estimates of ǫ dφ/dx in adjacent intervals divided by (xi+1 − xi)/2. The
expression to the left of point xi is

ǫ
dφ

dx
∼= ǫi + ǫi−1

2

φi − φi−1

xi − xi−1

. (4.45)
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The first term on the right-hand side is the average value of the dielectric constant at (xi +
xi+1/2). Applying Equation 4.45 to find the second derivative and setting the result equal to
ρi/ǫ0 gives the equation

(

ǫi+1 + ǫi
2

φi+1 − φi

xi+1 − xi
− ǫi + ǫi−1

2

φi − φi−1

xi − xi−1

)/

(

xi+1 − xi−1

2

)

= −ρi
ǫ0
. (4.46)

Solving Equation 4.46 for φi leads to a form reminiscent of Equation 2.66,

φi =
Wi+1φi+1 +Wi−1φi−1 + ρi(xi+1 − xi−1)/ǫ0

Wi+1 +Wi−1

. (4.47)

The coupling coefficients are

Wi+1 =
ǫi+1 + ǫi

2

1

xi+1 − xi
, Wi−1 =

ǫi + ǫi−1

2

1

xi − xi−1

. (4.48)

Equation 4.47 is an acceptable difference form if ρ and ǫr vary continuously in space. The
method is ill-suited to electrostatic solutions with sharp boundaries between materials of dif-
ferent ǫr. We shall see in the next section that Equation 4.47 gives a smooth change of electric
field at a discontinuity, leaving the boundary position ambiguous. The finite-element viewpoint
gives better results. We take ǫr and ρ as element properties. The revised form of Equation 4.45
is

ǫ
dφ

dx
∼= ǫi

φi − φi−1

xi − xi−1

. (4.49)

We shall use the weighted average of space-charge density in the adjacent elements on the
right-hand side of the Poisson equation,

ρi(xi − xi−1) + ρi+1(xi+1 − xi)

xi+1 − xi−1

. (4.50)

Substituting and solving for φi gives

φi =
Wi+1φi+1 +Wi−1φi−1 + [ρi+1(xi+1 − xi) + ρi(xi − xi−1)]/2ǫ0

Wi+1 +Wi−1

. (4.51)

In this case, the coupling coefficients are

Wi+1 =
ǫi+1

xi+1 − xi
, Wi−1 =

ǫi
xi − xi−1

. (4.52)

Although Eqs. 4.51 and 4.52 are similar to the finite-difference results of Eqs. 4.47 and 4.48,
they lead to considerably different predictions of electric fields near dielectric boundaries.
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4.4 Solving the Poisson equation by back-substitution

The difference equations derived in Section 4.3 for the one-dimensional Poisson equation have
the general form

αiφi−1 + βiφi + γiφi+1 = Qi. (4.53)

Equation 4.53 represents a set of coupled linear equations. If the mesh has I vertices with fixed
potentials on each boundary, there are (I − 2) equations for the (I − 2) unknown potential
values at the intermediate points. If we postulate the relationship,

φi+1 = Xiφi + Yi, (4.54)

then the solution depends on finding a set of coefficients Xi and Yi consistent with Equation
4.53 and the boundary conditions. Substitution of Equation 4.54 into Equation 4.53 gives

φi = − αi

βi + γiXi

φi−1 +
Qi − γiYi
βi + γiXi

. (4.55)

Equation 4.55 is consistent with the form of Equation 4.54 if

Xi−1 = − αi

βi + γiXi

(4.56)

and

Yi−1 =
Qi − γiYi
βi + γiXi

(4.57)

Equations 4.56 and 4.57 are recursion relationships. To solve the set of equations represented
by Equation 4.53, we first scan downward to find the set of Xi and Yi, and then apply Equation
4.54 in an upward scan to find the values of φi.

To illustrate the procedure, consider the solution of the finite-element equations (Equation
4.51) with fixed potentials at each boundary. There are I mesh points with φ1 = 0 and φI = V0.
In this case,

αi = −Wi−1, βi = Wi−1 +Wi+1, γi = −Wi+1,

Qi =
ρi+1(xi+1 − xi) + ρi(xi − xi−1)

2ǫo
. (4.58)

The coupling coefficients Wi are given by Eqs. 4.52. The first quantities to find are XI−1 and
YI−1. Because φI has a fixed value that does not depend on φI−1, inspection of Equation 4.54
shows that XI−1 = 0 and YI−1 = V0. The next step Equation 4.54 is applied to find the set of
coefficients down to X1 and Y1. Finally, Equation 4.54 is applied to find the set of φi starting
at φ1 = 0.

We can also apply back-substitution to problems with mixed Dirichlet and Neumann bound-
ary conditions. Suppose that φ1 = 0 and dφ(xI)/dx = 0. The latter condition means that the
plane at xI is a symmetry boundary, equivalent to the presence of a potential φI+1 = φI−1 at
position xI +(xI −xI−1)). Therefore, the form of the Equation 4.54 at the Neumann boundary
is



64 Finite-element Methods for Electromagnetics

αIφI−1 + βIφI + γIφI+1 = QI. (4.59)

Substituting for φI+1 and solving for φI gives

φI = −αI + γI
βI

φI−1 +
QI

βI
. (4.60)

Comparing Equation 4.60 with Equation 4.54 gives the values of the initial coefficients as

XI−1 = −αI + γI
βI

, YI−1 =
QI

βI
. (4.61)

The recursion formulas of back-substitution are easy to implement in a spreadsheet. Fig-
ure 4.8 shows results from a spreadsheet calculation to demonstrate the problem of dielectric
boundaries in finite difference solutions. The solution covers a 1 cm planar gap with plate
voltages of 0.0 and -1.0 V. The right half of the gap is filled with a dielectric (ǫr = 2.5) while
the left half is vacuum. The solution uses 11 mesh points and 10 intervals. Theoretically, the
electrical field has constant values of 0.57142857 and 1.42857143 V/cm in the dielectric and
air regions respectively. Figure 4.8a shows finite-difference results where the relative dielectric
constant is defined at vertices. The transition in Ez spreads over several mesh points. The field
values far from the boundary have about a 3% error. Figure 4.8b plots the field values from a
finite element solution. Elements to the right of x = 0.5 have ǫr = 1.0 while elements to the
left have ǫr = 2.5. The fields are constant in each region and exhibit the correct transition at
the boundary. The numerical values are within 0.0002% of the prediction.

4.5 Two dimensional electrostatic solutions on a regular

mesh

In this section, we shall derive difference equations to represent the Poisson equation and Gauss’
law on a regular mesh over two dimensional areas. As in Section 4.4 we shall cover both finite-
element method and finite-difference formulations. To begin, consider finite-difference equations
for a region described by Cartesian coordinates. Figure 4.9a shows the mesh index conventions.
The continuous quantities φ, ǫr and ρ are approximated by interpolating quantities at mesh
locations (φij, ǫrij and ρij). Adding partial derivatives in the y direction to the method of
Section 4.4 gives

φij =
Wi+1,jφi+1,j +Wi−1,jφi−1,j +Wi,j+1φi,j+1 +Wi,j−1φi,j−1 + ρij/ǫ0

Wi+1,j +Wi−1,j +Wi,j+1 +Wi,j−1

. (4.62)

where

Wi+1,j =
ǫi+1,j + ǫi,j

2

1

(xi+1 − xi)(xi+1 − xi−1)
,
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Figure 4.8: Numerical solution for the electric field in a one-dimensional gap. Dielectric with
ǫr = 2.5 extends from x = 0.5 to x = 1.0 cm. Number of mesh points: I = 11. a) Finite-
difference results. b) Finite element results.
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Figure 4.9: Two-dimensional electrostatic calculations on a regular mesh. a) Index conventions
for a finite-difference treatment. b) Index conventions and Gaussian volume for a finite-element
treatment.

Wi−1,j =
ǫi−1,j + ǫi,j

2

1

(xi − xi−1)(xi+1 − xi−1)
,

Wi,j+1 =
ǫi,j+1 + ǫi,j

2

1

(yj+1 − yj)(yj+1 − yj−1)
,

Wi,j=1 =
ǫi,j−1 + ǫi,j

2

1

(yj − yj−1)(yj+1 − yj−1)
. (4.63)

In the limit of a uniform mesh and a medium with no space-charge, Equation 4.63 implies that
potential values should equal the average of their four neighbors,

φi,j =
φi+1,j + φi−1,j + φi,j+1 + φi,j−1

4
. (4.64)

To solve Equation 4.63 we fix the potential of certain boundary and internal points to represent
the electrodes and solve the remaining set of difference equations to find the potential values
φij. Figure 4.10 shows a solution for a cylindrical electrode inside a grounded box. The figure
illustrates the drawback of regular meshes – the vertex locations give a poor representation of
the curved electrode. As a result, field estimates near the electrode may have errors.

To find two-dimensional finite-element equations we can apply Gauss’ law (Equation 2.33)
to the rectangular volume shown as a dashed line in Figure 4.9b. The volume surrounds a test
point with potential φ0. The mesh intervals along the x and y axes above and below the test
point are hxu, hyu, hxd and hyd respectively. The right-hand side of Equation 2.32 equals

(ρuuhxuhyu + ρduhxdhyu + ρddhxdhyd ++ρudhxuhyd) ∆z

4ǫo
. (4.65)

where ∆z is an element arbitrary height. The surface integral is evaluated over the eight
segments denoted a through h in Figure 4.9b. For example, the integral on segment a is

ǫuu
φ0 − φxu

hxu

hyu
2

∆z. (4.66)
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Figure 4.10: Equipotential lines for a two-dimensional finite-element solution of a cylindrical
electrode inside a grounded box. Regular mesh with variable resolution along the axes.

Adding contributions from all segments and setting the result equal to the quantity of Equation
4.65 gives the result,

φ0 =

Wxuφxu+Wyuφyu+Wxdφxd+Wydφyd+(ρuuhxuhyu+ρduhxdhyu+ρddhxdhyd+ρudhxuhyd) /4ǫ0
Wxu+Wyu+Wxd+Wyd

.

(4.67)

The coupling coefficients are

Wxu =
hydǫud + hyuǫuu

2hxu
,

Wyu =
hxuǫuu + hxdǫdu

2hyu
,

Wxd =
hyuǫdu + hydǫdd

2hxd
,

Wyd =
hxdǫdd + hxuǫud

2hyd
. (4.68)

To this point, we have covered three methods for numerical electrostatic solutions: 1) finite-
difference on a regular mesh, 2) finite-element on a regular mesh, and 3) finite-element on a con-
formal mesh. In two dimensions, there is no doubt which method to use. Finite-elements on a
conformal mesh have overwhelming advantages. Regular meshes are useful in three-dimensional
calculations because they require less data storage. Again, the finite-element formulation is
preferable because of the ease in representing material and Neumann boundaries. Because
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Figure 4.11: Mesh conventions and Gaussian volume near a test point for a three-dimensional
finite-element electrostatic solution.

there is little motivation for finite-differencing in space, we shall concentrate on finite-element
methods in the remainder of this book.

4.6 Three-dimensional electrostatic solutions on a

regular mesh

Generating conformal meshes in three dimensions is a challenging task – extended geometric
information must be stored for each vertex. On the other hand, it is relatively easy to implement
three-dimensional solutions with regular meshes. In this section, we shall review the associated
three-dimensional finite-element equations and discuss techniques to improve accuracy. Figure
4.11 defines mesh parameters near a test point. We include the option for variable mesh
spacing along each axis. Each mesh point has six neighboring vertices. Extending the notation
of Section 4.5, the potentials are denoted φxu, φxd, φyu, φyd, φzu and φzd. The distances to the
neighboring vertices are hxu, hxd, hyu, hyd, hzu and hzf . There are eight surrounding elements
with relative dielectric constant and space charge density indicated by the notation ǫudu and
ρddu. Here, the index order refers to the x, y and z directions. We shall take a Gaussian surface
integral over a box that extends parallel to the axes halfway to each neighbor. The enclosed
space charge is

Q =
1

8ǫo
[hxuhyuhzuρuuu + hxdhyuhzuρduu + hxuhydhzuρudu + hxdhydhzuρddu +

hxuhyuhzdρuud + hxdhyuhzdρdud + hxuhydhzdρudd + hxdhydhzdρddd]. (4.69)
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There are 24 facets that contribute to the surface integral. Consider the facets of the four
elements in the positive x direction. Although the dielectric constant may differ in each element,
Equation 2.35 implies that the electric field parallel to surfaces between dielectric regions is
continuous. Therefore, Ex has approximately the same value on the four surface segments,

Ex(x+ hxu/2, y, z) ∼=
φo − φxu

hxu
. (4.70)

The contribution to the surface integral from the face is

φo − φxu

4hxu
[ǫuuuhyuhzu + ǫuduhydhzu + ǫuudhyuhzd + ǫuddhydhzd]. (4.71)

Adding contributions from the 6 faces and setting the result equal to the sum of Equation 4.69
gives the finite-element difference equation for three-dimensional electrostatics,

φo =
Wxuφxu +Wxdφxd +Wyuφyu +Wydφyd +Wzuφzu +Wzdφzd +Q

Wxu +Wxd +Wyu +Wyd +Wzu +Wzd

(4.72)

The coupling constants follow from an inspection of Equation 4.71,

Wxu =
1

4hxu
[ǫuuuhyuhzu + ǫuduhydhzu + ǫuudhyuhzd + ǫuddhydhzd],

...

Wzd =
1

4hzd
[ǫuudhxuhyu + ǫdudhxdhyu + ǫuddhxuhyd + ǫdddhxdhyd]. (4.73)

Exercises

4.1. Verify that the complex form of the Fourier series (Eqs. 4.3 and 4.5) is equivalent to the
harmonic form of Eqs. 4.1 and 4.2.
4.2. Use a spreadsheet to find the complex Fourier coefficients gn for the following data set.

n 1 2 3 4 5 6 7 8 9 10
fn 0.0 0.4 0.6 0.8 1.0 1.0 0.75 0.50 0.25 0.20

Verify the validity of the expansion by substitution in Equation 4.6. (If the spreadsheet does
not handle complex numbers, you can find the real and imaginary parts of gn explicitly using
harmonic functions).
4.3. Use a spreadsheet to confirm the orthogonality relationship of Equation 8 for I = 5.
4.4. Investigate the accuracy of the difference approximation (fj+1−fj)/∆ for the derivative of
a function fj defined on a uniform mesh in x. Apply the method described in Section 4.1 based
on a Fourier mode fk = gk exp(ikx). Show that the expression has first order accuracy as an
approximation to the derivative at xj but second order accuracy for the position xj +∆/2.
4.5. Verify that the error is Equation 4.23 is approximately (k∆)2/12.
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4.6. Find a centered difference expression for d4f/dx4 at xj and estimate the error for a Fourier
mode with wavenumber k.

4.7. Show that Eqs. 4.25 and 4.26 approach Eqs. 4.16 and 4.23 respectively in the limit of a
uniform mesh, ∆xj = ∆xj+1.

4.8. In the limit ∆xj ≪ ∆xj+1, show that the first derivative expression of Equation 4.25
approaches

yj − yj−1

∆xj
.

This result implies that the expression approaches the skewed estimate based on values to the
left of the point when there is a large distance to the point on the right hand side.

4.9. Use a spreadsheet to solve the equation set dx/dt = v and dv/dt = −x in the range
0 ≤ t ≤ 2π. The initial conditions are x(0) = 1 and v(0) = 0. Use the Euler and two-step
methods for ∆t = 2π/20 and compare final values to the analytic prediction x = cos(2π) = 1.

4.10. Use a spreadsheet to derive a numerical solution to the equation

dx

dt
= x ,

over the interval 0 ≤ t ≤ 3. Divide the range into 10 steps and take x(0) = 1.

a) Use the two step method and compare the results to those quoted in Section 4.2.
b) Apply the leap frog method and check the stability of the solution.

4.11. Apply the fourth-order Runge-Kutta method on a spreadsheet to find the solution of the
equation dx/dt = sin(t)− t2/20 in the range 0 ≤ t ≤ 5. The initial condition is x(0) = 0.

a) Find x(5) as a function of the number of steps for n = 1, 2, 5, and10.
b) By plotting x(5) versus 1/n, can you estimate the value for an infinite number of steps
(1/n = 0)?
c) Compare this result to the analytic prediction x(5) = 1− cos(5)− 53/60 = −1.3670.

4.12. Program the recursion formulas of the back-substitution method to solve the following
one-dimension electrostatic problem. Parallel plates separated by distance d = 0.05 m have
applied potentials φ(0) = 0 and φ(d) = 100. The relative dielectric constant varies as ǫr =
1 + 3 sin(πx/d). Use 20 elements.

4.13. The Poisson equation has the following form in cylindrical coordinates.

1

r

∂

∂r
ǫ
∂φ

∂r
+

∂2φ

∂z2
=

ρ

ǫo
.

Find the finite difference form of the equation on uniform regular mesh with by replacing the
differential operators with difference operators (Section 4.3). Compare the result to Eqs. 4.62
and 4.63.

4.14. Find a finite-element equation to represent electrostatics in cylindrical coordinates by
applying Gauss’s law to the annular volume shown in the figure. Assume a uniform mesh with
spacings ∆r and ∆z. Compare the results to those of Prob. 4.9 and Eqs. 4.67 and 4.68.
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4.15. Derive Eqs. 4.76 for the inverse transformations from a global index given by Equation
4.74.
4.16. Write simplified forms of Eqs. 4.72 and 7.73 for the following cases.

a) A uniform cubic mesh with spacing ∆.
b) A region of uniform dielectric constant.
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Chapter 5

Techniques for Numerical Field
Solutions

In previous chapters we covered several ways to represent the equations of electrostatics in terms
of coupled linear equation sets. This chapter addresses the mechanics of the solution: setting
up a mesh, assigning material properties, dealing with boundaries, and solving the equations
to find the electrostatic potential at the vertex points. When these processes are complete, we
can interpolate the potential to estimate the electric field at any point in the solution volume.

Sections 5.1, 5.2 and 5.3 cover the creation of meshes to represent arbitrary geometries. In
contrast to the well-defined procedures of previous chapters, mesh generation is a craft. There
is no ideal approach; each numericist can rest assured that his or her generator is imperceptibly
better than others. We cannot attempt to cover the full spectrum of methods in an introductory
work. Instead, we shall concentrate on two straightforward methods that handle arbitrary
geometries and are straightforward to program. The simple logic of connections in the resulting
meshes makes it easy to locate elements and to solve the equations by matrix inversion.

Section 5.1 covers the creation of regular meshes in three dimensions. Here, the elements are
boxes with rectangular sides. We shall use the method of volumes to assign vertex and element
characteristics. Here, complex three-dimensional shapes are constructed in terms of positive
and negative elementary volumes. The next two sections deal with conformal two-dimensional
meshes. Section 5.2 describes a method to create flexible triangular meshes. The critical
requirement is an indexing scheme for quick identification of vertices and elements surrounding
a vertex and the vertices that bound an element. Section 5.3 covers techniques to adjust the
mesh to match the boundaries of arbitrary electrodes and dielectrics. The section also discusses
assignment of vertex and material properties and the determination of the coupling constants
introduced in Section 2.7.

Section 5.4 discusses applications of special Neumann boundaries in finite-element solutions.
In electrostatic solutions the normal derivative of potential equals zero along the boundary.
Equivalently, the electric field is parallel to the boundary. The ability to generate slanted or
curved symmetry boundaries is essential for solutions in applications such as resistive flow or
gas dynamics. To conclude, Section 5.5 introduces a technique to solve the large sets of lin-
ear equations. The method of successive over-relaxation is an iterative process. It involves
continual small corrections of vertex potentials to bring them into conformance with the dif-
ference relationships. The method is fast and easy to program. An important advantage for
calculations on personal computers is that memory requirements are modest. The drawback

73
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is that there is no rigid criterion to pick optimum relaxation parameters. Chapter 6 discusses
alternative direct solution methods based on matrix algebra.

5.1 Regular meshes in three dimensions

In this section we shall study regular three-dimensional meshes to use the equations of Section
4.6. Figure 4.11 shows the index conventions. The solution box has rectangular sides with
dimensions (xmax − xmin), (ymax − ymin) and (zmax − zmin). The volume is subdivided into
elements with dimensions given by mesh spacings along each axis, ∆xi (i = 0, I), ∆yj(j = 0, J)
and ∆zk(k = 0, K). The spacings may be uniform or varied to give enhanced resolution. They
can also be weighted to provide a better fit to critical surfaces. For example, Figure 4.10 shows
the x-y projection of a weighted mesh optimized for a cylindrical object.

There are (I+1)× (J +1)× (K+1) vertices in the solution box and I×J×K elements. A
set of indices (i, j, k) refers to a mesh point and the element directly below (in the negative x,
y and z directions). If we apply the convention that any out-of-range index values correspond
to φ = 0.0 and ǫ = 0.0, then the program will automatically implement special Neumann
conditions on any undefined boundary (Section 2.8). It is straightforward to determine input
quantities for the coupling constants (Eqs. 4.73) at a vertex point. The mesh dimensions near
the point (i, j, k) are given by

hxu = ∆xi+1, hxd = ∆xi,

hyu = ∆yj+1, hyd = ∆yj,

hzu = ∆zk+1, hzd = ∆zk. (5.1)

The indices of elements surrounding the point are

(u, u, u) → (i, j, k),

(u, u, d) → (i, j, k − 1),

(u, d, u) → (i, j − 1, k),

(u, d, d) → (i, j − 1, k − 1),

(d, u, u) → (i− 1, j, k),

(d, u, d) → (i− 1, j, k − 1),

(d, d, u) → (i− 1, j − 1, k),

(d, d, d) → (i− 1, j − 1, k − 1). (5.2)

The next step is to set the vertex and element properties to represent the physical system. We
shall begin with vertices. There are two types.
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Figure 5.1: Three-dimensional calculation of electrostatic fields in a field-distortion spark gap.
a) Mechanical drawing of the device. b) Equipotential lines in a longitudinal section passing
through the trigger pin.

• Variable points with potential determined by the solution process

• Fixed points where the potential retains its initial value.

Fixed points correspond to positions inside and on electrodes. Suppose we represent the fixed
condition by one bit of a status array variable. To replicate the geometry of a set of electrodes
we loop through the mesh, setting the fixed bit and the potential value for appropriate points.
The points could be set by hand, but the work becomes prohibitive for large meshes with
complex shapes.

We can automate vertex setting with a method using superposition of elementary volumes.
Here, the user supplies information on the size, shape and orientation of a sequence of ele-
mentary solid objects like cubes, spheres, boxes, and wedges. The program then analyzes the
vertices to find which ones are inside. With the convention that marked points over-write
any previous definitions, it is possible to weld objects or to cut holes. In this way, complex
shapes can be assembled from a library of simple objects. Figure 5.1 shows an example for a
three-dimensional electrostatic simulation of a field distortion spark gap with an offset trigger
electrode.

There are three steps in the creation of an elementary object in the solution volume:

• Fabricate the object. As an example, fabrication of a cylinder involves giving a height,
a radius and the characteristic of enclosed vertices (fixed or variable). By convention, we
create the object in a reference coordinate system (x′, y′, z′) with Cartesian axes that lie
along those of the solution volume. One convention is that the base of the cylinder lies
in the x′-y′ plane so that the height extends in z.
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Figure 5.2: Transformation of coordinates between a Cartesian coordinate system (x′, y′, z′)
and a system (x, y, z) rotated by an angle θz.

• Orient the object. Orientation consists of rotation about one or more of the reference
coordinate axis. By convention, we shall take rotations in order about the x′, y′ and z′

axes.

• Move the object to position. The final operation is translation along one or more
axes of the solution coordinates.

The definition of a cylinder requires the following parameter sets:

• Physical properties. R (radius), H (height), FFlag (TRUE if fixed point), V0 (Fixed
potential)

• Rotation properties. θx, θy, θz

• Translation properties. Lx, Ly, Lz

Given the parameters, we can tell if a point (x, y, z) in the solution space is inside the cylinder
by first transforming to the object definition space (x′, y′, z′) and then checking whether the
following three conditions are satisfied,

z′ ≥ 0,

z′ ≤ H,
√

x′2 + y′2 ≤ R. (5.3)

The coordinate transformation is performed by subtracting Lx, Ly and Lz from the position
coordinates and then applying rotation matrices in the order M(−θz),M(−θy) and M(−θx).

Regarding rotation matrices, Figure 5.2 shows the relationship between a Cartesian coordi-
nate system (x′, y′, z′) and a system (x, y, z) rotated by an angle θz. A set of coordinate values
transforms according to







x
y
z





 = M(θz)







x′

y′

z′





 , (5.4)
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where the rotation matrix is

M(θz) =







cos θz sin θz 1
− sin θz cos θz 1

0 0 1





 (5.5)

The matrices for rotations about the x and y axes are

M(θx) =







1 0 0
0 cos θx sin θx
0 − sin θx cos θx







M(θy) =







cos θy 0 sin θy
− sin θy 0 cos θy

0 1 0





 (5.6)

5.2 Two-dimensional conformal triangular meshes

We now turn to the more challenging problem of creating conformal triangular meshes in two
dimensions. To begin, we need to clarify what constitutes a good conformal mesh. There are
two measurements of quality.

• Field solutions are most accurate when the mesh triangles are all approximately equilat-
eral. In this case, the coupling constants have about the same magnitude. Acute and
distorted triangles give a wide disparity in coupling constant values, degrading accuracy
and sometimes leading to numerical instabilities (Section 12.5).

• For the best accuracy and minimum run time, the scale size of triangles should vary in
space to give good resolution of small objects with a moderate number of elements

We shall discuss a technique for logical mesh deformation. The method has the advantage
that it processes most geometries with little user intervention. Further, the regular mesh logic
speeds calculations of field quantities. The disadvantages are that the fixed mesh logic may
use memory inefficiently and the fitting procedure may yield distorted triangles for convoluted
geometries

The process starts with a collection of logically-connected triangles that fill a solution region.
The term logically-connected means that the indices of elements and points surrounding a vertex
are given by simple formulas. The critical step is to shift certain vertices so that the sides of
elements lie along the boundaries of electrodes or dielectrics. Logical connections are preserved
if the shifts are not too large; otherwise, some triangles may be turned inside-out. We apply
the term region to a section of the mesh that corresponds to a particular geometric object.
After the shifts are completed, vertices and elements are marked with an integer number to
designate their region. The final step is to smooth variations between points that are not fixed
on boundaries.
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Figure 5.3: Mesh of triangular elements with constrained connection logic – six elements sur-
round each internal vertex. a) Indices of a logical mesh filling a rectangular region (xmin, ymin)
to (xmax, ymax). b) Detail of mesh showing vertex connections in odd and even rows.
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In this section, we will concentrate on the creation of logical meshes with variable resolution
and review a convention for indexing. The following section covers procedures to shift vertices
and to smooth the mesh. Initially, we let the logical mesh fill a rectangular region (Figure
5.3) with dimensions xmin, ymin, xmax and ymax. The axes represent x-y for rectangular systems
and z-r for cylindrical problems. The solution region may be any shape that fits inside and
may include some or all of the available triangles. Note that the triangles in Figure 5.3 have a
regular order – every internal vertex is surrounded by six elements. The vertex indices range
from i = 1 to I along the x (or z) axis and j = 1 to J along y (or r).

A good practice is to organize properties of the mesh and electrostatic solution in a data
structure. For example, the allocatable array TYPE(MeshPoint) :: Mesh(:::) using the
following data structure:

TYPE MeshPoint

DOUBLE PRECISION x

DOUBLE PRECISION y

DOUBLE PRECISION Phi

DOUBLE PRECISION W5

DOUBLE PRECISION W6

DOUBLE PRECISION W1

INTEGER(4) RegNo

INTEGER(4) RegUp

INTEGER(4) RegDn

DOUBLE PRECISION RhoUp

DOUBLE PRECISION RhoDn

END TYPE MeshPoint

The first two quantities in the structure are the x and y (or z and r) coordinates of the vertex
and the third is the electrostatic potential. The following three quantities are coupling constants
(Equation 2.68) to points n5, n6 and n1. Because of a redundancy of values, it is necessary to
store only three coupling constants for each point. The sixth quantity is the region number
associated with the vertex point, an integer. Invalid vertex points (such as those outside the
solution volume) are marked with region number 0. An inspection of Figure 5.3 shows that
there are roughly two elements for each vertex point. By convention we shall associate the two
triangles to the right with a vertex point. They are above and below the line that connects
point (i, j) with (i + 1, j). The quantities RegUp and RegDn are the region numbers of the
elements. For calculations with space-charge distributions we can include RhoUp and RhoDn,
the charge densities in the upper and lower triangles.

To compute the coupling coefficients to neighboring vertices we need to identify 1) the six
neighboring points to find the element cotangents and 2) the six surrounding elements to find
the values of dielectric constant. Regarding vertices, inspection of Figure 5.3 gives the indices for
surrounding points shown in Table 5.1. Turning to elements, all values of Mesh(n).RegUp and
Mesh(n).RegDn are set to zero when the logical mesh is created. We then use the procedures
described in the next section to mark elements inside the solution volume with appropriate
region numbers. The numbers may correspond to constant potential electrodes or to a value of
the relative dielectric constant. When calculating the coupling coefficients of Eqs. 2.67, we use
a function

DOUBLE PRECISION FUNCTION Epsi(n,UpFlag)



80 Finite-element Methods for Electromagnetics

Table 5.1: Indices of vertices connected to point (i, j).

j odd j even

Point 1 i+1, j+1 i, j+1
Point 2 i, j+1 i-1, j+1
Point 3 i-1, j i-1, j
Point 4 i, j-1 i-1, j-1
Point 5 i+1, j-1 i, j-1
Point 6 i+1, j i+1, j

Figure 5.4: Options for element geometries in a logical mesh. a) Right-angle elements. b)
Relaxed mesh of isosceles triangles.

to find the dielectric constant of the upper and lower elements at vertex n. If the element region
number corresponds to a dielectric volume, the function returns the corresponding value of ǫr.
The function returns 0.0 if the region number equals zero or corresponds to a volume inside
an electrode. This feature ensures implementation of automatic Neumann boundaries (Section
2.8).

It is easy to create rectangular logical meshes starting from sets of vertex coordinates along
each axis, XMesh(i) and YMesh(j). The values, ranging from xmin to xmax and ymin to ymax,
need not be uniformly spaced. The first step is to fill the rectangular region by making a loop
through all values of i and j and setting

M(i, j).x = XMesh(i),

M(i, j).y = YMesh(j). (5.7)
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Table 5.2: Routine to convert right triangles to isosceles triangles aligned along x

DO j=1, JMax

NOdd = MOD(j,2)

! --- Column i=1

DShift = 0.125*(M(i+1,j).x-M(i,j).x)

IF (NOdd.EQ.1) THEN

M(1,j).x = M(1,j).x + DShift

ELSE

M(1,j).x = M(1,j).x - DShift

ENDIF

! --- Column i=IMax

DShift = 0.125*(M(IMax,j).x-M(IMax-1,j).x)

IF (NOdd.EQ.1) THEN

M(IMax,j).x = M(IMax,j).x + DShift

ELSE

M(IMax,j).x = M(IMax,j).x - DShift

ENDIF

! --- General columns

DO i=2, (IMax-1)

DShift = 0.25*AMIN1((M(i+1,j).x-M(i,j).x), &

(M(i,j).x-M(i-1,j).x))

IF (NOdd.EQ.1) THEN

M(i,j).x = M(i,j).x + DShift

ELSE

M(i,j).x = M(i,j).x - DShift

ENDIF

END DO

END DO

If the index scheme of Table 5.1 is used, the process produces the set of right triangles shown
in Figure 5.4a. With this triangle geometry is it sometimes impossible to fit curved or slanted
boundaries. We can improve the performance of the fitting process by converting the elements
to isosceles triangles. The subroutine of Table 5.2 produces the set of triangles shown in Figure
5.4b.

To conclude, we should note that rectangular logical mesh of Figure 5.3 is a special case.
There is a broad range of alternatives consistent with the fitting process of Section 5.3. For
example, in electromagnetic problems, ordering vertices in planes parallel to the x axis may
produce numerical effects similar to interference in a crystalline medium. We can create glassy
amorphous meshes by adding loops to the routine of Table 5.2 to introduce random vertex
displacements in the y direction (Figure 5.5a). It is also possible to generate logical meshes
that are optimized to an application. For example, Figure 5.5b shows a logical mesh to model a
segment of a cylindrical system. Note that there is logarithmic weighting in the radial direction.
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Figure 5.5: Options for element geometries in a logical mesh. a) Amorphous (glass-like) mesh.
b) Cylindrical-section mesh with logarithmic weighting in the radial direction.
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5.3 Fitting triangular elements to physical boundaries

Given a logical mesh extending over a solution area, the next step is to shift vertex positions so
that the mesh conforms to the physical system. Another task is marking vertices and elements
with appropriate region numbers. The numbers are associated with physical properties during
the solution process.

Suppose region boundaries are defined by a set of geometric segments supplied by the user:
points, lines, arcs or other curves. Regions may be of two types: open or filled . Open regions
represent boundary conditions or planar electrodes. They may consist of any combination
of connected or unconnected segments. The vertices of open regions are marked with region
numbers during processing, but no elements are marked. Filled regions represent volumes like
dielectrics, space-charge clouds, and electrodes. The boundary segments must connect and form
a closed path in space. All vertices and enclosed elements of a filled region are marked with
the region number. This section discusses four steps of mesh generation.

• Shifting and marking logical mesh vertices so that they lie on boundary segments.

• Testing elements and marking those that lie inside closed boundaries.

• Relaxing vertex positions to achieve a smooth set of triangles.

• Confirming the integrity of the mesh

To illustrate vertex shifting, consider first the operation for a point segment. Open regions
may contain a set of unconnected points defined by coordinates (xk, yk) or (zk, rk) . For example,
this type of region may represent thin wires in a grid. To process a point (xk, yk) in a region
with number Nreg, the first step is to find the indices [i, j] of the closest logical mesh vertex
that is not already marked with the region number. Then, it is simply a matter of setting
M(i, j).x = xk,M(i, j).y = yk, and M(i, j).RegNo = Nreg.

A line segment is specified by start and end coordinates: (xks, yks) and (xke, yke). Here, the
first step is to set the start and end vertices using the point method. Then, it is necessary to
shift a series of intervening vertices to make a logically connected path between the ends. The
term logically connected means that the set of vertices that constitute a line are neighbors on
the mesh. Starting at (xks, yks), we check mesh neighbors to find which unmarked vertex is
closest to the line segment. The vertex is moved to the closest point on the line and marked
with the current region number. We continue by checking neighbors of the new point and
relocating the one closest to the line. The process ends when the set of neighbors includes the
segment end point, (xke, yke). This method is reliable except when the geometry of the logical
mesh is inappropriate, such as an attempt to fit a shallow angle line to a set of tall triangles.
The process is similar for arcs, except that a different method is used to find the distance from
the test point to the curve.

We can develop the mathematics to find the minimum distance between a test point and a
line segment succinctly in vector notation. Figure 5.6 shows the geometry with three coordinate
vectors: the test point Xk = (xk, yk), the start point of the line Xs = (xs, ys), and the end
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Figure 5.6: Minimum distance from a point to a line segment.

Figure 5.7: Method to check whether an element in inside a closed set of boundary segments.

point Xe = (xe, ye). The line segment is the vector L = Xe −Xs. The goal is to find the point
on the line closest to the test point, Xc = (xc, yc). For the derivation we also define vectors
that point from the line ends to the test point, Ps = Xk −Xs and Pe = Xk −Xe. If the line
has infinite length, the coordinates of the closest point are given by

Xc = Xs + (Ps · L) L, (5.8)

where the quantity in parenthesis is a dot product. The distance to the line is |Xc −Xk|. For
a finite length line, we must check whether the point Xc lies on the segment L. The condition
is true if the dot products Pe · L and Ps · L have opposite sign. Otherwise, we set the spacing
equal to the shortest distance to one of the end points.

For filled regions we must mark the enclosed elements with the current region number. The
task appears challenging if the point lies inside a complex re-entrant figure as shown in Figure
5.7. Fortunately, there is a simple procedure that works with any boundary. The first step
to check an element is to calculate the triangle center-of-mass coordinates. Next, we draw a
line between this point and an arbitrary point well outside the solution region (dashed line
in Figure 5.7). Finally, we check the set of line and arc segments that comprise the closed
boundary, counting the number of times that the test line intersects a segment. If the number
of intersections is odd, the point is inside the region.
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Figure 5.8: Checking mesh integrity. a) Valid triangular element with vertex points ordered
according to positive rotation. b) Vertex points are out of order in an inverted triangle.

The vertices shifted to boundaries are marked with a flag; their positions should not be
changed in any subsequent smoothing operations. All other points are fluid. We can shift them
to produce a relaxed mesh with a reduced probability of acute triangles. A simple procedure
is adjust the positions of fluid points toward the average location of their nearest neighbors. If
(xav, yav) represents the average of coordinates of surrounding vertices, then the displacement
from the average is

xd = xav −M(i, j).x,

yd = yav −M(i, j).y. (5.9)

The coordinates are then corrected according to

M(i, j).x =M(i, j).x+ ωxd,

M(i, j).y =M(i, j).y + ωyd, (5.10)

where ω is a smoothing parameter. Typically, the process requires about 10 iterations with ω
= 0.95.

The final task is to check the integrity of the mesh. Small vertex shifts (Figure 5.8a)
preserve the mesh logic. The problem to avoid is shown in Figure 5.8b. Here, the logical mesh
resolution was too coarse and a vertex shift produced an inverted triangle. It is easy to check
for triangle inversion by applying the area formula of Equation 2.39. The equation should
yield a positive number if the three vertices of the element are ordered with positive rotation.
The distorted triangle of Figure 5.8b has an inverted order so that the area equation returns
a negative number. Upon detecting a bad element the mesh generator can attempt to correct
the distorted triangle or give the user the option to move vertices.
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Figure 5.9: Offset cylindrical electrode with a dielectric support inside a grounded pipe. a) Full
cross-section of system with region numbers - dashed line shows possible Neumann boundary.
b) Logical mesh for one half of the system with enhanced resolution near the electrode. c) Mesh
with points clamped on boundary segments. d) Smoothed mesh.
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An example will illustrate the mesh generation process. Figure 5.9a shows a cross-section of
an offset cylindrical electrode attached to a dielectric support inside a grounded pipe. Because
of field symmetry, we need simulate only half the system by assigning a specialized Neumann
boundary along the dashed line. The first step is to create a logical mesh suitable to the problem
(Figure 5.9b), marking all vertices and elements with region number 0. Note the fine resolution
near the center to give enhanced accuracy. The problem has four regions that must be entered
in order.

• Region 1, the general solution space. This filled dielectric region with ǫr = 1 covers the
semi-circle of Figure 5.9a.

• Region 2, the dielectric support. The filled region with ǫr = 2.78 over-writes the region
number of several of the elements of Region 1.

• Region 3, the grounded boundary. The open region over-writes the region numbers of
vertices on the curved outer surface of Region 1.

• Region 4, the central electrode with a fixed potential of 50 kV. The filled region over-
writes several elements of Region 1 and also changes the region numbers of the vertices
shared with Region 2. In the solution, these vertices will be interpreted as fixed potential
points.

It is not necessary to define a region for the lower boundary because it automatically assumes
a specialized Neumann boundary condition. Figure 5.9c shows the state of the mesh with
clamped points after processing the region boundary segments. The logical mesh vertices and
elements outside the solution region are ignored for the field solution. Figure 5.9d illustrates
the smoothed mesh that results from the application of Eqs. 5.9 and 5.10.

5.4 Neumann boundaries in resistive media

We saw in Section 2.8 how unspecified boundaries of finite element solutions satisfy the spe-
cialized Neumann condition

∂φ

∂n
= 0. (5.11)

if the solution volume is surrounded by a set of dummy elements with ρi = 0.0 and ǫi = 0.0.
We can achieve the same effect without wasting storage by adopting the following conventions.

• Elements of the logical mesh that are not part of the solution region have NReg = 0.

• The functions to calculate relative dielectric constant and space-charge density return the
value 0.0 for out-of-range indices of for elements with NReg = 0.
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Figure 5.10: External and internal curved Neumann boundaries – modeling steady-state current
flow around an array of insulating rods in a conducting medium.

Equation 5.11 implies that the gradient of potential and the electric field are parallel to the
boundary. In this section, we shall discuss electrostatic solutions for current flow in resistive
media. Here, the ability to apply the condition along arbitrary curved or slanted boundaries
offers a significant advantage.

Consider a region of contiguous solid or liquid conductors. In steady-state the net flow of
current in to or out of a volume equals zero, or

∇ · j = 0. (5.12)

In Equation 5.12, j is the current density in A/m2. The vector quantity is parallel to the local
electric field and is proportional to the product of the field and the local electrical conductivity,

j = σE. (5.13)

The role of Neumann boundaries follows from Equation 5.13. The boundaries represent the sur-
faces of electrical insulators immersed in the resistive media. Because current cannot penetrate
the volume of insulators, it must be parallel to the surface.

Again, we can write the electric field as a gradient of a scalar potential,

E = −∇φ. (5.14)

Combining Eqs. 5.12, 5.13 and 5.14 leads to Laplace’s equation

∇ · (σ∇φ) = 0. (5.15)

where σ may be a function of position. We can solve Equation 5.15 in two dimensions with the
finite-element methods of Section 2.7 by replacing ǫ with σ in the expressions for the coupling
coefficients (Equation 2.67).

In the resistive model, a good conductor has a high value of σ and an insulator has σ =
0.0. As an illustration, Figure 5.10 shows equipotential lines and electric field streamlines
for current flow through a homogenous resistive solution around an array of insulating rods.
The top and the bottom boundaries are at fixed potential and the left and right boundaries
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automatically assume the specialized Neumann condition. The solution also contains internal
Neumann boundaries created by setting σ = 0.0 inside the insulator regions.

5.5 The method of successive over-relaxation

To this point, we have discussed several methods to generate difference equations that represent
the Poisson equation or Gauss’ law in two and three dimensions. They resolve to a coupled set
of linear equations of the form

φn =

∑

iWinφin +Qn
∑

iWin

. (5.16)

Equation 5.16 applies to all vertices that do not have fixed potential. The sum depends on the
mesh geometry and extends over the connected vertices according to the indexing scheme.

Methods to solve large sets of linear equations could occupy several texts. We shall concen-
trate on two approaches that handle most field problems. Chapter 6 discusses direct matrix
solutions. In this section, we shall study an approach based on iterative correction called the
method of successive over-relaxation. Although the procedure may require many cycles, it is
usually faster that direct solutions. The entire process can be carried out in the random-access
memory of a personal computer without intermediate storage on disk. Furthermore, relaxation
routines are easy to understand and adapt well to parallel processing techniques for multi-core
computers.

Suppose we set the potential at fixed vertices and start with an initial guess of φ at the
variable points. The initial values may be far from the final result – one option is to set all
unknown values to zero. At each variable point there is a present value of the potential (φn0).
We could also calculate a value φ′

n0 determined by the potentials of neighboring points. The
relationship to determine φ′

n0 depends on the difference scheme and system geometry. For
example, Equation 2.69 applies in two-dimensional finite-element calculations. The difference
between the two values is the residual (or error) at the point,

Rn0 = φ′
n0 − φn0. (5.17)

If Rno = 0 at every mesh point, then the set of potential values is the correct electrostatic
solution. Clearly, this condition does not hold initially.

The guessed solution would improve if we added a correction factor at each point propor-
tional to the error,

φn1 = φn0 + ωRn0. (5.18)

The quantity ω is a constant on the order of unity. Applying Eqs. 5.17 and 5.18 sequentially
over all vertices would continually improve the solution to a level of acceptable accuracy. For
example, we may require that all residuals are less than 10−8 times the root-mean-squared
potential variations in the solution.

One way to apply Equation 5.18 is to loop through the variable vertices, storing new po-
tential values and then replacing the old ones. The process does not use memory efficiently –
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we must set aside two large arrays to store the old and new values during a cycle. A better
approach is to correct values in place during the loop so that process uses a mixture of old and
new values. The problem is the relaxation process may be skewed depending on the order in
which vertices are processed. To avoid this problem and to achieve fastest convergence, the
points are corrected in odd-even order. For example, on a regular mesh we divide the mesh
points like a checkerboard into odd (red) and even (black) vertices. The new values of odd
vertices depend on the old values of the surrounding even vertices, and vice versa. The new
values are independent of the loop order if we change all the odd points in a cycle and then
correct the even points. The separation is not exact on an arbitrary mesh with more than four
neighboring vertices. Nonetheless, it is still helpful to divide points into two uniformly mixed
sets and to perform alternate relaxations.

The rate of convergence for the relaxation process depends on the choice of ω. The process
is stable for values in the range

0.0 ≤ ω ≤ 2.0. (5.19)

Small errors grow for values greater than 2, leading to numerical instability. Values of ω
greater than unity give faster convergence. This choice, where the adjustments anticipate
future corrections, is called over-relaxation.

For simple problems on a regular mesh, there is a prescription for the best choice of ω
called Chebyshev acceleration. For a two-dimensional solution, suppose the solution region is a
rectangle with a uniform mesh. The mesh has I divisions of width ∆x and J divisions of width
∆y. The parameter called the spectral radius of the solution is given by

ρ =
cos

(

π
I

)

+
(

∆x
∆y

)2
cos

(

π
J

)

1 +
(

∆x
∆y

)2 . (5.20)

The strategy is to apply an odd-even relaxation order, changing ω at each half step according
to the following equations,

ωo = 1,

ω 1

2

=
1

1− ρ2/2
,

ωn+ 1

2

=
1

1− ρ2ωn/4
. (5.21)

The relaxation parameter approaches an optimum value after several cycles,

ωopt =
2

1 +
√
1− ρ2

. (5.22)

The value of ωopt approaches 2 for large values of I and J.
The prescription of Eqs. 5.20, 5.21 and 5.22 is helpful for simple boundary value problems

such as electrostatics in a rectangular region with a few internal fixed points. On the other
hand, analytic theory gives little guidance for realistic problems with complex boundaries, vari-
able mesh resolution, conformal elements, and non-linear material characteristics. Generally,
relaxation solutions converge for almost all well-posed boundary value problems with a choice
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of ω between 1.5 and 2.0. In practice, the best way to pick a value of the relaxation parameter
for a class of problems is to experiment with different values, noting the effect on stability and
the number of cycles to produce a given residual error. Long Neumann boundaries generally
increase the required number of cycles in electrostatic problems.

Exercises

5.1. Derive Equation 5.5 for a coordinate transformation with rotation θz about the z axis.
5.2. Use a spreadsheet to experiment with defining geometric parameters on a regular mesh.
Set up a two dimensional mesh with square elements to represent an area with dimensions 1 m
by 1 m with 20 elements per side. The goal is to set element region numbers to 1 for vacuum
and 2 for a cylindrical electrode with radius R at position (x0, y0). Assume an element is part
of the electrode if its center of mass is within a distance R of (x0, y0). Make R, x0 and y0
adjustable parameters and experiment with different values. Enter cell formulas so that the
elements assume the correct region number.
5.3. Consider a conformal triangular mesh with column logic, starting from the right-angle set
illustrated in the figure.

a) Give the indices of vertex points connected to point (i,j,).
b) Sketch a procedure to convert the logical mesh to isosceles triangles aligned along y.

5.4. Confirm that it is necessary to store only three coupling constants per vertex point in a
conformal triangular mesh. Prove the following relationships applying the index conventions
described in Section 5.2.
Even values of j : W2(i, j) = W5(i−1, j+1),W3(i, j) = W6(i−1, j),W4(i, j) = W1(i−1, j−1)
Odd values of j : W2(i, j) = W5(i, j + 1), W3(i, j) = W6(i− 1, j), W4(i, j) = W1(i, j − 1).
5.5. Develop equations to set the vertex locations of the cylindrical mesh with logarithmic
radial weighting shown in Figure 5.5b.
5.6. Find an expression for the minimum distance between a point (x, y) and an arc that
extends from (x1, y1) to (x2, y2) with center at (xc, yc).
5.7. The space between coaxial electrodes with radii Ri = 0.05 m and Ro = 0.15 m is filled
with two resistive materials. The material in one half (θ = 0 to π) has volume resistivity
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ρ = 500 Ω-m and the material in the other (θ = π to 2π) has ρ = 300 Ω-m. What is the total
resistance between cylinders?
5.8. The region between parallel plates separated by distance d is filled with a material with
a spatially varying conductivity given by σ = σ0 exp(x/d). The potentials on the plates are
φ(0) = 0 and φ(d) = V0. Find the variation of potential between the plates.
5.9. The figure shows a uniform medium with conductivity σ between coaxial cylinders. There is
a metal bar of unknown potential immersed in the medium. Region numbers for an electrostatic
solution are shown. What material properties should be associated with the region?

5.10. Twenty-one people have lined up at the bookstore to purchase field solution texts. The
first person in line has decided to buy $150 worth while the last person is determined to spend
only $50. The people in between are easily swayed by those around them. Although they
originally planned to spend $100, they decide to base their decisions on the amount paid by
those around them according to a sensible formula. The amount equals 20% of the amount
paid by the second person ahead, 40% of the payment of the person immediately ahead, 30%
for the person immediately behind and 10% for the second person behind. The second and
penultimate people in line are special cases. The second person gives 60% weighting to the
first person, while the penultimate person gives 40% weighting to the last. Apply the method
of successive relaxation on a spreadsheet to find out the amounts that people will pay after
considerable discussion. Use a relaxation constant of ω = 1.00 and assume that everybody
changes their mind at the same time. (After 100 discussions, the eighteenth person in line has
decided to pay $133.55).
5.11. Parallel plates with spacing d = 0.05 m have the applied potentials φ(0) = 0 and
φ(d) = 2000 V. A uniform space-charge density ρ0 = 2.5× 10−5 coulombs/m3 extends between
x = 0.01 and 0.04 m. Use a spreadsheet to solve for the potential by successive over-relaxation
with ω = 1.9. Confirm that the potential at x = 0.025 is 1741V.
5.12. Solve a simple two-dimensional electrostatic problem with a spreadsheet. Use a square
mesh with ∆ = 0.05 m. The solution volume is a vacuum-filled square 1 m on a side with
grounded walls. A centered internal electrode at potential 100 V is a rectangle with dimensions
0.3 m in x and 0.2 m in y. Program a spreadsheet to apply the method of successive over-
relaxation. Investigate convergence with different values of ω and confirm instability for ω > 2.



Chapter 6

Matrix Methods for Field Solutions

We have seen that boundary-value field problems can be expressed as a large set of coupled
linear equations. The previous chapter discussed the solution of such sets by successive over-
relaxation, an iterative process. In this chapter, we shall review solutions using matrix algebra
that proceed to an exact solution in a single step. The problem is that the first step is a big one.
There is considerable work involved in matrix inversions and a large amount of intermediate
data to store, even for two-dimensional problems. Nonetheless, direct matrix methods have
advantages in some circumstances.

• The number of iterations for relaxation solutions may by sensitive to the choice of the
relaxation parameter ω. In all but the simplest geometries, the choice of ω is a guess. A
direct matrix solution avoids trial-and-error in picking an acceptable relaxation parameter.

• In solutions that involve a search, we may need to determine the best value of a parameter
by comparing the properties of field solutions. Sometimes, simultaneous iterations to find
both the field solution and the parameter may not converge to the desired solution..

Matrix solutions entail considerable more effort to program. On the positive side, it is
only necessary to make the effort once. A well-written solution unit can be applied to any
boundary value problem. The goal in this chapter is to cover the necessary mathematics for
matrix solutions of the finite-element equations for triangular meshes. In the process, we shall
develop methods for linear equations with broad applicability. For example, we shall use matrix
inversion in the least-squares fitting procedures of Section 7.2.

Section 6.1 reviews Gauss-Jordan elimination with pivoting, a standard method to invert
matrices and to solve moderate sets of linear equations. With the speed and memory capacity
of personal computers, it is practical to apply the method to about 500 equations. Many
physical problems give rise to matrices where most of the elements equal zero. For example,
the matrix that represents the difference equations for the one-dimensional Poisson equation has
non-zero elements only on the matrix diagonal and adjacent rows. This matrix form is called
tridiagonal . Section 6.2 covers special fast methods to solve for tridiagonal matrices. Section
6.3 illustrates direct matrix solutions for one-dimensional electrostatics with space-charge. The
example illustrates some important points: setting up matrices, automatic implementation of
Neumann boundary conditions, and handling constant potential points. We proceed to two-
dimensional solutions in Section 6.4. The full coefficient matrix may be very large – a 100×100
mesh gives a matrix with about 108 elements. On the other hand, most of the elements are zero
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in electrostatic problems because of nearest-neighbor coupling in the difference equations. The
elements in the coefficient matrix for the two-dimensional finite-element difference equations
are clumped in blocks near the diagonal. For this case, inversion of the matrix is within
the capability of a personal computer. Section 6.5 describes solution techniques for tridiagonal
block matrices. Critical issues are optimizing the use of random-access memory and minimizing
scratch data storage on disk.

6.1 Gauss-Jordan elimination

Consider a set of linear equations

a11φ1 + a12φ2 + ...+ a1nφn = q1,

a21φ1 + a22φ2 + ...+ a2nφn = q2,

...

an1φ1 + an2φ2 + ...+ annφn = qn. (6.1)

The quantities aij are a known set of coefficients and the quantities qi are known source terms.
The goal is to find the unknown quantities φi. We can rewrite the equations in matrix notation
as











a11 a12 a13 ... a1n
a21 a22 a23 ... a2n

...
an1 an2 an3 ... ann





















φ1

φ2

...
φn
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q1
q2
...
qn











. (6.2)

or symbolically

Aφ = Q. (6.3)

Here, the quantity A is a square matrix of dimension n × n while φ and Q are vectors with
dimension n. The goal of Gauss-Jordan elimination is to perform operations on Equation 6.2
that preserve the equality and transform the matrix A to the identity matrix

I =

















1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0

...
0 0 0 ... 1

















. (6.4)

An inspection of Eqs. 6.1, 6.2 and 6.3 imply the following valid operations.

1. Interchange two rows of A and the corresponding rows of Q.

2. Multiply a row of A and the corresponding row of Q by a constant.
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3. Replace a row of A with a linear combination of itself and any other row with the same
replacement performed on Q.

4. Interchange two columns of A with a corresponding interchange of rows of φ and Q.

Operation 1 simply changes the order in which the equations are written, while Operation 4
changes the order in which the variables are written.

We start by multiplying the first row by 1/a11. This leaves the value 1.0 at a11, modified
coefficients in the other columns of the first row of A, and the value q1/a11 as the first element in
Q. Next we replace the second row by the combination of itself minus the first row multiplied
by a21. This step leaves 0.0 at a21 and modified values in the other columns and q2. If we
proceed downward this way, the first column entries of all rows except a11 are reduced to zero.
Next, multiply the second row by 1/a22. The second row has 0.0 in Column 1, 1 in Column 2,
and modified values for the other elements and q2. We can now subtract appropriate multiples
of Row 2 from the other rows to reduce the element in Column 2 to 0.0. The zeros in Column
1 are unaffected because the modified value of a21 equals 0.0. Clearly, continuing the process
reduces all elements of A to 0.0 except for 1.0’s on the diagonal. At the end, A = I. At this
point, the modified values of qi correspond to the desired values of φi.

The diagonal value in the currently-processed row by which other values will be divided is
called the pivot element because it plays a pivotal role. Clearly, the method fails if one of the
pivot values equals zero. Even if the pivot values are all non-zero, the method is numerically
inaccurate if the pivot value is much smaller than the other values in its row. We can avoid
these problems by the process of pivoting . Here, we use Operations 1 and 4 to move a desirable
element to the pivot position. The best element has the highest magnitude. To avoid destroying
the portion of the identity matrix already processed, we pick the element from rows below the
current row and columns to the right of the current column. With no pivoting, the Gauss-Jordan
elimination process is numerically unstable. The method is often sufficiently stable with partial
pivoting. Here, only row interchanges are used (Operation 1). Full pivoting uses both row and
column interchanges. Column interchanges are somewhat more difficult to program because
they change the order of the solution vector. These changes must be recorded and unscrambled
after the transformation. Nonetheless, the extra effort is worthwhile. We shall see in Section
6.6 that the tridiagonal block reduction method used for two-dimensional electrostatic solutions
is unstable with Gauss-Jordan elimination with partial pivoting.

An advantage of the Gauss-Jordan method is that several sets of linear equations can be
solved simultaneously for a given set of coefficients. Suppose we have an n × n matrix of
coefficients aij. Consider the special case where we want to find n sets of values for qi that give
n sets of solutions φi. We can write the sets of source and solution vectors as square matrices,
where the columns of φ and Q correspond to different solutions.











a11 a12 ... a1n
a21 a22 ... a2n

...
an1 an2 ... ann





















φ11 φ12 ... φ1n

φ21 φ22 ... φ2n

...
φn1 φn2 ... φnn
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q11 q12 ... q1n
q21 q22 ... q2n

...
qn1 qn2 ... qnn











. (6.5)

Applying the rule of matrix multiplication, it is easy to see that Equation 6.5 is equivalent to
n instances of Equation 6.2. We can write Equation 6.5 symbolically as
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AΦ = Q. (6.6)

In this case, Φ and Q are square matrices.
The extension of the Gauss-Jordan procedure to handle Equation 6.5 or 6.6 is to apply

Operations 1, 2 and 3 to all elements in a row of A and Q. The equation set is unchanged
when two columns of A are interchanged as long as the corresponding rows of both Φ and Q
are interchanged. The procedure to reduce the matrix A to the identity matrix is equivalent
to multiplying both sides of Equation 6.6 by A−1,

A−1AΦ = Φ = A−1Q. (6.7)

The transformed Q matrix equals the product of the inverse of A times the original Q matrix.
For the special case whereQ= I, theQmatrix containsA−1 after the Gauss-Jordan elimination.

6.2 Solving tridiagonal matrices

Tridiagonal matrices have non-zero components only on the diagonal and in adjacent columns.
Because most of the elements are zero, tridiagonal matrices are called sparse. Solutions of
sparse matrices require far fewer operations than the Gauss-Jordan elimination of a non-sparse
matrix of the same dimensions. This section reviews the LU decomposition technique to invert
tridiagonal matrices. The method is applied in Section 6.3 as an alternative to backsubstitution
to solve the one-dimensional Poisson equation. It is extended to large trigonal block matrices
in Section 6.5 for application to general two-dimensional solutions of the Poisson equation.

The general tridiagonal matrix problem has the form
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. (6.8)

or

AΦ = Q. (6.9)

We seek to express the matrix A as the product of two special matrices L and U. In this case
Equation 6.9 becomes,

LUΦ = Q. (6.10)

or

UΦ = Ψ, (6.11)

and
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LΨ = Q. (6.12)

The L (lower) matrix has components on and below the diagonal, while the U (upper) matrix
has components on the diagonal and above. We assume forms for the matrices and write the
product as





















L1 0 0 0 0 ... 0 0 0
a2 L2 0 0 0 ... 0 0 0
0 a3 L3 0 0 ... 0 0 0
0 0 a4 L4 0 ... 0 0 0

0 0 0 0 0 ... 0 aN LN









































1 U1 0 0 0 ... 0 0 0
0 1 U2 0 0 ... 0 0 0
0 0 1 U3 0 ... 0 0 0
0 0 0 1 U4 ... 0 0 0

0 0 0 0 0 ... 0 0 1





















(6.13)

Carrying out the matrix multiplication in Equation 6.13 and comparing terms to the original
matrix, we can find the components Ui and Li in terms of ai, bi and ci.

L1 = b1, U1 = c1/L1,

L2 = b2 − a2U1, U2 = c2/L2,

...

Li = bi − aiUi−1, Ui = ci/Li. (6.14)

Evaluating the equations in the order shown gives necessary quantities as they are needed.

We can see the motivation for the forms of the L and U matrices by writing Eqs. 6.11 and
6.12 in component form. First, consider the equation for the components of the ψ vector,
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. (6.15)

The values of ψ can easily be determined. Starting at the first row, we see that

ψ1 = q1/L1,

ψ2 = (q2 − a2ψ1)/L2,

ψi = (qi − aiψi−1)/Li. (6.16)

Ordering the equations from the top to bottom of the matrix gives quantities as they are needed.
Given the values of ψ, we can find the values of the φ matrix from Equation 6.12,
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. (6.17)

Starting at the bottom, we can identify the components of φ,

φN = ψN ,

φN−1 = ψN−1 − UN−1ψN ,

φi = ψi − Uiψi+1. (6.18)

The method, involving upward and downward scans, is reminiscent of the method of back-
substitution (Section 4.4). It is fortuitous that the procedure is stable for practical cases without
the need for pivoting. To summarize, the first step is to find N values of Li and (N−1) values of
Ui using Eqs. 6.14. Then the relationships of Equation 6.16 are applied to find the intermediate
values ψi. Finally, the desired solution values φi are obtained from Eqs. 6.18.

6.3 Matrix solutions for one-dimensional electrostatics

Section 4.2 showed that the finite-element difference representation of Gauss’ law in one dimen-
sion was

Wi−1φi−1 − (Wi−1 +Wi+1)φi +Wi+1φi+1 =
ρi+1(xi+1 − xi) + ρi(xi − xi−1)

2ǫo
(6.19)

where

Wi+1 =
ǫi+1

xi+1 − xi
, Wi−1 =

ǫi
xi − xi−1

. (6.20)

Equation 6.8 represents a one-dimensional electrostatic solution if we make the association

ai = Wi−1,

bi = −(Wi−1 +Wi+1),

ci = Wi+1,

qi =
ρi+1(xi+1 − xi) + ρi(xi − xi−1)

2ǫo
. (6.21)

Equation 6.21 applies to variable internal points. Points on the boundary require special con-
sideration. We will discuss two possibilities: 1) the boundary has fixed potential value or 2) it
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Figure 6.1: One-dimensional electrostatic calculation with Neumann condition on the right-
hand boundary. Dashed line shows Gauss’ law integration volume at vertex xN .

represents a symmetry axis where dφ/dx = 0.0 (Neumann boundary). The constant potential
condition is relatively easy to represent. Suppose that the potential at an internal or boundary
point I equals V0, independent of the other potential values. We set row I of the matrix A equal
to a corresponding row of the identity matrix (aI = 0.0, bI = 1.0, and cI = 0.0) and replace
qI with V0. This procedure holds for boundary points and constant potential internal points.
Although internal constant potential points have little purpose in one-dimensional calculations,
they play a significant role in the two-dimensional solutions of Section 6.4.

To understand the Neumann condition, consider Gauss’ law applied at the boundary position
xN (Figure 6.1). In contrast to internal points, the integration extends only over the region
shown to the left. Because of the Neumann condition, there is no contribution to the surface
integral of electric field on the face at xN . Carrying out the volume integral of charge and the
surface integral of field gives an equation for the potential

ǫN(−φN + φN−1)

xN − xN−1

=
ρ(xN − xN−1)

2ǫo
. (6.22)

Using the definitions of Equation 6.21, we can write Equation 6.22 as

WN−1 φN−1 −WN−1 φN =
ρN(xN − xN−1)

2ǫo
. (6.23)

Equation 6.23 has an important implication. If we simply ignore contributions of field and
charge outside the boundary while setting up the matrix, the boundary automatically assumes
the Neumann condition. This again illustrates the property of finite-element solutions discussed
in Section 5.4.

To illustrate the implementation of boundary conditions, consider a one-dimensional solution
with the following properties: 1) the mesh is uniform with spacing ∆x, 2) the region has a
uniform charge density ρ0, 3) the right-hand boundary has the fixed potential V0 and 4) the
specialized Neumann condition holds on the left-hand boundary. The coefficient matrix and
source vector have the following forms.
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Table 6.1: Electrostatic potential for a one-dimensional electrostatic solution determined by
matrix inversion (vacuum with uniform space-charge density)

Grounded boundaries Neumann bound (right) Grounded midpoint
0.00000 0.00000 0.00000
4.50000 9.50000 2.00000
8.00000 18.00000 3.00000
10.50000 25.50000 3.00000
12.00000 31.99999 2.00000
12.50000 37.49999 0.00000
12.00000 41.99999 2.00000
10.50000 45.49999 3.00000
8.00000 47.99999 3.00000
4.50000 49.49999 2.00000
0.00000 49.99999 0.00000

















−W1 W1 0 0 ... 0 0
W1 −(W1 +W2) W2 0 ... 0 0
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. (6.24)

A benchmark test is useful to check the validity of the tridiagonal matrix method and
the boundary representation. Consider a region that extends from −x0 to +x0 with uniform
space-charge density ρ0. If the boundaries are grounded, Poisson’s equation has the solution

φ(x) = −ρox
2
o

2ǫo

[

1−
(

x

xo

)2
]

. (6.25)

For the choice x0 = 0.05 m and ρ/ǫ0 = 104 the potential at x = 0.0 is 12.5 V. The first column
of Table 6.1 shows numerical results of a matrix solution with a division of the region into 10
elements. The entries in rows 1 and 11 of the coefficient matrix were set to the identity values
and q1 = q11 = 0.0. The potential has a parabolic variation and reaches the expected value
at x = 0.0. The second column corresponds to a Neumann boundary on the right-hand side
implemented by changing row 11 of the coefficient matrix and q11 as shown in Equation 6.24.
The symmetry condition is equivalent to doubling the size of the solution slab. Equation 6.25
implies that the maximum potential should rise tp 50 V. Finally, to check the implementation of
internal constant potential points, the third column of Table 6.1 shows a solution with ground
points at x = −0.05, x = 0.0 and x = 0.05, effectively halving the width of the solution region.
The predicted potential of 3.125 V occurs at x = ±0.025 m. Within the limit of the mesh
resolution, the numerical procedure gives the correct result.
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6.4 Matrices for two-dimensional finite-element

solutions

Two-dimensional difference representations involve more equations than one-dimensional
solutions and lead to correspondingly larger coefficient matrices. Fortunately, most of the
elements are zero so we can use special matrix inversion methods to make the procedure practical
(Section 6.5). In this section, we shall derive the matrix representation of Gauss’s law on
conformal triangular meshes. Figure 6.2 shows indices of a mesh in the x-y plane following the
conventions of Section 5.2. The logical mesh covers a rectangular area – elements are stretched
and excluded to match arbitrary solution boundaries. All internal vertices have six surrounding
triangles and vertices. The index i along the x direction varies from 1 to I and the j index
along y varies from 1 to J . We shall store values of the vertex coordinates and electrostatic
potential in a one-dimensional array with index n. We adopt the convention that n increments
most rapidly along rows as shown. The index n is related to i and j by

n = jI + i. (6.26)

In this case, the solution vector Φ consists of I × J entries that we shall arrange in order of
increasing n. For convenience, the large vector Φ may be written as a collection of J subvectors

Φ =











Φ1

Φ2

...
ΦJ











. (6.27)

Each of the subvectors represents a row of the mesh and has the entries

Φj =











φ1,j

φ2,j

...
φI,j











. (6.28)

The source quantity qi equals the one-third of the sum of space-charge in the six triangles
surrounding the point i divided by ǫ0. The space-charge is taken as zero in triangles outside
the solution boundaries. As with Φ, we can represent the source vector Q in terms of a set of
row subvectors,

Q =











Q1

Q2

...
QJ











. (6.29)

Using the notation that W1(i, j) denotes the coupling coefficient to Point 1 relative to the point
with indices (i, j), the difference equation at the vertex for an odd value of j is
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−
6
∑

k=1

Wkφ(i, j) +W1(i, j)φ(i+ 1, j + 1) +W2(i, j)φ(i, j + 1) +W3(i, j)φ(i− 1, j)

+W4(i, j)φ(i, j − 1) +W5(i, j)φ(i+ 1, j − 1) +W6(i, j)φ(i+ 1, j) = q(i, j). (6.30)

On an even row, Equation 6.30 becomes

−
6
∑

k=1

Wkφ(i, j) +W1(i, j)φ(i, j + 1) +W2(i, j)φ(i− 1, j + 1) +W3(i, j)φ(i− 1, j)

+W4(i, j)φ(i− 1, j − 1) +W5(i, j)φ(i, j − 1) +W6(i, j)φ(i+ 1, j) = q(i, j). (6.31)

Consider the complete coefficient matrix. Because there is only coupling between adjacent
rows, the matrix equation has the following form.

















B1 C1 0 0 ... 0 0
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. (6.32)

As before, the quantity Φl represents the I values of potential along row l. The quantity Bl is
a matrix of dimensions I2 that represents couplings in Eqs. 6.30 or 6.31 to potential values on
the same row. The quantities Al and Cl contain terms that relate the potential to values on
rows below and above. The submatrices in Equation 6.32 are called blocks . The arrangement of
the submatrices in the equation resulting from nearest row coupling is called block tridiagonal
form. In Section 6.5, we shall see how to apply the methods developed in Section 6.2 to large
block matrices.

We can use Eqs. 6.30 and 6.31 to fill in the values of the blocks in Equation 6.32 for an
internal point of a triangular mesh. The B matrix for row j is

Bl =

















−WS(1, j) W6(1, j) 0 0 ... 0 0
W3(2, j) −WS(2, j) W6(2, j) 0 ... 0 0

0 W3(3, j) −WS(3, j) W6(3, j) ... 0 0

0 0 0 0 ... W3(I, j) W6(I, j)

















(6.33)

Equation 6.33 employs the notation

WS(i, j) =
6
∑

k=1

Wk(i, j). (6.34)

The A and C matrices have two possible forms, depending on whether l is odd or even.
The forms for coupling to rows below and above an odd row are
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Al =

















W4(1, j) W5(1, j) 0 0 ... 0 0
0 W4(2, j) W5(2, j) 0 ... 0 0
0 0 W4(3, j) W5(3, j) ... 0 0

0 0 0 0 ... 0 W4(I, j)

















(6.35)

Cl =

















W2(1, j) W1(1, j) 0 0 ... 0 0
0 W2(2, j) W1(2, j) 0 ... 0 0
0 0 W2(3, j) W1(3, j) ... 0 0

0 0 0 0 ... 0 W2(I, j)

















(6.36)

The forms for an even row are

Al =

















W5(1, j) 0 0 0 ... 0 0
W4(2, j) W5(2, j) 0 0 ... 0 0

0 W4(3, j) W5(3, j) 0 ... 0 0

0 0 0 0 ... W4(I, j) W5(I, j)

















(6.37)

Cl =

















W1(1, j) 0 0 0 ... 0 0
W2(2, j) W1(2, j) 0 0 ... 0 0

0 W2(3, j) W1(3, j) 0 ... 0 0

0 0 0 0 ... W2(I, j) W1(I, j)

















(6.38)

To complete the setup, we must account for boundary and constant potential points. The
specialized Neumann boundary condition is easy. The form of the matrices guarantees that there
is no coupling to vertices outside the solution region, equivalent to zero coupling constants. This
condition guarantees that the integral of normal electric field around the region is zero. The
process for constant potential point sounds overwhelming, but is straightforward to program.
For example, suppose the potential at vertex i = 10 and j = 30 equals 25.0. The tenth row
of the block matrix B30 is set with identity matrix components (all 0.0 except for 1.0 on the
diagonal). The tenth rows of matrices A30 and C30 are set to 0.0 and the tenth entry of Q3−

is set to 25.0.

6.5 Solving Tridiagonal Block Matrix Problems

The final step is to solve the large set of linear equations represented by the tridiagonal block
matrix of Equation 6.32. The procedure is logically similar to that of Section 6.2. The difference
is that operations are performed on block matrices rather than scalar elements. Again, we seek
to transform the coefficient matrix to the block LU form
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L1 0 0 0 0 ... 0 0 0
A2 L2 0 0 0 ... 0 0 0
0 A3 L3 0 0 ... 0 0 0
0 0 A4 L4 0 ... 0 0 0

0 0 0 0 0 ... 0 AN LN









































1 U1 0 0 0 ... 0 0 0
0 1 U2 0 0 ... 0 0 0
0 0 1 U3 0 ... 0 0 0
0 0 0 1 U4 ... 0 0 0

0 0 0 0 0 ... 0 0 1





















(6.39)

The block matrix components are given in terms of the blocks of the original matrix as

L1 = B1, U1 = L−1
1 C1,

L2 = B2 −A2U1, U2 = L−1
2 C2,

...

Lj = Bj −AjUj−1, Uj = L−1
j Cj. (6.40)

In comparison to Equation 6.14, the matrix inversion process replaces simple division. The
quantities AjUj−1 represent matrix multiplication. Note that the inverse of a tridiagonal
matrix is generally not a tridiagonal matrix. Therefore, the inversion and multiplication to
derive the U matrices must be performed by the Gauss-Jordan procedure or an equivalent.
The L matrices may be used to derive components of a subsidiary vector ψ that consists of J
row vectors of length I,

Ψ1 = L−1
1 Q1,

Ψ2 = L−1
2 (Q2 −A2Ψ1),

Ψj = L−1
j (Qj −AjΨj−1). (6.41)

Here, quantities Lj−1Qi represent multiplication of a square matrix times a column vector.
Finally, the Ψ vectors can be used to derive the Φ vectors, the desired result.

ΦJMax = ΨJMax,

ΦJMax−1 = ΨJMax−1 −UJMax−1ΦJMax,

Φj = Ψj −UjΦj+1. (6.42)

Equations 6.40, 6.41 and 6.42 deal with large data structures. For example, with a 100×100
mesh the Φ, Q and Ψ vectors each have 10,000 elements. There are 298 instances of the block
matrices Aj , Bj and Cj with 10,000 elements. There are 100 Lj matrices and 99 Uj matrices.
If we attempted to store all the variables in random-access memory with 8 byte double precision
numbers, the required storage is 40 MB. A 300 × 300 mesh would require about 1.1 GB. To
perform the operation on the average personal computer, we need intermediate storage on a
hard disk. Memory use should be efficiency and hard disk operations kept to a minimum.

We can organize the procedure so that only four matrices need be stored in memory at a
time. Furthermore, only the components Ui are transferred to and restored from disk. Suppose
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Table 6.2: Tridiagonal block matrix inversion (computation of Ψj and UJ)

M1 M2 M3 V

Computation of Ψj and UJ

Fill B1 → L1 Fill C1 Fill Q1 ... QN

U1 = L1
−1 C1 Ψ1 = L1

−1 Q1

Fill A2 Fill B2

B2 - A2 U1 Ψ2 = L2
−1 (Q2 - A2 Ψ1)

Store U1

Fill C2

U2 = L2
−1 C2

... ... ... ...
Fill Aj Fill Bj

Bj - Aj Uj−1 Ψj = Lj
−1 (Qj - Aj Ψj−1)

Store Uj−1

Fill Cj

Uj = Lj
−1 Cj

Computation of Φj

M1 M2 M3 V
Ψ1,Ψ2,...,ΨN ΦN = ΨN

Recall UN−1 φN−1 = ΨN−1 - UN−1ΨN

Recall UN−2 φN−2 = ΨN−2 - UN−2ΨN−1

... ... ... ...
Recall U1 φ1 = Ψ1 - U1Ψ2

we want to solve problems that fit within a mesh of dimensions N×N . We shall set aside three
N × N block matrices in memory: M1, M2 and M3. We also need space for another matrix
V that consists of N vectors of length N , one for each row of the mesh. Table 6.2 shows how
the tridiagonal block matrix inversion is carried out within this storage limit. Using double
precision numbers on a 100 × 100 mesh, the required memory is only 320 kB, with 7.9 MB of
information transferred to disk. For a 300× 300 mesh, the numbers are 2.88 MB and 215 MB
respectively.

For a logical mesh with dimensions I and J , the number of operations for a tridiagonal block
solution with row organization is proportional to I3J . The process is efficient for square or tall
solution volumes where I ≤ J , but wastes time for short solution volumes. One resolution of
the problem is to organize data in column format when I > J . In this case, the global index is
given by

n = iJ + j. (6.43)

The only changes necessary to implement column organization are to extend the subroutines
that set matrix coefficients (Equation 6.34 through 6.38) and the source terms (Equation 6.29).
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Exercises

6.1. Use a spreadsheet to understand the operations in Gauss-Jordan elimination with partial
pivoting. Find the inverse of the matrix

A =







3 2 1
5 −1 7
6 −2 3







Set up the matrix and a unity matrix (B = I) as described in Section 6.1. Perform simultaneous
operations on the two matrices that reduce A to the unity matrix. Proceed one step at a time,
making copies of the modified matrices. At the end, confirm that the modified matrix B
contains A−1.
6.2 Most spreadsheets have the capability to invert moderate-sized matrices. Use this feature
to solve the following set of coupled linear equations:

13.40x1 + 2.70x2 − 2.40x3 + 4.30x4 = 78.49,

2.40x1 − 12.40x2 + 8.90x3 + 6.80x4 = −15.00,

3.60x1 − 6.90x2 + 4.80x3 + 0.50x4 = −24.65,

11.00x1 + 2.10x2 + 0.75x3 − 5.30x4 = −2.57.

6.3. Find the L and U matrices for the tridiagonal matrix:

A =











5.3 4.8 0.0 0.0
1.5 3.4 2.6 0.0
0.0 2.7 −3.5 6.2
0.0 0.0 9.2 −2.7











Confirm the validity of the factorization by computing the product LU.
6.4. For the matrix of problem 6.4, use the L and U matrices to find the solution to the set of
coupled linear equations

A











φ1

φ2

φ3

φ4











=











36.2
20.94
15.87
15.93











.

Use Equation 6.16 to find ψ1,...ψ4 and then apply Equation 6.18 to find φ1,...φ4.
6.5. Give expressions for the components of block matrices for a two-dimensional electrostatic
solution on a regular mesh following the method in Section 6.4. Assume difference equations
of the form of Equation 4.67. The mesh has dimensions I and J in the x and y directions with
vertex coordinates xi and yi. Use J blocks with dimensions I × I.
6.6. Use the matrix inversion capability of a spreadsheet to solve a simple one-dimensional
electrostatic problem. Consider a region of width d = 0.06 m between grounded plates. A
uniform space-charge density ρ0 = 3.5×10−8 coulombs/m3 fills the space from x = 0.00 to 0.03
m.

a) Divide the region into six elements and find a numerical solution from Equation 6.21.
b) Derive an expression for the potential from the Poisson equation. Compare the numerical
and analytic values at x = 0.03.



Chapter 7

Analyzing Numerical Solutions

In preceding chapters we studied the mechanics of numerical electrostatic solutions: setting up
a mesh, generating difference equations, and solving them. The next issue is how to use the
information that comes out. This chapter covers some techniques for analyzing numerical data,
with emphasis on finite-element solutions on triangular meshes. The first three sections deal
with interpolations and spatial derivatives of quantities. In electrostatic solutions, we want to
find accurate values of potential between vertices and derivatives of the potential to determine
the electric fields. The methods discussed extend to the full spectrum of physical systems
covered in this book. Section 7.1 describes the first step for an interpolation, location of the
element of an arbitrary mesh that contains a test point. The next step is to collect information
on the potential at neighboring vertices for the interpolation. On an arbitrary mesh we can
not be sure how many points will be available. For this situation least-squares interpolation
methods are the best approach. They gives reasonably accurate answers with flexibility on the
number of input points. Section 7.2 reviews the theory of least-squares fits and Section 7.3
covers on the application to electrostatic fields.

The final two sections discuss techniques to display field information graphically. Section 7.4
covers the analysis of meshes to create plots of elements and the boundaries of solution regions.
Section 7.5 explains techniques to generate plots of field information. In addition to basic plots
of potential and field amplitude contours, advanced techniques are introduced. These include
color-coded element plots and three-dimensional representations.

7.1 Locating elements

To find the field at a target point we must first identify the element where it resides. Element
location is easy on a regular mesh. We simply find the indices of the vertex just below the
target point. For example, consider a one-dimensional solution where the mesh points are the
set xi with 1 ≤ i ≤ N . If the target point x is in the range

xi ≤ x ≤ xi+1, (7.1)

then the potential at the point is approximately
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Table 7.1: Triangle Area Function

REAL FUNCTION TriArea(xa,ya,xb,yb,xc,yc)

REAL xa,ya,xb,yb,xc,yc

! Returns positive value for points arranged in counterclockwise

! orientation

TriArea = 0.5*((ya*(xc-xb) + yc*(xb-xa) + yb*(xa-xc)))

RETURN

END

φ(x) ∼= φi
xi+1 − x

xi+1 − xi
+ φi+1

x− xi
xi+1 − xi

. (7.2)

Finding the index value that satisfies Equation 7.1 involves a search through the array xi.
For small arrays, the search can be carried by testing all values xi from i = 1 to N . There are
must faster techniques for large arrays. The method of bisection is a good all-purpose choice.
We assume that the entries xi are arranged in increasing order. The first step is to divide the
set in half with the dividing value xmid = x(N/2). If the target value is less than xmid, it is in
the lower set; otherwise, it is in the upper set. The next step is to divide the set containing the
target value in half and then to test which subset contains the value. This process continues
until the subset contains only one entry. The total number of tests to locate the value of xO
just below x is approximately equal to the power of 2 that gives a number equal to or greater
than N . For example, it takes about 8 bisections to find the position of a value in an array with
200 entries. In contrast, it is necessary to make an average of 100 tests with a simple sequential
search.

Locating an element in three-dimensional meshes with variable resolution (Section 4.6) is
straightforward. The vertex positions are given by three arrays: xi, yi and zi. Three calls to
the search routine give indices for the element that contains the target point.

Element location on a conformal triangular mesh where the vertex positions do not follow
a regular pattern is more challenging. The only procedure that guarantees success is to check
each triangle sequentially. The first question is how to tell if a point is inside a given triangle.
The following procedure is fast – it requires only simple multiplications. It uses the function of
Table 7.1 to return the area of a triangle determined by any three points in space.

Suppose we have the coordinates of a test point and the three vertices of an element arranged
in counterclockwise order (positive rotation): (x1, y1), (x2, y2) and (x3, y3). If the test point is
inside the triangle, as in Figure 7.1a, it defines three sub-triangles. We make three calls to the
function TriArea,

A1 = TriArea(x1, y1, x2, y2, x, y),

A2 = TriArea(x2, y2, x3, y3, x, y),

A3 = TriArea(x3, y3, x1, y1, x, y). (7.3)

Note that the points have positive rotational order if the test point is inside the element.
Therefore, the three calls return positive numbers. On the other hand, suppose the test point is
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Figure 7.1: Test to determine if a point is inside an element. a) Point inside – the area formula
yields positive values for Triangles 1, 2 and 3. b) Point outside – the formula gives a negative
area for an Triangle 1.
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outside the element as in Figure 7.1b. The values for A1 and A2 are positive, but the ordering of
points for the triangle defined by (x3, y3), (x1, y1) and (x, y) is negative. Therefore, the routine
returns a negative number. In summary, if the three quantities of Equation 7.3 are greater than
or equal to zero then the point is either inside the triangle or on a boundary.

Usually, we can avoid checking every triangle of a mesh to locate an element. The mesh
generation procedure of Sects. 5.2 and 5.3 starts with a logical mesh and shifts certain vertices
to fit object boundaries. If the shifting is not too severe, the x axis position of a vertex, x(i, j),
will be close to x(i, l). Similarly, y(i, j) ≈ y(1, j). In this case, we can make a preliminary
search of coordinates along the x and y boundaries using the bisectional method to estimate
the indices i and j. We can then narrow in on the correct element by making a local search
in the vicinity. It is usually necessary to check only about 25 triangles compared to thousands
for a full mesh search. Local search techniques are particularly valuable in applications such as
charged-particle orbit tracking that demand an extended set of searches.

7.2 Generalized least-squares fits

Field interpolation is relatively easy on a regular mesh far from boundaries. Each vertex has a
known number of neighbors. We can fit polynomial functions (Section 8.3) of different orders,
depending on how many points are included. The problem is more difficult with arbitrary
boundaries and meshes. Here, we do not know in advance how many points will be available.
Consider field calculations on the mesh of Figure 7.2. Point A is a point internal to a dielectric.
We can use a full complement of surrounding points, the number determined by the order of the
interpolation and the mesh logic. Fewer points are available near Point B inside an electrode
indentation. We cannot use points internal to the electrode for an interpolation because the field
is discontinuous at the surface. A similar problem occurs at Point C near a boundary between
two dielectrics. Only points on one side of the boundary should be used for a continuous
interpolation function. Finally, Point D is near a symmetry boundary of the solution region.
We can improve accuracy by adding extra points projected to the external region according the
boundary symmetry condition.indexLeast-squares procedure, generalized

Clearly, we need an interpolation method that tolerates variations in the amount of available
data. The least-squares method is a good solution because it seeks a best fit to a data set rather
than one that passes exactly through a given number of points. The application of least-squares
fits to straight line data or simple curves is a familiar process. In this section, we extend the
technique to include generalized functions in multiple dimensions.

Consider a data set consisting of N values of a function. To illustrate the problem of
potential interpolation, we shall use the set Φi(xi, yi, zi) consisting of potential values at N
positions in space, (xi, yi, zi). We want to fit a continuous function φ(x, y, z, am) to the data.
The function has M free parameters amthat are chosen to achieve the best fit. The working
definition of best fit is that the parameters give the maximum likelihood for observing the data
set. Suppose we had an exact solution to the physical problem, φ(x, y, z, am), and sought the
probability of observing the data set Φi. If observations of potential differences followed a
normal probability distribution with a uniform standard deviation σ, then the probability of a
certain data set would be
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Figure 7.2: Collecting points for field interpolations in a complex geometry. A) General interior
point. B) Point in recess has fewer neighboring vertices. C ) Points on dielectric boundary. D)
Point near a Neumann symmetry boundary.

P = A
N
∏

i=1

[

exp
[

−1

2
(Φi − φ(xi, yi, zi, am))

2
]]

. (7.4)

In Equation 7.4, the quantity A is a normalizing parameter and the symbol Π denotes a product
of N terms. We seek values for am that maximize the probability. Taking the logarithm of
Equation 7.4, the peak probability corresponds to the minimum value of the sum,

χ2 =
N
∑

i=1

[Φi − φ(xi, yi, zi, am)]
2 . (7.5)

The extreme value of χ2 is determined by the M equations

∂(χ2)

∂am
= 0. (7.6)

Suppose that the potential variation over a spatial region is approximated by the expression

φ(x, y, z) = a1f1(x, y, z) + a2f2(x, y, z) + a3f3(x, y, z) + ...+ aMfM
(x, y, z). (7.7)

for a set of N values Φi. The quantities fm(x, y, z) can represent any choice: polynomials,
trigonometric functions, logarithms or combined functions. Because the number of free param-
eters cannot exceed the amount of data, the condition M ≤ N must hold. In this case, the
expression for χ2 is

χ2 =
N
∑

i=1

[

Φi − a1f1(xi, yi, zi) + a2f2(xi, yi, zi) + ...+ aMfM
(xi, yi, zi)

]2
(7.8)

Following Equation 7.6, the partial derivatives give a set ofM linear equations for the unknown
coefficients,
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a1
N
∑

i=1

f1(xi, yi, zi)
2 + a2

N
∑

i=1

f1(xi, yi, zi)f2(xi, yi, zi) + ...

+aM
N
∑

i=1

f1(xi, yi, zi)fM(xi, yi, zi) =
N
∑

i=1

f1(xi, yi, zi)Φi.

a1
N
∑

i=1

f2(xi, yi, zi)f1(xi, yi, zi) + a2
N
∑

i=1

f2(xi, yi, zi)2 + ...

+aM
N
∑

i=1

f2(xi, yi, zi)fM(xi, yi, zi) =
N
∑

i=1

f2(xi, yi, zi)Φi

...

a1
N
∑

i=1

fM(xi, yi, zi)f1(xi, yi, zi) + a2
N
∑

i=1

fM(xi, yi, zi)f2(xi, yi, zi) + ...

+aM
N
∑

i=1

fM(xi, yi, zi)
2 =

N
∑

i=1

fM(xi, yi, zi)Φi. (7.9)

We can write Equation 7.9 more succinctly in matrix notation as

C ·A = D, (7.10)

where

Am = am,

Dm =
N
∑

i=1

fm(xi, yi, zi)Φi,

Cmn =
N
∑

i=1

fm(xi, yi, zi)fn(xi, yi, zi). (7.11)

The coefficients Cnm and the constants Dm are determined from the known data values and
coordinate locations. The equations can be solved by the Gauss-Jordan reduction method
described in Section 6.1 to find the best values of am.

As an example, suppose we want to make a second-order polynomial fit to a two dimensional
data set Φi(xi, yi) for interpolation at the point (x, y). The second order fit has the form

φ = a1f1 + a2f2 + a3f3 + a4f4 + a5f5 + a6f6. (7.12)

Defining the quantities

Xi = xi − y, Yi = yi − y, (7.13)

we can write the six functions in Equation 7.12 as

f1 = 1, f2 = X, f3 = Y, f4 = X2, f5 = XY, f6 = Y 2. (7.14)

Therefore, a least-squares fit requires six or more data points. The entries in Equation 7.11 are
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D1 =
N
∑

i=1

Φi, D2 =
N
∑

i=1

ΦiXi
, D3 =

N
∑

i=1

ΦiY i

D4 =
N
∑

i=1

ΦiXiXi
, D5 =

N
∑

i=1

ΦiXiY i
, D6 =

N
∑

i=1

ΦiY iY i
(7.15)

Because of the form of the functions, some of the coefficients Cmn have the same values. We
can speed up the interpolation by avoiding redundant calculations.

C12 =
N
∑

i=1

Xi, C13 =
N
∑

i=1

Yi, C14 =
N
∑

i=1

XiXi

C15 =
N
∑

i=1

XIYi, C16 =
N
∑

i=1

YiYi, C24 =
N
∑

i=1

XiXiXi

C25 =
N
∑

i=1

XiXiYi, C26 =
N
∑

i=1

XiYiYy, C36 =
N
∑

i=1

YiYiYi

C44 =
N
∑

i=1

XiXiXiXi, C45 =
N
∑

i=1

XiXiXiYi

C46 =
N
∑

i=1

XiXiYiYi, C56 =
N
∑

i=1

XiYiYiYi, C66 =
N
∑

i=1

YiYiYiYi,

C11 = N, C21 = C12, C22 = C14, C23 = C15, C31 = C13, C32 = C15

C33 = C16, C34 = C25, C35 = C26, C41 = C14, C42 = C24, C43 = C25

C51 = C15, C52 = C25, C53 = C26, C54 = C45, C55 = C46, C61 = C16

C62 = C26, C63 = C36, C64 = C46, C65 = C56, (7.16)

The expressions in Equation 7.16 are straightforward but laborious to derive. The coefficient
matrix for a second order polynomial fit in three dimensions has 81 coefficients. An analysis
reveals that only 41 coefficients are independent.

7.3 Field calculations on a two-dimensional triangular

mesh

This section covers electric field calculations on triangular meshes. The three point formula of
Eqs. 2.53, 2.57 and 2.58 (equivalent to linear interpolation) gives a quick estimate of the field.
The routine of Table 7.2 returns values for the interpolated potential and field components
(Ex, Ey) or (Ez, Er). Because of the condition of constant electric fields in elements, the values
from the routine ETRI are coarse. As an illustration, Figure 7.3 shows results for a benchmark
test of the field between two concentric spheres of radii 1.0 and 3.0. The open circles show the



114 Finite-element Methods for Electromagnetics

Table 7.2: Linear Interpolation on a Triangular Mesh

SUBROUTINE ETRI (I1,I2,I3,J1,J2,J3,Xin,Yin,ExOut,EyOut,PhiOut)

! ================================================================

INTEGER I1,I2,I3,J1,J2,J3

REAL Ex,Ey,X1,X2,X3,Y1,Y2,Y3,Q1,Q2,Q3,A,B

X1 = Mesh(I1,J1).x

X2 = Mesh(I2,J2).x

X3 = Mesh(I3,J3).x

Y1 = Mesh(I1,J1).y

Y2 = Mesh(I2,J2).y

Y3 = Mesh(I3,J3).y

Q1 = Mesh(I1,J1).Phi

Q2 = Mesh(I2,J2).Phi

Q3 = Mesh(I3,J3).Phi

! --- Find slopes

A = ((Q2-Q1)*(Y3-Y1)-(Q3-Q1)*(Y2-Y1))/ &

((X2-X1)*(Y3-Y1)-(X3-X1)*(Y2-Y1))

B = ((Q2-Q1)*(X3-X1)-(Q3-Q1)*(X2-X1))/ &

((Y2-Y1)*(X3-X1)-(Y3-Y1)*(X2-X1))

PhiOut = A*(XIn-X1) + B*(YIn-Y1) + Q1

ExOut = -A

EyOut = -B

RETURN

END

Figure 7.3: Relative error for field interpolations between concentric spheres of radii 1.0 cm
and 3.0 cm. Approximately 50 elements along the solution dimension. Open circles: linear
interpolation. Filled squares: Second-order, least-squares fit.
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Figure 7.4: Order of preference to collect vertex values for a second-order least-squares inter-
polation on a conformal triangular mesh. Filled circle: Main vertex, closest to target point.
Open triangles: Six neighbors to main vertex. Open squares: Twelve second neighbors to main
vertex.

relative field error for linear interpolations. Fields were calculated at 50 positions uncorrelated
with the element boundaries.

Higher order interpolations applied to several vertex points near the test point give better
accuracy. For example, consider the second order polynomial described in Section 7.2. Following
Figure 7.4, the first step is to find the element that contains the target point and note the region
number that gives the material type. The next step is to locate the nearest vertex and collect
points in the vicinity until there are at least six potential values. The order of preference is the
nearest point, the six adjacent points, and then the next 12 surrounding points. A vertex is
rejected if it is outside the solution region or if it is not connected to at least one triangle that
has the same region number as the target element. This condition ensures that the interpolation
function is unaffected by field discontinuities at dielectric boundaries. At Neumann boundaries
an external point is added for each valid point inside the boundary. The new point has the same
potential and the mirror position relative to the boundary. After data collection, a least-squares
fit to a function of the form of Equation 7.12 gives the polynomial coefficients and the output
values φ = a1, Ex = −a2, Ey = −a3. The filled squares in Figure 7.3 show improved results
applying a second-order routine to the cylindrical benchmark test.

Although the second-order polynomial of Eqs. 7.12 and 7.14 is good for general purpose
interpolations, sometimes we can improve the efficiency of calculations by picking functions
matched to the physical system. For electrostatic problems in a homogeneous medium with no
space-charge, the function should be consistent with the Laplace equation,

∇2φ = 0. (7.17)

Consider a polynomial fitting function for the potential of a planar system near the target point
(x0, y0) written in terms of the coordinates X = x− x0 and Y = y − y0,
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F (X, Y ) = a1 +
∞
∑

n=2

anfn(X, Y ). (7.18)

Instead of picking arbitrary polynomials for the terms of Equation 7.18, we shall use combina-
tions of powers of X and Y that are consistent with the equation

∂2F

∂X2
+
∂2F

∂Y 2
= 0. (7.19)

It is easy to show that the following terms independently satisfy Equation 7.19,

a1, a2X, a3Y, a4XY. (7.20)

The entries are the same as those in Equation 7.14. On the other hand, the individual terms
X2 and Y 2 should be replaced with the combination

a5(X
2 − Y 2). (7.21)

The general third order expansion has the terms

AX3 + BX2Y + CXY 2 +DY 3. (7.22)

Substitution in Equation 7.18 shows that there are two independent third order polynomials
consistent with the Laplace equation,

a6(X
3 − 3XY 2), a7(Y

3 − 3X2Y ) (7.23)

If there is no space-charge and we are careful to pick data points on one side of a boundary,
we can achieve third-order accuracy using seven independent terms compared to ten terms for
the general polynomial. We can continue the process for higher order terms. The resulting
expressions, the harmonic polynomials , are listed in Table 7.3 through the fifth order. The cal-
culation for cylindrical coordinates uses the cylindrical form of the Laplace operator. Table 7.3
also lists harmonic polynomials for cylindrical problems through the fifth order. Because of the
cylindrical symmetry only even powers of r appear.

7.4 Mesh and boundary plots

Plots can efficiently communicate information on two and three-dimensional field solutions.
We have seen several examples in previous chapters. This section and the next discuss plot-
ting routines. We shall concentrate on two-dimensional finite-element solutions on conformal
triangular meshes. The extension to regular meshes is straightforward. This section covers two
types of plots to display the computational mesh and region boundaries. The following section
reviews methods to display physical information about the field and materials.indexComputer
procedures!boundary plotindexMesh!plotting



Analyzing Numerical Solutions 117

Table 7.3: Harmonic polynomials for electrostatic potential

Rectangular geometry Cylindrical geometry
1 1
x z
y z2 - r2/2
xy z3 - 3zr2/2
x2 - y2 z4 - 3z2r2 + 3r4/8
x3 - 3xy2 z5 - 4z3r2/3 + zr4/2
y3 - 3x2y
4x3y - 4xy3

x4 - 6x2y2 + y4

x5 - 10x3y2 + 5xy4

y5 - 10y3x2 + 5yx4

To generalize the discussion, suppose we have two fundamental subroutines that handle the
specific graphics device:

SetBound(XMin,YMin,XMax,YMax)

MakeLine(XStart,YStart,XEnd,YEnd)

The parameters passed to SetBound are the maximum and minimum values along the horizontal
and vertical directions anticipated for the plot. The routine determines how to map the area
on a device and sets up scaling factors. For example, to plot the full logical mesh discussed in
Section 5.2 we associate xmin, xmax, ymin and ymax with the edges of the mesh. Alternatively,
we could zoom in on a region by setting a smaller view rectangle. The function MakeLine
plots a line from (XStart,YStart) to (XEnd,YEnd) scaled to the plot boundaries with clipping
if necessary. Beyond these essentials, we could define additional routines to set plot color and
other parameters.

Mesh plots are important in finite-element solutions. They show the quality of the element
fit to boundaries, the resolution for interpolations, and trouble spots where triangles may have
unfavorable geometry (Section 12.5). A mesh plot requires the following steps.

• Make a loop through every possible line that connects two adjacent vertices of the logical
mesh.

• Decide whether each line is part of the solution space.

• Pass the vertex coordinates to MakeLine if the line is valid.

The following procedure applies to meshes following the conventions described in Sects. 5.2
and 5.3. Three lines are checked at each vertex of the logical mesh: to the right, up and to the
right, and up and to the left. The outer loop extends over all rows j = 1 to J and the inner
loop over columns i = 1 to I. The following lines are checked for each vertex:
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Figure 7.5: Plots to display the computational mesh and boundaries. a) Element facets with
color-coding on region boundaries. b) Element volumes with color-coding on facets and bound-
aries.

(i, j) ⇒ (i+ 1, j)

(i, j) ⇒ (i, j + 1)

(i, j) ⇒ (i, j + 1) for j odd

(i, j) ⇒ (i, j − 1) for j even

The result is shown in Figure 7.5a. A line is rejected if the region number of either vertex equals
zero of if the region numbers of both elements adjacent to the line are zero. Depending on the
type of solution, we can add other criteria to improve the plot. For example, in electrostatic
solutions the field inside an electrode is meaningless so there is no reason to plot the mesh. These
lines are suppressed by rejecting vectors when both adjacent elements have region numbers
corresponding to a fixed potential region. We can emphasize boundary lines between physical
regions of the solution. Different color coding is to lines that separate elements with different
region numbers (Figure 7.5a). An alternate display (Figure 7.5b) is an element plot with color
set by region number. This is easy to implement with a graphics library that includes a routine
to fill a bounded area. The parameters passed to the routine usually include a boundary color,
a fill color and the coordinates of a point inside the boundary.
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7.5 Contour, element, elevation and field line plots

In this section we shall discuss graphical displays of field information. In electrostatic problems
the quantities of interest may include the electrostatic potential, electric field vectors, or electric
field amplitude. In magnetostatic solutions, it may be useful to plot variations of material
properties. The contour plot is a common method to display two-dimensional variations of a
scalar quantity. In electrostatics, the plot consists of a series of curves corresponding to constant
values of potential. The electric field is normal to the contours with an amplitude inversely
proportional to the distance between lines.

The first step to create an electrostatic equipotential plot is to select a set of contour values.
We can set the values manually or let the program make the choice. In the latter case, the
first step is to find minimum and maximum values of potential, φmin and φmax. The procedure
starts by setting φmin = BigNum and φmax = −BigNum, where BigNum is the largest floating
point number that can be represented by the computer. Then, the program loops through all
values of potential in the solution applying the tests

if (φij < φmin) then φmin = φij,

if (φij > φmax) then φmax = φij. (7.24)

Finally, the program fills an array of contour values. For NI equal potential intervals, the index
n is in the range 0 to NI and the values are

φcn = φmin + n
φmax − φmin

NI

. (7.25)

The following procedure generates a set of vectors that lie along the contour value φcn. The
vectors are stored in an array of starting and ending coordinates: v = [(xs, ys), (xe, ye)]. The
program makes a loop through all elements in the solution area, rejecting any with a region
number that corresponds to a constant potential. The program checks the three sides of each
triangle to see if φcn lies between the potential values at the ends. If so, the program stores the
coordinates of the position given by a linear interpolation of potential along the line. When
the program finds two coordinates for an element, it stores the corresponding vector. Three
vectors are added to the list if there are three intersecting coordinates. The program takes no
action if there is one intersection – the corresponding contour line will be represented in an
adjacent element. The result is an array of vectors that can be passed to the MakeLine routine
of the previous section for plotting. As an example, Figure 7.6a shows an equipotential plot
for a high-voltage bushing.

The procedure described stores contour vectors in the order they are found. This depends
on the mesh search order and does not necessarily produce a connected set of vectors. The
vector order is not important for raster type graphics devices (i.e.,video screens, laser printers)
but may be critical for a pen plotter. To make a versatile routine, it is a good idea to sort the
vectors before plotting. A contour may consist of several closed or open curves. The best we
can do is to connect as many vectors as possible. The process requires the following functions
and subroutines. Note that the pass parameters are four-component vector records.
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Figure 7.6: Solution plots for a high-voltage bushing example. a) Equipotential plot. b) Color-
coded element plot of electric field amplitude.
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Subroutine Exchange (v1,v2)

Subroutine Reverse (v1)

Integer Function Connect (v1,v2)

The first subroutine exchanges two vectors in the storage array, while the second reverses the
starting and ending points of a vector. The third function compares the starting and ending
points of two vectors and returns the following values:

0: No connection

1: Vector 1 Start connected to Vector 2 Start

2: Vector 1 Start connected to Vector 2 End

3: Vector 1 End connected to Vector 2 Start

4: Vector 1 End connected to Vector 2 End

As with any comparison of floating point numbers, we must be careful in the definition of the
term connected . It is unlikely that the coordinates values for connected vectors will be exactly
equal to within the floating point precision of the computer. Instead, we must define a function
ApproxEqual that checks for equality within a length tolerance.

The first step in sorting a contour set is to find the endpoint if it exists. Starting at the top
of the vector list, we count connections with the remaining vectors. If there are no connections,
the vector is isolated. We leave it in place and move down the list. If there is a single connection,
the vector at the top of the list is an endpoint. Otherwise, we exchange the vector with the next
one on the list and repeat the search. The procedure places an endpoint at the current top of the
list which we shall call position i. If no endpoint is located the contour must be closed and it is
sufficient to start with any vector. Once the endpoint is set, we process through the remaining
vectors in the list (denoted with index j), applying the function Connect(v(i),v(j)) and
taking the following actions.

Connect = 0 >> Continue the search, j = j + 1\\

Connect = 1 >> Reverse(v(i)), Exchange(v(i+1),v(j)), i = i+1\\

Connect = 2 >> Reverse(v(i)), Reverse(v(j)), Exchange(v(i+1),v(j)), i = i+1\\

Connect = 3 >> Exchange(v(i+1),v(j)), i = i+1\\

Connect = 4 >> Reverse(v(j)), Exchange(v(i+1),v(j)), i = i+1

The process continues until there are no connections to succeeding vectors. If the index i is at
the end of the vector list, the sort is complete. Otherwise, the remaining vectors belong to one
or more disconnected lines. In this case, the search for an endpoint and connecting vectors is
repeated.

Quantities like the field amplitude can be displayed effectively in a color-coded element
plot. This plot is similar to the boundary plot discussed in the previous section. Here, we loop
through all elements in the solution region, assigning a plot color according to the value of the
quantity of interest. Figure 7.6b shows an example - a plot of electric field amplitude in a high-
voltage bushing. Although the plot does not convey as much information as an equipotential
plot, it clearly indicates areas of concern.

A third way to display information about a scalar function over a two-dimensional space is
with an elevation plot. Figure 7.7 shows an example for a planar electrostatic solution. The
display shows potential as an elevation (in the z direction) over a region in the x-y plane. For
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Figure 7.7: Three-dimensional wire frame projection plot of potential variation over a two-
dimensional region, high-voltage electrode inside a grounded box.

a conformal mesh the potential surface consists of triangular facets. The wire frame plot of
Figure 7.7 shows the edges of all facets. In a hidden surface plot, the facets are opaque. The
surfaces closer to the viewer obscure those behind.

To understand the elevation plot, consider the general problem of representing a three di-
mensional object on a two-dimensional surface. The object surface is approximated by a discrete
set of coordinates (X ′

i, Y
′
i , Z

′
i) that define facets. The object coordinates are projected into a

drawing plane using the method of perspective shown in Figure 7.8. This involves connecting
the object coordinates to an observation point and finding the intersection coordinates in the
drawing plane. For simplicity we take the drawing plane normal to the Z ′ axis at Z ′ = 0. The
observation point is on the axis at position Z ′ = D2. Inspection of Figure 7.8 gives the drawing
plane coordinates as

Xi =
X ′

i

1− Z ′
i/D2

,

Yi =
Y ′
i

1− Z ′
i/D2

. (7.26)

Now, suppose an electrostatic solution on a triangular mesh is plotted as a three-dimensional
object with the vertex coordinates along axes X ′′ and Y ′′ and the relative potential plotted in
Z ′′. To make the plot look interesting we include the option to transform these coordinates to
the (X ′, Y ′, Z ′) coordinates of Figure 7.8 through rotations. A general rotation can be written
in terms of the rotational matrices of Section 5.1,
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Figure 7.8: Geometry for projection of a three-dimensional object on to a two-dimensional
plane with perspective.

X′
i = M(θz) M(θy) M(θx) X

′′
i , (7.27)

where X′
i = (X ′

i, Y
′
i , Z

′
i). Suppose that the electrostatic solution region fits inside a rectangle

with dimensions xmin, ymin,xmax and ymax and the minimum and maximum potential values
are φmin and φmax. For convenience, we normalized quantities so that all points lie in a three-
dimensional space in the range −0.5 ≤ X ′′

i ≤ 0.5, −0.5 ≤ Y ′′
i ≤ 0.5. and −0.5 ≤ Z ′′

i ≤ 0.5. If
Sxy = max[(xmax − xmin), (ymax − ymin)] and Sφ = φmax −φmin, then the normalizing equations
are

X” = −0.5 +
xi − xmin

Sxy

,

Y ” = −0.5 +
yi − ymin

Sxy

,

Z” = −0.5 +
φi − φmin

Sφ

. (7.28)

We now have the tools necessary to make elevation plots. To start, consider the wire frame
plot. We identify facet lines the same method used to create the mesh plot of Section 7.4.
The coordinates and potential values at the vertices gives the coordinates (X ′′

i , Y
′′
i , Z

′′
i ) for the

ends of each vector. Rotations are applied to transform these to (X ′
i, Y

′
i , Z

′
i) and then to the

drawing plane following Eqs. 7.25. The final step is to plot the vector with the MakeLine

routine. For a surface plot with hidden facets, it is more convenient to use elements as the
basic plotting units. The basic tool is a subroutine that determines the three vertex points of
an element facet, plots the outline in the drawing plane, and colors the enclosed space. Again
the procedure is straightforward with a graphics library with a flood fill routine that overwrite
previous information. Before making the plot the elements are arranged in order of their average
distance D from the viewer,

Xc′ =
X ′

1 +X ′
2 +X ′

3

3
,
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Yc′ =
Y ′
1 + Y ′

2 + Y ′
3

3
,

Zc′ =
Z ′

1 + Z ′
2 + Z ′

3

3
,

D =
√

X ′
c
2 + Y ′

c
2 + (D − Z ′

c)
2 (7.29)

Plotting the elements in this order gives a hidden facet plot.
The final topic we shall discuss is the creation of electric field line plots. The ideal plot has

two characteristics.

• Lines follow the electric field vector.

• The spacing between adjacent lines is proportional to the field amplitude.

In contrast to equipotential plots there is no general method to create field line plots. One
compromise is the arrow plot consisting of an array of arrows drawn over the over the solution
region. The arrow direction follows the electric field and the length is proportional to the field
amplitude. Such plots are sometimes confusing.

We can create electric field line plots for solutions without space-charge that have easily-
recognized symmetry axes. Consider a planar solution with field components Ex and Ey and
assume that there is a function U(x, y) such that the electric field equals the curl of Uz,

Ex =
∂U

∂y
, Ey = −∂U

∂x
. (7.30)

It is easy to show that lines of constant U are parallel to the electric field and that the difference
in the value of U between two points equals the total flux of electric field lines per meter through
a surface that connects the points,

U2 − U1 =
∫ 2

1
dl E · n. (7.31)

These two properties imply that a contour plot of U is equivalent to an ideal field line plot.
The task is to find the function U(x, y) that corresponds to an electrostatic solution φ(x, y).

We can rewrite Eqs. 7.29 as

∂U

∂y
= −∂φ

∂x
,
∂U

∂x
=
∂φ

∂y
. (7.32)

If φ satisfies the Laplace equation, Eqs. 7.32 imply that U does also,

∇2U = 0. (7.33)

We can use the same mesh and solution method used to find φ(x, y) to determine the function
U(x, y). The trick is to invert the boundaries for the U solution, exchanging Neumann and
Dirichlet conditions. The procedure is best illustrated with examples. Figure 7.9a shows
equipotential lines for biased rods inside a grounded box. The left and right rods have constant
potential Dirichlet boundary conditions of ±1.0 V respectively and the outer boundary has
zero potential. To generate an electric field line plot, we recognize that the plane at x = 0.0 is
a Neumann boundary. The electric field line plot of Figure 7.9b results from setting constant
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Figure 7.9: Electrostatic solution plots in planar geometry. a) Equipotential plot for rods at ±1
V inside a grounded box. Dirichlet boundary conditions on the surfaces of the rods and box.
b) Electric field line plot for the same system. Neumann boundary condition of the surfaces of
the rods and box. Constant potentials of 1 V along line A and 0 V along lines B and C. c)
Electric field line plot of a laser discharge control electrode. Neumann boundary condition on
the electrode surface and lines A and B. Constant potentials of 1 V along line C and 0 V along
D.
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potentials on the midplane, 1.0 V along Line A and 0.0 volts along Lines B and C. The outer
boundary and rod surfaces satisfy the Neumann condition. The condition was implemented
for the internal regions by taking ǫr = 1.0x10−7 in the enclosed elements. Figure 7.9c shows
another example, electric field lines on a laser discharge control electrode. The electrode and
Lines A and B were set to the Neumann condition while Lines C and D had constant potentials
of 1.0 and 0.0 V.

Exercises

7.1. An isosceles triangle in the x-y plane has the vertex coordinates (4.66,3.44), (10.16,3.44)
and (7.41,10.94).

a) Find the area of the triangle by calculating one half of the product of base times height.
b) Compare the result to the prediction of the routine of Table 7.1.

7.2. A toroidal element in a cylindrical system is a right triangle with the following coordinates
in the r-z plane: (3.0,3.0), (4.5,3.0) and (3.0,4.5).

a) Find the exact volume of the element from an integration of radial slices weighted by
2πr.
b) Estimate the volume by taking the product of the triangle area times 2πR, where R is
the center of mass radius of the element.

7.3. To understand the bisection search, work through steps to find the index of the target
value x = 0.62 in the x(i) given below.

0.000 0.080 0.295 0.352 0.381 0.445 0.547 0.683 0.890 0.868 1.000
7.4. Write equations to find the area of an arbitrary quadrilateral element. One approach is
to divide the area into two triangles and then to use cross-products to find the corresponding
areas. Check the result by calculating the area in the x-y plane bounded by the following
coordinates (in order of positive rotation): (1.15,2.03), (12.45,4.32), (13.59,9.44), (4.57, 9.80).
Outline a procedure to determine if a test point is inside the element.
7.5. When an electrostatic solution has a symmetry boundary, we can achieve improved ac-
curacy of nearby interpolations by adding extra points that reflect the symmetry condition.
Suppose a planar solution has a boundary along the line y = 0.0 and that there is a nearby
point with potential φi and coordinates (xi, yi). Give potential values and coordinates of mirror
points for the following cases.

a) Neumann boundary.
b) Dirichlet boundary with φ = φo.

7.6. To determine the relative activities of two known radioactive isotopes in a mixture, consider
fitting the time-decay of X-ray flux with a function of the form

F (t) = α1 exp(−λ1t) + α2 exp(−λ2t).

The decay constants are λ1 = 0.23 s−1 and λ2 = 0.078 s−1. Find values for α1 and α2 from the
following data using the least-squares procedure.
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t F (t) t F (t) t F (t)
0.0000 1.0089 9.0000 0.3544 18.0000 0.1568
1.0000 0.8766 10.0000 0.3424 19.0000 0.1563
2.0000 0.7878 11.0000 0.3013 20.0000 0.1327
3.0000 0.7000 12.0000 0.2813 21.0000 0.1368
4.0000 0.6121 13.0000 0.2525 22.0000 0.1089
5.0000 0.5424 14.0000 0.2325 23.0000 0.1040
6.0000 0.4975 15.0000 0.2146 24.0000 0.0891
7.0000 0.4566 16.0000 0.1933 25.0000 0.0867
8.0000 0.3986 17.0000 0.1853

7.7. Use a spreadsheet with matrix inversion capability to perform a least-squares fit with three
parameters. Fit a function of form f(x) = a1 + a2x + a3x

2 to following data. Calculate the
quantity χ2 from Equation 7.5 for the best values of a1, a2 and a3. Make small changes in the
fitting parameters and confirm that χ2 has a minimum at the predicted values.

x F (x) x F (x) x F (x)
0.000 4.539 2.000 16.309 4.000 16.137
0.500 8.584 2.500 17.379 4.500 14.381
1.000 11.892 3.000 17.900 5.000 11.592
1.500 14.448 3.500 17.276

7.6. Verify that the harmonic potentials in the second column of Table 7.4 are solutions of the
cylindrical Laplace equation.
7.7. We can use harmonic polynomials to fit three-dimensional electrostatic solutions in the
absence of space-charge. Derive polynomials of x, y and z through second-order that are
solutions to the three-dimensional Laplace equation in Cartesian coordinates.
7.8. Verify the expressions in the linear interpolation routine of Table 7.3 by comparing them
with the equations in Section 2.7.
7.9. Set up spreadsheet program to create an interactive two-dimensional projection of a
cube using Eqs. 7.26 and 7.27. Represent a cube one unit on a side centered at the origin,
(x′′, y′′, z′′) = (0, 0, 0). The task involves transforming the eight vertex coordinates following the
mathematics in Section 7.5 and plotting lines between them. Set up D2, θx and θz as adjustable
parameters.
7.10. Verify that Equation 7.30 implies that lines of constant U are parallel to electric field lines.
(Show that the condition that the total derivative of U equals 0 implies that dy/dx = Ey/Ex.)



128 Finite-element Methods for Electromagnetics

7.11. An electrostatic quadrupole field centered at (0.0,0.0) is defined by the equations,

Ex(x, y) = E0
x

a
,

Ey(x, y) = −E0
y

a
.

a) Verify that the equations represent a valid electrostatic solution by showing that ∇·E = 0
and ∇× E = 0.
b) Find an equation for the electrostatic potential φ(x, y) assuming φ(0, 0) = 0.
c) Find the function U by applying Equation 7.30.
d) Use a spreadsheet or plotting program to plot lines of constant φ and U (electric field
lines).

7.12. A useful technique based on complex numbers generates families of free space electrostatic
field solutions in Cartesian coordinates. Consider the complex variable u = y + jx, where
j =

√
−1. Let f(u) represent any smoothly varying function of u.

a) Apply the chain rule of partial derivatives to show that f(u) automatically satisfies the
Laplace equation.

∂2f

∂x2
+
∂2f

∂y2
= 0.

b) If we designate φ = Re(f) and U = Im(f), show that the functions satisfy Equation 7.32.
c) Show that the choice f(u) = u2 gives the functions φ and U for the quadrupole field of
Exer. 7.11.



Chapter 8

Non-linear and Anisotropic Materials

The dielectric materials we studied in previous chapters had relatively simple properties. They
were homogeneous and isotropic – the dielectric constant was independent of position and direc-
tion. In this chapter we tackle boundary value problems that involve more complex materials.
The properties of non-linear materials depend on the field solution. For example, the value of
ǫr in a dielectric may vary with the electric field magnitude. In this case the Poisson equation
becomes non-linear. Numerical solutions are more difficult with field-dependent materials and
may sometimes fail. Iterative techniques are essential because the process is circular. The ma-
terial properties depend on the field solution and the field solution depends on the materials.
Anisotropic materials have characteristics that vary in direction. An example is a birefringent
crystal with distinct values of the dielectric constant along two axis. Anisotropic materials may
also be non-linear. The most familiar example, permanent magnets, is discussed in the next
chapter.

Section 8.1 describes iterative techniques for numerical solutions with non-linear materials.
Calculations for field-dependent dielectrics illustrate some of the stability problems that may
arise. Section 8.2 explains how to represent material properties in numerical tables. Good
interpolation techniques are essential to achieve solution convergence. The section concentrates
on the cubic spline method which ensures continuity of the interpolated values and first deriva-
tives of the dependent variable. Section 8.3 shows how to represent anisotropic materials in
finite-element electrostatic calculations on a conformal triangular mesh. The only change is a
modification of the coupling constants.

8.1 Iterative solutions to boundary value problems

The solutions of previous chapters involved linear equations. With known variations of dielectric
constant over the solution volume the terms in Poisson’s equation depend on the first power of
φ. The equation becomes nonlinear when the dielectric constant is a function of the potential.
Often the dielectric constant depends on the amplitude of the electric field,

ǫ = ǫ(|∇φ|). (8.1)

129
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The challenge of non-linear boundary value problems is that we do not know the material
properties until we have the correct field solution. It is impossible to find self-consistent solutions
analytically except for the simplest cases. The standard approach in numerical solutions is to
apply gradual corrections over many cycles. We make an initial guess of the material properties
and then determine a field solution. The initial solution gives the potential gradient and
other quantities that enable a better estimate of the properties in each element. Additional
field solutions and material corrections follow. Usually the solution approaches the correct
self-consistent values after several cycles. We can check convergence by ensuring that spatially-
averaged values of the adjustment factors approach zero. For example, a useful indicator of
relative errors in the dielectric constant in non-linear electrostatic problems is

δǫ =







∑

j

(

ǫn+1
j − ǫnj

)2

∑

j

(

ǫnj
)2







1

2

. (8.2)

The sums in Equation 8.2 extend over all elements of variable materials. The quantity ǫj
n+1 is

the relative dielectric constant in element j after n+ 1 corrections.
Iterative solutions may fail if the material properties have discontinuities. In this case, the

interpolation in elements may bounce back and forth on alternate cycles between values on either
side of the discontinuity. The problem can usually be avoided by smoothing discontinuities in
the material tables and by averaging corrected values. The following averaging algorithm is
effective in electrostatic problems:

ǫn+1
j = α1ǫ

n
j + α2ǫ(E

n
j ). (8.3)

Here, the quantity ǫn+1
j is the new estimate of dielectric constant of element j for iteration cycle

n + 1, while ǫnj and En
j are the dielectric constant and electric field from the previous cycle.

The quantity ǫ(Em
j ) is the interpolated field-dependent dielectric constant based on a table or

model. Finally, α1 and α2 are adjustment constants where α1 + α2 = 1.0. A value α2 = 1/0
gives full correction on each cycle, while α2 ≪ 1.0 implies gradual correction. Low values of α2

are often necessary for numerical stability.
We can use either matrix (Chap. 6) or relaxation methods (Section 5.5) for iterative field

solutions. Relaxation is usually fast and efficient because the field and material corrections
are carried out simultaneously. Material adjustment can be applied on each field relaxation
cycle or at specified intervals. Solution convergence can be obtained for most problems by
experimenting with values for the relaxation parameter ω and material adjustment parameters
(Equation 8.2). Section 9.5 discusses procedures to minimize the number of operations involved
in material correction.

To illustrate the type of phenomena that may occur in non-linear solutions, consider the
geometry of Figure 8.1a, a dielectric block of height 0.05 m between a ground plane and an
electrode at 2000 V. The solution for constant ǫ is a uniform variation of potential as shown.
The behavior is quite different for a saturable dielectric where ǫ decreases with increasing field
amplitude. Figure 8.1b shows the consequences of such a variation at high field. Numerical
modeling is difficult because the system is inherently unstable. The electric field concentrates in
regions of low ǫ. Therefore, a slight field imbalance can grow. Figure 8.1c shows equipotential
lines for the non-linear solution. The relaxation solution required about 3500 cycles with ω =
1.7 and α2 = 0.05. The vertical electric field is no longer uniform. There is a high field region
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Figure 8.1: Non-linear field solutions in a dielectric block. a) Geometry and equipotential
lines for uniform relative dielectric constant ǫr = 20.0. 1: Top electrode, 2000.0 V. 2: Bottom
electrode, 0.0 V. 3: Air spaces. 4: Dielectric block. Neumann boundaries at left and right. b)
Non-linear dielectric, variation of ǫ4 with field amplitude. c) Equipotential lines for the non-
linear solution. d) Equipotential lines for a non-linear solution with a shaped top electrode. e)
Solution with top electrode voltage lowered to 1000.0 V.
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with ǫ ∼= 1.0 at the top and a low field region with ǫ ∼= 20.0 at the bottom. The problem is
indeterminant – the solution is one of a continuum of valid equilibria with the high-field band at
different positions in the gap. The particular solution of Figure 8.1c occurs consistently because
of slight asymmetry resulting from the order of relaxation. We can define a unique solution
by introducing geometric variations. For example the top electrode in Figure 8.1d is shaped
so that the high field region is forced to the bottom. Lowering the electrode potential leads
to interesting solutions. Figure 8.1e shows the field distribution for an applied voltage of 1000
V. The high field region compresses to a narrowed band with reduced potential, ultimately
reverting to the uniform field of Figure 8.1a. The phenomenon is related to self-focusing of
intense laser light in a saturable medium. The example illustrates that even the simplest non-
linear solutions can get out of hand. Section 8.4 shows another example related to gas flow.
Considerable vigilance is required to ensure that results are physically meaningful.

8.2 Numerical data for material properties

This section covers representations of materials with variable properties. One option is to
hardwire subroutines that contain parametric models for different materials into the solution
program. This approach has several disadvantages.

• The program is locked to one type of physical problem.

• The programmer must anticipate all future user needs. New materials require program
modification, recompilation and revised documentation.

• Parameters must be determined for new experimental or numerical material data.

A better approach is to enter all material data in a standard numerical format. This usually
takes the form of a one-dimensional table consisting of an array of independent and dependent
variables. As an example Table 8.1 shows the dielectric data table used for the example of
Figure 8.1. The solution program includes a unit of routines to organize and to interpolate
tables. There are several advantages to this approach.

• The program user takes responsibility for developing and documenting physical models.

• A single program can often cover a wide variety of physical problems.

• New materials may be included with no program modification.

• Data entry from experiments, spreadsheets or user programs is straightforward.

• The interpolation unit can also be applied to analyze arbitrary time-dependent functions
in initial value problems.
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Table 8.1: Field-dependent dielectric constant example

E (V/m) ǫr E (V/m) ǫr
0.00 20.00000 28000.00 8.71988
2000.00 19.92509 30000.00 7.56434
4000.00 19.70154 32000.00 6.45510
6000.00 19.33288 34000.00 5.40965
8000.00 18.82491 36000.00 4.44447
10000.00 18.18566 38000.00 3.57480
12000.00 17.42520 40000.00 2.81434
14000.00 16.55553 42000.00 2.17509
16000.00 15.59036 44000.00 1.66712
18000.00 14.54490 46000.00 1.29846
20000.00 13.43566 48000.00 1.07491
22000.00 12.28012 50000.00 1.00000
24000.00 11.09651 52000.00 1.00000
26000.00 9.90349 54000.00 1.00000

100000.00 1.00000

We shall cover two common techniques to determine values from one dimensional tables:
polynomial and cubic spline interpolation. For well-behaved data, the cubic spline technique
provides smoother values and ensures continuity of the first derivative. These features may
improve convergence of iterative calculations. The method is also more efficient in applications
involving large numbers of interpolations because coefficients are computed once at the begin-
ning of a calculation for the full range of entries. On the negative side, the cubic spline method
can give non-physical values for tabular data with noise or discontinuities of slope. In this case,
the more tolerant method of polynomial interpolation does a better job.

We begin with the polynomial method. Suppose a one-dimensional table consists an array
of the independent variable xi and dependent variable yi. By convention we take the index
from i = 1 to N . The entries are arranged in order of increasing values of x but need not be
spaced at a uniform interval. The procedure is to find a polynomial function of the form

y = f(x) = a0 + a1x+ a2x
2 + a3x

3 + ..., (8.4)

such that it matches values of y at several data points near the target value of x. We evaluate
the function at x to estimate y. The polynomial is a straight line if we pick two data points
adjacent to x (linear interpolation). Three nearby points define a unique quadratic function, and
so forth. Suppose we pick M data points near x: x1, x2, ...xj , ...xM . Lagrange’s formula gives
the following expression for the polynomial that passes through the points y1, y2, ...yj , ...yM ,
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f(x) =
(x− x2)(x− x3)...(x− xM)

(x1 − x2)(x1 − x3)...(x1 − xM)
y1 +

(x− x1)(x− x3)...(x− xM)

(x2 − x2)(x2 − x3)...(x2 − xM)
y2 +

...
(x− x2)(x− x2)...(x− xM−1)

(xM − x2)(xM − x3)...(xM − xM−1)
yM . (8.5)

Equation 8.5 can be implemented in a subroutine that fitsM points in an ordered array near the
target value x. Alternative methods for polynomial interpolation and practical subroutines are
covered in W.H. Press, et.al., Numerical Recipes in Fortran, Second Edition (Cambridge
University Press, 1992), Chap. 3.

We must decide how to pick the value ofM . For instance, why not pickM = N and define a
polynomial that passes through all points of the data array? The answer is that although such
a choice would have advantages similar to a cubic spline interpolation, there may have severe
drawbacks. The advantage is that the N coefficients of Equation 8.3 need be computed once
for each table. Problems occur when the data is imperfect. The resulting polynomial passes
through all the data points and maintains smoothness through derivatives of order (N − 1). If
the data are not smooth the resulting curve can be highly distorted. Figure 8.2a illustrates the
problem. The data set consists of 11 points that follow a quarter cycle of a sine curve with a
jog at about x = 0.55. The solid line is a linear interpolation between sequential points, while
the dashed line curve is a 10th order polynomial fit. If the data followed a smooth sinusoid,
the 10th order fit would be much closer to the theoretical curve. With the jog it is clear that
although the high order polynomial is mathematically correct it is useless as an interpolation.
Linear interpolations are always safe and second or third order polynomials generally give good
fits. The sensitivity to small errors increases with the order of the polynomial.

The goal of cubic spline interpolations is more modest. The coefficients are chosen so that
the interpolation curve passes through all data points while maintaining smoothness of the
first derivative and continuity of the second derivative between intervals. As a result the cubic
spline is less sensitive to data imperfections than a complete polynomial fit. Consider a tabular
function with N data sets (xi, yi) arranged in order of increasing x. A linear interpolation over
the interval between xi and xi+1 may be written as

y = A yi + B yi+1, (8.6)

where

A =
xi+1 − x

xi+1 − xi
, B = 1− A =

x− xi
xi+1 − xi

. (8.7)

Suppose we knew a set of second derivatives at xi for an interpolating function,

y′′i =
d2y

dx2

∣

∣

∣

∣

∣

xi

, (8.8)

To begin we consider the values in Equation 8.8 to be arbitrary coefficients in a cubic interpo-
lation function expressed in terms of ∆x = x− xi. One possible form of the function is
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Figure 8.2: Global interpolations for a data set with a discontinuity (open circles). a) Solid
line: linear interpolation. Dashed line: Tenth order polynomial fit. b) Natural cubic spline fit.
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y = Ayi + Byi+1 + Cy′′i +Dy′′i+1, (8.9)

where A and B are given by Equation 8.7 and

C =
1

6
(A3 − A) (xi+1 − xj)

2

D =
1

6
(B3 − B) (xi+1 − xj)

2. (8.10)

Note that the quantity C equals zero when A equals 0.0 or 1.0 and D equals zero when B
equals 0.0 or 1.0. Therefore, the function in Equation 8.8 passes through the values yi at xi.
The motivation for the factor 1/6 will soon be apparent.

The first derivative of Equation 8.9 is,

dy

dx
= yi

dA

dx
+ yi+1

dB

dx
+ y′′i

dC

dA

dA

dx
+ y′′i+1

dD

dB

dB

dx
. (8.11)

Substituting from Eqs. 8.7 and 8.10, we can rewrite Equation 8.11 as

dy

dx
=
yi+1 − yi
xi+1 − xi

− 3A2 − 1

6
(xi+1 − xi)y

′′
i +

3B2 − 1

6
(xi+1 − xi)y

′′
i+1. (8.12)

Taking the derivative of Equation 8.12 gives the second derivative as

d2y

dx2
= A y′′i + B y′′i+1. (8.13)

The motivation for the choice of coefficients is clear in Equation 8.13. The cubic expansion
ensures continuity of the second derivative of the interpolating function. The quantity varies
linearly from y′′i to y′′i+1 across the interval xi to xi+1.

For any choice of the set of y′′i , the curve will pass through the data points and maintain a
continuous second derivative. It remains to decide how to make the best choice to fit the data.
We shall seek a curve that guarantees continuity of the first derivative across the boundaries
between intervals. This defines a set of equations to determine y′′i . Consider, for example,
equality of the derivatives on both sides of the point xi. Using Eqs. 8.7 and 8.12 we find

yi − yi−1

xi − xi−1

+
1

3
(xi − xi−1)y

′′
i −

1

6
(xi − xi−1)y

′′
i−1 =

yi+1 − yi
xi+1 − xi

− 1

3
(xi+1 − xi)y

′′
i −

1

6
(xi+1 − xi)y

′′
i+1. (8.14)

We can write Equation 8.14 as

[

xi − xi−1

6

]

y′′i−1 +
[

xi+1 − xi−1

3

]

y′′i +
[

xi+1 − xi
6

]

y′′i+1 =

[

yi+1 − yi
xi+1 − xi

− yi − yi−1

xi − xi−1

]

. (8.15)

The above relationship represents a set of N − 2 equations. We need two more conditions to
determine the N unknown values of y′′i . A common choice called the natural cubic spline is to
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Figure 8.3: Natural cubic spline fit to a data set of 25 points given by the equation illustrates
the quality of a cubic spline interpolation when the data set is consistent with smooth variations
of the function and first derivative.

take zero second derivatives at the ends of the interpolation range, y′′1 = 0.0 and y′′N = 0.0. Note
that the set of equations represented by Equation 8.14 is in tridiagonal form. Given the values
of yi and xi, we can solve for the spline coefficients y′′i using the method of backsubstitution
(Section 4.4) or the tridiagonal matrix inversion of Sect 6.2.

In summary, the following procedure yields interpolated values from a numerical table. The
first step is to enter the data arrays of N values of xi and yi. It is good practice to include a
sorting routine in case the user has supplied values out of order. The next step is to calculate a
third array of splines, y′′i . This is accomplished by computing coefficients in Equation 8.15 from
the data set and solving the set of linear equations. To obtain interpolated quantities at x, a
fast search is performed to find the data entries xi and xi+1 below and above the target value.
The quantities A, B, C and D are then determined from Eqs. 8.7 and 8.10. Substitution in
Equation 8.9 then gives the interpolated value of y. Equation 8.12 can be used in cases where
the first derivative, dy/dx, is required. For example, the cubic spline may be used to find the
value of µ for ferromagnetic materials from a table of B versus H.

Figure 8.3 illustrates the quality of a cubic spline interpolation when the data set is consistent
with smooth variations of the function and first derivative. The coarsely spaced set of 25 data
values were generated from the function

y(x) = exp[−(0.40x− 0.125)2][1− cos(25x)]. (8.16)

The interpolation (solid line) follows the theoretical variation closely. Finally, Figure 8.2b
illustrates the cubic spline interpolation for the data set with a discontinuity. The non-physical
variations are not as severe as those for the complete polynomial fit. Nonetheless, the fit is
poor near the discontinuity. It is a good practice to check cubic spline interpolations for new
or modified material tables and smooth the data if necessary.
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Figure 8.4: Global coordinate axes and crystalline axes a1 and a2 of a non-linear dielectric
element.

8.3 Finite-element equations for anisotropic materials

Anisotropic materials have different properties along different directions. For example shifts
in polarization charge in dielectrics may differ along crystalline axes. This section covers two-
dimensional finite-element models for simple anisotropic dielectrics. The crystalline axes are in
the plane of solution at a right angle to each other along unit vectors a1 and a2 (Figure 8.4).
Constant values of relative dielectric constant ǫ1 and ǫ2 apply along the two directions. An
applied field E01 along a1 gives a total field E1 such that

E01 = ǫ1E1, (8.17)

A similar result holds along a2. For arbitrary field orientation the applied field is related to the
total field components projected along the axes by

Eo = ǫ1E1a1 + ǫ2E2a2 = Eo1a1 + Eo2a2. (8.18)

To treat problems with several dielectrics at different orientations, we need field expressions
in a global coordinate system. Figure 8.4 shows the geometry for a planar solution with a1

inclined at an angle θ with respect to the x axis. The total and applied fields are related by
the matrix relationship

[

Eox

Eoy

]

=

[

ǫxx ǫxy
ǫyx ǫyy

] [

Ex

Ey

]

. (8.19)

which we can write symbolically as

E0 = ǫ · E. (8.20)

The goal is to find expressions for the components of the dielectric tensor in Equation 8.19.
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The total field can be expressed in terms of components along either the global or crystal
coordinate systems

E = Ex x+ Ey y = E1 a1 + E2 a2. (8.21)

Unit vectors in the two systems are related by

x = cos θ a1 − sin θ a2,

y = sin θ a1 + cos θ a2. (8.22)

Substitution in Equation 8.21 gives

E = (Ex cos θ + Ey sin θ) a1 + (−Ex sin θ + Ey cos θ) a2. (8.23)

Using Equation 8.18 we can write the applied field components along the crystalline axes as

E01 = (Ex cos θ + Ey sin θ) ǫ1

E02 = (−Ex sin θ + Ey cos θ) ǫ2. (8.24)

We can relate the applied field components of Equation 8.24 to those along the coordinate axes
using the transformation of Equation 8.22,

E0x = cos θ E01 − sin θ E02,

E0y = sin θ E01 + cos θ E02. (8.25)

Combining Eqs. 8.24 and 8.25 gives a relationship between the applied and total field compo-
nents in the reference coordinate system,

Eox = Ex [ǫ1 cos
2 θ + ǫ2 sin

2 θ] + Ey [ǫ1 cos θ sin θ − ǫ2 sin θ cos θ],

Eoy = Ex [ǫ1 cos θ sin θ − ǫ2 sin θ cos θ] + Ey [ǫ1 sin
2 θ + ǫ2 cos

2 θ]. (8.26)

Comparing Eqs. 8.19 and 8.26, we can identify the components of the dielectric tensor,

ǫxx = ǫ1 cos2 θ + ǫ2 sin2 θ,

ǫxy = ǫyx = (ǫ1 − ǫ2) cos θ sin θ,

ǫyy = ǫ1 sin2 θ + ǫ2 cos2 θ. (8.27)

The next step is modify expressions for Gauss’ law at a vertex (Section 2.7) to include the
tensor dielectric constants. Figure 2.12 shows the geometry and notation. For simplicity, the
coordinate values are given relative to the reference vertex. Gauss’ law has the form

∫ ∫

S
(ǫ · E) · n dS =

∫ ∫ ∫

V
dV

ρ0
ǫ0
. (8.28)
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Again, we shall consider Triangle 2 where the total electric field is given by

E2 = −u2 x− v2 y. (8.29)

The applied field in the element is given by

Eo2 = −(u2 ǫxx2 + v2 ǫxy2)x− (u2 ǫyx2 + v2 ǫyy2)y. (8.30)

The algebra is straightforward but disheartening. Again, we write out the surface integral and
collect terms multiplying the potential at the test vertex and its neighbors to define a difference
relationship. Equation 2.67 holds with modified expressions for the coupling constants,

Wi = wia + wi+1b, (8.31)

where

wia =
ǫxxiyi(yi+1 − yi)− ǫxyixi(yi+1 − yi)− ǫyxiyi(xi+1 − xi) + ǫyyixi(xi+1 − xi)

4ai
, (8.32)

and

wib =
−ǫxxiyi+1(yi+1 − yi) + ǫxyixi+1(yi+1 − yi) + ǫyxiyi+1(xi+1 − xi)− ǫyyixi+1(xi+1 − xi)

4ai
. (8.33)

The indices in Eqs. 8.32 and 8.33 should be interpreted as cyclical in the number of triangles
surrounding the vertex. To illustrate the process, Figure 8.5 shows equipotential plots for an
anisotropic dielectric rod between biased parallel plates. The dielectric constants along the
primary axes are ǫ1 = 3.0 and ǫ2 = 1.0. Three views are shown with angles θ = 0.0o, 45.0o and
90.0o.

Exercises

8.1. Parallel plates that extend an infinite distance in y and z are separated by distance d in
x. The plates have applied potentials φ0 = 0.0 and φd = V0. The region 0 ≤ x ≤ d/2 is filled
with a material with a relative dielectric constant that depends on the electric field Ex,

ǫr(Ex) = 1− α
Exd

Vo
.

Find the maximum value of α consistent with a well-determined solution where the electric
field has unique uniform values in the material and vacuum regions.
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Figure 8.5: Equipotential plots for an anisotropic dielectric rod immersed in a uniform vertical
field: ǫ1 = 3.0, ǫ2 = 1.0 and θ = 45.0o.

8.2. Set up a spreadsheet to model the system of Exercise 8.1 using successive over-relaxation.
Use cell formulas that simultaneously relax the potential and adjust the dielectric constant.
Experiment with different values of α, ω and dielectric averaging parameters.
8.3. The two discrete data sets listed below model a continuous function. The first has a
smooth variation and the second has superimposed random noise. Apply the Lagrange formula
for polynomial interpolation to estimate values for f at the point x = 0.55. (Use a spreadsheet
to save work in applying Equation 8.5). Compare values for linear, second-order and fifth-order
fits to the two data sets. The ideal value for the generating function is f = 1.10714.

x f(x) f(x)
0.00000 0.33000 0.34893
0.20000 0.60686 0.61953
0.40000 0.89754 0.87410
0.60000 1.17267 1.14996
0.80000 1.39519 1.39877
1.00000 1.51000 1.53165

8.4 Derive a general expression for second-order polynomial interpolation on a data set with
uniform spacing ∆x.
8.5. The discrete data set listed below approximates the function f(x) = x2/10− sin(x).

a) Find the natural spline coefficients for the set.
b) Estimate values for y, dy/dx and d2y/dx2 at x = 2.5.
c) Compare the results of Part b) to the analytic values.

x 0.0000 1.0000 2.0000 3.0000 4.0000 5.0000
f(x) 0.0000 −0.7415 −0.5093 0.7589 2.3568 3.4589
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8.6. An alternative to the natural cubic spline is to set values of y′′1 and y′′2 to give desired
values of dy/dx at the ends of the interval. Use Equation 8.12 to find y′′1 and y′′2 in terms of the
desired values y′1 and y′2.
8.6. An anisotropic dielectric rod is immersed in a uniform applied electric field E0 = E0 y.
Assume that the applied field E0 is uniform inside the rod. If ǫ1 = 5.0, ǫ2 = 1.0 and Axis 1 of
the dielectric inclines at an angle θ = 45o relative to the x axis, show that the inclination of
equipotential lines is 33.69o.
8.7. Describe how to adapt the theory of Section 8.3 to cover steady-state current flow in media
with anisotropic conductivities σ1 and σ2.



Chapter 9

Finite-element Magnetostatic Solutions

Having assembled a toolbox of mathematical methods, we can proceed to applications in elec-
tromagnetism and related areas of physics. We shall start with solutions for static magnetic
fields. The main difference from electrostatic solutions is that magnetic materials usually have
more complex properties than dielectrics. We shall make extensive use of the methods of the
previous chapter. Sections 9.1 through 9.3 review the equations of magnetostatics and the prop-
erties of magnetic materials. Section 9.1 covers definitions of current, the magnetic force law,
and Ampere’s law. The latter is the basis of magnetostatic calculations with finite-difference
and finite-element techniques. Accordingly, we shall discuss Ampere’s law in differential and
integral forms. Section 9.2 introduces the magnetic vector potential. Solving for this quantity
greatly simplifies two-dimensional calculations. In planar and cylindrical geometries the vector
potential has a single component that plays a role analogous to the scalar electrostatic potential.

The properties of magnetic materials may vary with direction and may depend on their
history of exposure to magnetic fields. Section 9.3 concentrates on a subset of materials with
relatively simple properties and broad applicability: isotropic media where the magnetic per-
meability is a single-valued function of the field amplitude. This class includes soft iron, trans-
former steel, and many ferrites.

Section 9.4 derives finite-element equations for magnetostatics on a conformal mesh from
the integral form of Ampere’s law. The result is a set of linear equations that relate values
of vector potential to those at neighboring vertices. The coupling coefficients are similar to
those for electrostatics – the relative dielectric constant is replaced by the reciprocal of relative
magnetic permeability. Section 9.5 covers iterative methods to solve magnetic equations with
non-linear materials.

The final two sections address systems with permanent magnets. Section 9.6 describes
the properties of permanent magnets and representation of material data. We shall express
demagnetization curves in terms of applied and material magnetic fields to make the physical
meaning clear. Section 9.7 shows how to represent these highly anisotropic and non-linear
materials in two-dimensional finite element simulations.

143
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Figure 9.1: Relationship between current density j and current I in a wire.

9.1 Differential and integral magnetostatic equations

While electric forces act between charges, magnetic forces act between charges in motion. Mov-
ing charges constitute a current . A familiar example is the flow of electrons through a wire,
illustrated in Figure 9.1. There is no net charge because the wire contains equal densities of
ions and electrons. There is a flow of charge because the ions are stationary. The current in
the wire equals the total charge that flows through a cross-section per unit time,

I =
dQ

dt
. (9.1)

The current density, j, is a vector quantity that points in the direction of the local charge flow.
The magnitude of the current density equals the charge that crosses a unit area per unit time.
Given the current density distribution in a wire, the total current is

I =
∫ ∫

dA j · n, (9.2)

In Equation 9.2, dA is a differential unit of cross-section area, n is a unit vector normal to dA,
and the integral extends over the wire cross section. In steady-state, the net current that enters
a volume equals zero, or

∇ · j = 0. (9.3)

Equation 9.3 implies that current must flow in a closed loop, or circuit .
Current-carrying wires exert forces on one another. Mathematical expressions for the force

followed from experiments performed by Biot and Savart and Ampere. Consider the two wire
loops of Figure 9.2 that carry currents I1 and I2. We divide each wire into a number of short
segments. The direction and length of a segment of Loop 1 is denoted by the vector dl1.
Similarly, the quantity dl2 represents a segment of Loop 2. The distance between the segments
is R21 and n21 is a unit vector that points from Segment 2 to 1. Ampere’s law of force states
that the force on Segment 1 exerted by Segment 2 is

dF12 = I1 dl1 ×
[

µo

4π

I2 dl2 × n21

R2
12

]

. (9.4)
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Figure 9.2: Ampere’s force law between segments of two wire loops.

In SI units, the force is in newtons, distances in meters, currents in amperes, and the constant
µ0 equals 4π × 10−7.

If we view Segment 1 as a test segment, then we interpret the bracketed terms on the right-
hand side of Equation 9.4 as the capacity for magnetic force at Location 1 resulting from the
presence of Segment 2. In this case, we can write the force as

dF12 = I1 dl1 ×B12, (9.5)

where

B12 =
(

µo

4π

)

(

I2 dl2 × n21

R2
12

)

. (9.6)

Equation 9.6 gives the magnetic flux density at Location 1 created by Segment 2. For current
in amperes and distances in meters, the magnetic flux density has units of tesla.

The magnetic flux density obeys the principle of superposition; therefore, the total flux
density field created by Loop 2 is the sum of Equation 9.6 over all segments dl2. Noting that

I2 dl2 = j2 dA2 dl2 = j2 dV, (9.7)

we can write the sum as a volume integral over the current density,

B(x) =
µo

4π

∫ ∫ ∫

dx′dy′dz′ j(x′)× x− x′

|x− x′|3
. (9.8)

Equation 9.8 gives the magnetic flux density at a spatial location x = (x, y, z) in terms of a
known current-density distribution at positions x′ = (x′, y′, z′).

Returning to Equation 9.5, the total force on Loop 1 is the sum of contributions from all
segments dl1. An alternate form of Equation 9.5 gives the volumetric force (force/m3) on an
object that carries current. Consider a segment of the object with current density j1, cross-
section area A1 and length along the direction of current dl1. Recognizing that the total current
is I1 = j1A1, Equation 9.5 becomes F1 = j1(A1dl1)×B1, or
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Figure 9.3: Calculation of the magnetic field generated by a thin wire.

f = j×B. (9.9)

In Equation 9.9, f is the force per volume at a position where the local values of current density
and magnetic flux density are j and B. Another useful expression is the force on a single charged
particle in a magnetic field. Assume that the particle has charge q and velocity v. Consider
the particle orbit for a small interval ∆t. Here, the current is I = q/∆t and the segment vector
is dl = v∆t. The force on the particle is therefore

F = q v ×B. (9.10)

We can apply Equation 9.8 to find the magnetic flux density around the long thin wire
illustrated in Figure 9.3. To ensure continuity of current, assume that there is a return path at
a large distance that makes negligible contributions to the integral. The contribution for the
segment shown at position (R, 0, 0) is

dB =
µo

4π

IdzR

(z2 +R2)3/2
y. (9.11)

Integrating Equation 9.11 from z = −∞ to ∞ gives the total field. Recognizing that the results
are independent of rotation about the z axis, we can write the result in terms of cylindrical
coordinates centered on the wire,

B =
µoI

2πr
θ, (9.12)

where θ is a unit vector in the azimuthal direction.

Section 2.2 showed that Gauss’s law for surface integrals in electrostatics was a consequence
of the 1/r2 variation of electric field around a point charge. Similarly, Ampere’s law for mag-
netostatic line integrals follows from the 1/r field variation of field generated by a thin wire.
Consider a line integral of magnetic flux density around the circular path shown in Figure 9.4a.
Applying Equation 9.12, the result is

∮

B · dl = 2πrBθ = µoI. (9.13)
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Figure 9.4: Line integrals of magnetic flux density around a wire. a) Circular path. b) Irregular
path with radial and azimuthal segments.

Next, consider the more complex path of Figure 9.4b. The radial sections are perpendicular to
the field and do not contribute to the integral. While the azimuthal length of a section increases
as r, the flux density magnitude decreases as 1/r. Therefore, the contribution is independent
of radius. We can extend the stair step path of Figure 9.4b to approximate any path around
the wire and also add displacements in z to create a tipped path. The following result,

∮

B · dl = µ0I. (9.14)

holds for any closed path.
Because the left hand side of Equation 9.14 is independent of the position of the wire, we

can extend it to an arbitrary set of enclosed wires

∮

B · dl = µ0

∑

i

Ii. (9.15)

The quantity Σ Ii in Eq, 9.15 is the total current passing through a surface bounded by the
line integral. It may be written as a surface integral of enclosed current density,

∮

B · dl = µ0

∫ ∫

dA j · n. (9.16)

The quantity n is a unit vector normal to an element dA of the surface.
Equation 9.16 is Ampere’s Law in integral form. Our derivation was based on infinitely long

wires. The proof that Eqs. 9.15 and 9.16 holds for any collection of wire loops requires several
results from vector calculus and is covered in J.D. Jackson, Classical Electrodynamics,
Second Edition (Wiley, New York, 1975), 174. This reference also gives a useful alternative
form of Equation 9.8,
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Figure 9.5: Application of Ampere’s Law around a small surface element in the x-y plane.

B(x) = ∇×
[

µo

4π

∫ ∫ ∫

dx′dy′dz′
j(x′)

|x− x′|

]

. (9.17)

Application of Equation 9.16 around a small surface leads to the differential form of Ampere’s
law. Following Figure 9.5, we apply the equation to a surface element with projected area ∆x∆y
in the x-y plane and a local component of the current density jz. The result is

Bx(x)∆x+ By(x+∆x)∆y −Bx(y +∆y)∆x−By(x+∆x)∆y = µojz∆x∆y. (9.18)

Again, we approximate field variations with a Taylor expansion,

Bx(y +∆y) ∼= Bx(y) +
∂Bx(y)

∂y
∆y, (9.19)

In the limit of a small element, Equation 9.18 becomes

− ∂Bx

∂y
+
∂By

∂x
= µ0jz. (9.20)

Similar expressions involving jx and jy hold for projections in the y-z and z-x planes. The
result can be summarized in terms of the vector curl operator,

∇×B = µ0 j. (9.21)

Equation 9.21 is the differential form of Ampere’s law. For reference, the curl operators in
Cartesian and cylindrical coordinates are given by the determinants of the following matrices.

∇×B =







x y z
∂/∂x ∂/∂y ∂/∂z
Bx By Bz





 , (9.22)

and
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Figure 9.6: Magnetic field lines around three current carrying wires with uniform current den-
sity. Region 2: +1000 A, Region 3: +750 A, Region 4: -1500 A.

∇×B =







r/r θ z/r
∂/∂r ∂/∂θ ∂/∂z
Br rBθ Bz





 . (9.23)

The bold quantities in the first rows of Eqs. 9.22 and 9.23 represent unit vectors along the
coordinate axes.

Equation 9.17 shows that the magnetic field may be written as the curl of a vector function,

B = ∇×A, (9.24)

where

A(x) =
µ0

4π

∫ ∫ ∫

dx′dy′dz′
j(x′)

|x− x′| . (9.25)

We will discuss the quantity A, the vector potential, in the following section. It is easy to prove
that

∇ · (∇×A) = 0, (9.26)

holds for any vector function. Therefore, the magnetic field satisfies a second equation,

∇ ·B = 0. (9.27)

We can understand the geometric implication of Equation 9.27 by inspecting Figure 9.6 which
shows the field lines around current-carrying wires. In contrast to electric field lines, lines of
B circulate around currents but do not terminate. The flux of magnetic field into any closed
volume equals the outward flux, consistent with Equation 9.27.



150 Finite-element Methods for Electromagnetics

9.2 Vector potential and field equations in two

dimensions

The magnetic vector potential defined in Eqs. 9.24 and 9.25 plays a role in magnetostatics
similar to that of φ in electrostatics. We can combine the definition of A with Ampere’s law
to derive a differential equation that describes the vector potential,

∇× (∇×A) = µ0 j, (9.28)

Equation 9.28 may be written in the form

∇2A = −µ0 j. (9.29)

One approach to numerical magnetostatic solutions is to find A and then to determine B
by applying the curl operator of Equation 9.24. The motivation is clear for two dimensional
calculations. In planar or cylindrical systems there is only one non-zero component of vector
potential and it satisfies simple boundary conditions. In this case, the solution resolves to the
same scalar equation that we discussed for electrostatics.

We shall start with planar problems where derivatives in the z direction are zero. Inspection
of the Cartesian form for Equation 9.24 shows that the vector potential components Ax and
Ay give rise only to a field component Bz. In this case, the field magnitude is uniform in z
and may vary in x and y. This field variation may be determined easily for a known current
density. Non-trivial solutions involve the vector potential component Az that arises from the
current density component jz. The current creates field components Bx and By. In this case,
the vector potential is given by

∂2Az

∂x2
+
∂2Az

∂y2
= −µ0 jz. (9.30)

The form of Equation 9.30 is identical to the two-dimensional Poisson equation (2.24). There-
fore, we can apply the finite-element techniques of electrostatics to magnetostatic problems. In
preparation we shall first discuss the physical meaning of values of Az.

Referring to Figure 9.7, consider calculating the magnetic flux per unit length in z across
the surface defined by the dashed line between points a and b. The integral of B · n dA, is
given by

∆Φ =
∫ b

a
Bxdy. (9.31)

Substituting from Equation 9.24, we can rewrite Equation 9.31 as

∆Φ =
∫ b

a

∂Az

∂y
dy = Az(b)− Az(a). (9.32)

The flux equals the difference in vector potential between the two points. A similar re sult holds
for the path b-c parallel to the x axis. We can calculate the flux for arbitrary paths between
any two points by constructing a stair-step approximation of differential elements parallel to
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Figure 9.7: Relationship between differences of the vector potential Az at two points and the
magnetic flux passing between them.

the axes. The general conclusion is the following: the difference in vector potential between
any two points in a planar solution equals the integral of magnetic flux per length between the
points .

We can now understand the meaning of vector potential boundary conditions in terms
of the magnetic flux. Consider a solution inside a closed region of the x-y plane with the
Dirichlet boundary condition Az = constant. According to Equation 9.32, the flux integral
is zero through any plane connecting two points on the boundary. Therefore, the magnetic
fields are contained within the solution region, physically equivalent to perfectly conducting
boundaries. The solution of Figure 9.6 illustrates this condition. A Neumann boundary has the
normal derivative of vector potential equal to zero. The properties of the curl operator imply
that the magnetic field is normal to such a boundary. Figure 9.8 illustrates an application
of the Neumann condition to the calculation of magnetic fields near an iron bar immersed in
a uniform field. The Neumann boundaries at the right and left approximate a uniform field
Bx0 at x = ±∞. The choice of Dirichlet conditions Az = 0.0 on the bottom boundary and
Az = LBx0 on the top give a uniform field in the absence of the bar.

A field plot consists of a set of lines parallel to the local value of B separated by equal
intervals of magnetic flux. The flux density magnitude is inversely proportional to the distance
between lines. In planar geometry, a line of flux density is defined by the equation

dy

dx
=
By

Bx

. (9.33)

or,

Bx dy −By dx = 0. (9.34)

Substituting from Equation 9.24, Equation 9.34 can be written

∂Az

∂x
dx+

∂Az

∂y
dy = dAz = 0. (9.35)
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Figure 9.8: Magnetic fields near an iron bar of width 0.01 m immersed in a uniform field
Bxo = 0.10 tesla. xmin = 0.00 m, xmax = 0.05 m, ymin = 0.00 m, ymax = 0.05 m. Neumann
boundaries on the right and left, Az = 0.0 on the bottom and Az = (0.05)(0.10) tesla-m on the
top. Twenty field lines spaced at a flux interval of 5.0× 10−4 tesla-m.

Equation 9.35 implies that the value of the vector potential is constant along a magnetic field
line. Therefore, a contour plot with equal intervals ∆Az following the method of Section
7.5 is also a plot of flux density lines. The plot of Figure 9.8 has 20 intervals with spacing
∆Az = 5.0× 10−4 tesla-m.

To conclude this section, we shall summarize relationships for magnetostatics in cylindrical
geometry. Expanding Equation 9.24 with ∂/∂θ = 0 gives the field components,

Br = −1

r

∂(rAθ)

∂z
=
∂Aθ

∂z
,

Bz =
1

r

∂(rAθ)

∂r
,

Bθ =
∂Ar

∂z
− ∂Az

∂r
. (9.36)

The third equation is equivalent to Equation 9.12. Here, we can findBθ(R) simply by integrating
the total axial current through the surface bounded by r = R. The top two equations usually
require a numerical solution for Aθ. This component of vector potential arises from azimuthal
currents such as those in solenoid coils. Equation 9.29 takes the form

1

r

∂

∂r
r
∂Aθ

∂r
+
∂2Aθ

∂z2
= −µ0 jθ. (9.37)

The total magnetic flux passing through a plane normal to the z axis between radii r1 and r2 is

∆Φ =
∫ r2

r1
2πrdr Bz. (9.38)

Substituting from Equation 9.36, the enclosed flux is
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∆Φ = 2π
∫ r2

r1

∂

∂r
(rAθ) = 2π ([rAθ]2 − [rAθ]1) . (9.39)

The same result holds for the flux of magnetic field lines through a cylindrical surface between
the points (r, z1) and (r, z2). Therefore, the magnetic flux through any surface is given by the
difference in [rAθ]. The product of radius and azimuthal vector potential appears frequently in
cylindrical magnetic field solutions and is designated as

ψ(r, z) = rAθ(r, z). (9.40)

The equation for a field line in cylindrical coordinates is

dr

dz
=
Br

Bz

. (9.41)

Substituting for the field components from Equation 9.36, we see that field lines lie on contours
of constant ψ. For this reason, ψ is called the stream function. The magnetic flux between the
lines is the same if the contours have equal separation ∆ψ.

9.3 Isotropic magnetic materials

The dielectric materials discussed in Section 2.4 modify electric fields through redistribution of
bound charge. Analogously, there are materials where a distribution of bound current modifies
magnetostatic fields. The most interesting are ferromagnetic or ferrimagnetic materials where
large currents result from relatively small applied fields. The response of magnetic materials is
generally more complex than dielectrics. Therefore, it is useful to list some limitations of the
treatment in this section.

• A rigorous description of magnetic materials requires quantum mechanics. Our discus-
sion is limited to analogies from classical physics. This will be sufficient to interpret
experimental data and to perform numerical calculations.

• The mechanical and magnetic properties are often coupled so that an applied field can
irreversibly change the material state. Time-dependent solutions may be difficult when
the properties depend on the field history. We shall limit discussion to static fields in
materials with an easily identified state.

• Magnetic materials often have a strong anisotropy in the currents generated in response
to an applied field. In this section, we limit attention to isotropic materials and defer
consideration of permanent magnets to Sects. 9.6 and 9.7.

Most magnetically-active materials are conductors that support real current in response to
a time-varying magnetic field. Section 11.4 covers this effect. Here, we shall concentrate on a
different type of current that results from the coordinated circulation of electrons constrained
within atoms. We can imagine that the orbital electrons of certain atoms constitute small
circuits. Figure 9.9a shows the field generated inside and outside an atomic current loop for
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Figure 9.9: Properties of isotropic magnetic materials. a) Magnetic flux density generated by
an atomic current loop. b) Force on atomic current loops in an applied magnetic field. c)
Generation of a surface current by aligned current loops in a magnetic materials. d) Random
orientation of magnetic domains in unmagnetized material.



Finite-element Magnetostatic Solutions 155

positive electron rotation. The field from an atom exerts a force on a nearby atom that seeks
to flip it to the opposite rotation polarity. The implication is that the atoms in a block of
material have a mixture of orientations. In the absence of an applied field the material does
not spontaneously generate a macroscopic field. An applied field exerts a force to align atomic
currents to the same orientation as the current that produces the field (Figure 9.9b). This
effect is called paramagnetism – the prefix para means in the same direction. Figure 9.9c
shows that state of a block of the material when all atomic currents are aligned. The currents
cancel internally but not on the surface. The surface current, in the same direction as the
applied current, increases the magnetic field. In most materials, the magnetic energy to flip
an atom is small compared to its thermal energy, so there is only a small fractional alignment.
Contributions from paramagnetic materials typically make changes of only 10−6 to the field.

In magnetically-active materials like iron or nickel, strong quantum exchange forces act
to align nearby atoms, even at ambient temperature. Because it is energetically impossible
to create large fields external to the material, the alignment does not extend to macroscopic
scales. The resolution is that the currents are aligned in microscopic domains but the domains
are randomly oriented (Figure 9.9d). An applied field can shift domains into alignment because
1) it supplies the energy for external magnetic fields and 2) it provides the forces to move domain
boundaries.

The experiment in Figure 9.10a illustrates the response of magnetically-active materials to
an applied field. A magnetic coil encircles a torus of material with random domain orientation.
The toroidal field that results from atomic alignment is contained entirely within the material;
therefore, the function of the applied field is to exert force to shift domains. We determine the
field contribution from the material as a function of the applied field. Initially the domains
resist shifting so that there is little alignment with increasing current. Above a certain level of
applied field, the domains begin to shift, producing a material field that may ultimately exceed
the applied field by more that a factor of 1000. Increasing the applied field brings all domains
into alignment so there is no further increase in atomic current – the material is in saturation.
This behavior is illustrated in Figure 9.10b, which shows the total magnetic field in the material
versus applied field.

Next, suppose we reduce the applied current to zero. Because force is necessary to shift
domains back to their original state, the material may retain magnetization. The remaining
magnetic flux density generated by atomic currents is called the remanance flux density, Br. A
negative drive current demagnetizes the material. The non-reproducibility of material response
in Figure 9.10 is called hysteresis (from the Greek word meaning lagging). The applied field
necessary to demagnetize saturated material is called the coercive flux density, −Bc. Magnetic
materials exhibit a wide range of values for the coercive flux density. In hard magnetic materials
it takes strong applied fields to realign domains. Here, the value of Bc may exceed a tesla. The
value of the coercive flux density is low (∼ 10−3 tesla) in soft magnetic materials.

In this section, we shall concentrate on soft materials. The hysteresis curve is narrow when
Br ≪ Bs. In this limit, we can ignore the width of the curve so that the total and applied flux
densities lie approximately on a single curve:

Bo =
B

µr

. (9.42)

Equation 9.42 applies to isotropic materials when the total flux density is in the same direction
as an applied field. The quantity µr is the relative magnetic permeability . It equals the ratio
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Figure 9.10: Measurement of the response of magnetic materials to an applied field. a) Ex-
perimental set up. b) Magnetization curve, total field in a magnetic material versus applied
field.
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Figure 9.11: Plot of µr(| B |) for soft iron

of total to the applied flux density and is generally much larger than unity. For the numerical
calculations in the following sections, we view µr as a single-valued function of flux-density
magnitude |B|. It can be determined from experimental hysteresis curves. Figure 9.11 shows a
plot of µr(| B |) for soft iron.
Equation 9.42 leads to a generalized form of Ampere’s law for soft isotropic materials. We
equate the circuital integral of applied field to the product of µ0 times the surface integral of
applied current density,

∮ 1

µr

B · dl =
∮ 1

µr

(∇×A) · dl = µ0

∫ ∫

S
j0 · n dA. (9.43)

Equation 9.43 forms the basis of the finite-element treatment in the following section. Note that
the quantity µr is interpreted as an element quantity that may depend on the field magnitude
in the element.

Conditions on fields adjacent to boundaries between magnetic materials are analogous to
those for dielectrics (Section 2.4). Suppose the materials have relative magnetic permeabili-
ties µr1 and µr2. Applying Equation 9.27 to a narrow box at the interface implies that field
component normal to the boundary is continuous:

B⊥1 = B⊥2. (9.44)

Applying Ampere’s law to a thin rectangle that includes the interface gives the following rela-
tionship for the parallel field component,

B‖1

B‖2

=
µr1

µr2

. (9.45)

On a boundary between a material with µr ≫ 1.0 and vacuum with µr = 1.0, the parallel
component of field is much smaller outside the material. Therefore, magnetic field lines emerge
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Figure 9.12: Path around a test vertex in a conformal triangular mesh for the application of
Ampere’s law.

almost normal to the surface of a material with high µr.

9.4 Finite-element magnetostatic equations

In this section, we shall the finite-element equations for magnetostatics in two dimensions.
Before beginning, it is useful to review the reasons for the approach. An alternative is to
integrate Equation 9.25 directly without setting up a computational mesh. This approach is
viable if we knew all the complete current density distribution in advance. This is not the case
when the solution regions includes magnetic materials. We have no foreknowledge of the atomic
current distribution because it depends on the field solution. Furthermore, a mesh is essential
for many applications. For example, charged-particle orbit tracking may be carried out quickly
interpolating fields from potentials at mesh vertices. In contrast, evaluating Equation 9.25 at
the particle position at each interval would be extremely time consuming.

We shall begin with planar geometry. The strategy is to apply the integral form of Ampere’s
law around the standard closed path encircling a mesh vertex (Figure 9.12),

∮ 1

µr

B · dl =
∮ 1

µr

(∇×Az) · dl = µo

∫ ∫

S
/jzodA. (9.46)

The result is a linear difference equation that relates the vector potential at the vertex to values
at neighboring points. The path encircles one third of the area of the surrounding elements;
therefore, we can immediately write an expression for the right-hand side of Equation 9.46,

µ0

∑

i

jzoiai
3

. (9.47)
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The sum extends over surrounding elements with cross-section area ai. We can extend the
method of Section 2.7, again concentrating on the contribution from element 2. The magnetic
field and relative magnetic permeability are assumed uniform over an element. The condition
of constant field implies that the vector potential is a linear function of x and y,

Az(x, y) = Azo + ux+ vy. (9.48)

The constants u and v may be expressed in terms of the values of vector potential at the triangle
vertices (Az0, Az1, Az2), analogous to Eqs. 2.57 and 2.58. Taking the curl, the element magnetic
flux density is

B2 = v x− u y. (9.49)

The contribution to the line integral of Equation 9.46 from Triangle 2 is

1

µr2

B2 · (La + Lb) =
1

µr2

B2 · L. (9.50)

Equation 2.62 gives an expression for L in terms of vertex coordinates centered at (x0, y0).
Combining all terms, the contribution to the line integral is

[

(Azo(x2 − x1)− Az1x2 + Az2x1) (x2 − x1) + (Azo(y2 − y1)− Az1y2 + Az2y1) (y2 − y1)

4µr2 a2

]

(9.51)
Substituting the cotangent expressions of Section 2.6, Equation 9.51 becomes

1

2µr2

[Azo(cot θ2b + cot θ2a)− Az1 cot θ2b + Az2 cot θ2a]. (9.52)

Following Section 2.7, the difference equation for the vector potential at Point 0 is

Azo

6
∑

i=1

Wi −
6
∑

i=1

AziWi =
6
∑

i=1

µojjziai
3

. (9.53)

The coupling constants are

W1 =
cot θ2b/µr2 + cot θ1a/µr1

2
,

W2 =
cot θ3b/µr3 + cot θ2a/µr2

2
,

...

W6 =
cot θ1b/µr1 + cot θ6a/µr6

2
. (9.54)

Equations 9.53 and 9.54 are identical in form to those for electrostatics; therefore, we can
apply techniques developed in previous chapters. The only changes are a reinterpretation of
the element properties (jz and µr) and boundary conditions.

Although Gauss’ law and Ampere’s law lead to similar expressions in planar geometry, we
must be careful extending the results to cylindrical system because of the asymmetric form of
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the curl operator in r and z. The field component expressions have the same form when written
in terms of the stream function,

Br = −1

r

∂ψ

∂z
,

Bz =
1

r

∂ψ

∂r
. (9.55)

Instead of using solving for Aθ, we take the ψ as a linear function of r and z in an element,

ψ(z, r) = ψo + uz + vr. (9.56)

Modifying the above derivation, the contribution to the line integral for Ampere’s law in Element
2 is

1

2µr2R2

[ψo(cot θ2b + cot θ2a)− ψ1 cot θ2b + ψ2 cot θ2a]. (9.57)

In Equation 9.57, the quantity R2 is an average element radius. The right-hand side of Equation
9.46, an integral over a cross-section in the r-z plane, is unchanged for cylindrical coordinates.

In summary, for cylindrical magnetostatics we solve for the stream function using the dif-
ference equations

ψo

6
∑

i=1

Wi −
6
∑

i=1

ψiWi =
6
∑

i=1

µojjziai
3

, (9.58)

and determine the field components from Eqs. 9.55. The average element radii enter in modified
coupling coefficients,

W1 =
cot θ2b/µr2R2 + cot θ1a/µr1R1

2
,

W2 =
cot θ3b/µr3R3 + cot θ2a/µr2R2

2
,

...

W6 =
cot θ1b/µr1R1 + cot θ6a/µr6R6

2
. (9.59)

We must decide what average to use for R2. Ideally, the quantity could be extracted from a
weighted integral over the path in an element. In practice, it is sufficient to take an average of
the radial positions of the element vertices. For a smooth field solution on the mesh described
in Section 5.2, the average radius should be the same for adjacent elements on the same row,
independent of whether the triangle base is at the top or bottom. The following expressions
(referenced to the vertex and element definitions of Figure 9.12) give good results when used
to find the coupling coefficients W1, W5 and W6 at a vertex:

R1 =
r0 + r1

2
, R2 =

r0 + r1
2

,

R5 =
r0 + r5

2
, R6 =

r0 + r5
2

. (9.60)
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Figure 9.13: Calculation of the fields generated by a C-magnet that extends out of the page.
a) Geometry. A) Coil carrying +12 kA. B) Coil carrying -12 kA. C) Soft iron flux return
structure. D) Neumann symmetry boundary. E) Dirichlet boundary (Az = 0.0). xmin = 0.0
cm. xmax = 24.0 cm, ymin = 0.0 cm, ymax = 13.0 cm. b) Calculated magnetic field lines, peak
gap field of 1.23 tesla.

9.5 Magnetic field solutions

The example of Figure 9.13 illustrates techniques for magnetic solutions with field-dependent
materials. The figure shows a cross section of half a C magnet. The goal is to produce a
vertical magnetic flux density B0 = −1.5 tesla in the air gap between poles of the iron flux-
return structure. The geometry is planar – the magnet extends out of the page. There are two
multi-turn coils in the upper and lower magnet sections with current I0, each represented by
two regions with current in to and out of the page.

We can estimate the required coil current to generate the field from Ampere’s law. The
magnetic flux is continuous around the circuit that passes through the iron and crosses the air
gap. The field magnitude is approximately uniform because the gap and flux return structure
have uniform width. Application of Equation 9.43 gives

Bo

(

Li

µri

+ Lg

)

= 2µ0I0. (9.61)

In Equation 9.61, Li is the length of the integration path through the pole (∼0.42 m), Lg is the
gap height (0.02 m), and µri is the average relative magnetic permeability of the iron. If the
iron is unsaturated with µri ∼ 1000, the first term in parenthesis is negligible. The parameters
imply a drive current of I0 ≈ 1.2x104 A-turns.

The lower boundary of the solution volume has a Neumann condition. In principal, the
other boundaries should be at an infinite distance. In practice, because of field localization
it is sufficient to locate a Dirichlet boundary at a distance equal to several gap widths. The
main part of the solution volume is an air space (µri = 1.0). The regions marked A, B and C
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over-write portions of this space. Regions A and B are coils to the right and left with currents
of ±I0 distributed uniformly over the cross-sections. Region C is the flux-return structure
with the field-dependent magnetic permeability given by Figure 9.11. Region D is a Neumann
boundary and Region E (comprising the top and side boundaries) is set to Az = 0.0.

Solution methods are similar to those for electrostatics. In a relaxation solution (Section
5.5) the adjustment of µri takes place during the correction of field values. There is no cut-and-
tried prescription to choose the sequence of adjustments beyond experimentation with different
combinations of parameters. As an example, the solution for the magnet of Figure 9.13 used a
mesh with 4940 adjustable vertices. The solution reached a relative residual of 2.4×10−7 in 1900
cycles with an average relaxation parameter of ω = 1.875. The relative magnetic permeability
in elements of the flux return piece was initially set to the value for zero total field, µri = 480.
Adjustment of material properties was delayed for 150 relaxation cycles to allow some field
smoothing and then was applied each 25 cycles. To ensure numerical stability, permeability
values were corrected gradually. The following formula mixes predicted permeability values
with the current element values,

1

µnew

=
1− α1

µold

+
α1

µr(|Bnew|)
. (9.62)

The denominator in the rightmost term is the value estimated from the data of Figure 9.11
using the present value of field amplitude. The solution of Figure 9.13 required slow correction
because portions of the iron were close to saturation. The choice α1 = 0.10 provided good
convergence.

Following Eqs. 9.54 and 9.59, coupling constants must be recalculated during adjustments of
material properties. Corrections are necessary only for coupling constants along lines adjacent
to variable elements. We can mark mark elements with variable properties. The coupling
constants associated with a vertex (W1, W5 and W6) are updated if one or more of Elements
1, 2, 5 or 6 (Figure 9.12) are variable. Vertices that meet this condition are marked. The
coupling constants of only these vertices are recalculated following adjustment of µr in the
variable elements. In the mesh of Figure 9.13a there are 1418 marked vertices. Figure 9.13b
shows field lines of the completed solution. The peak gap field is only 1.23 tesla so a higher
drive current is needed. The shortfall results partly from the expansion of the field lines at the
gap (fringing fields). In addition, strong fields lower the permeability to µr ≤ 100 in sections
of the flux return structure, modifying the prediction of Equation 9.61.

Given Az in a planar solution, Eqs. 9.22 and 9.23 give the field components Bx and By.
In cylindrical solutions we must be cautious applying Eqs. 9.55 that involve derivative of the
stream function ψ. Because of the 1/r factor, the equations give invalid fields on the axis and
inaccurate values nearby. For analysis of cylindrical solutions it is better to convert stream
function values at vertices to Aθ. By convention, Aθ = 0.0 at r = 0.0. Radial magnetic field
values are easily evaluated from Equation 9.36. We can write the expression for the axial field
as

Bz =
∂Aθ

∂r
+
Aθ

r
∼= 2

∂Aθ

∂r
. (9.63)

The first form on the right-hand side of Equation 9.63 applies at off-axis points. The sec-
ond form, which follows from a Taylor’s expansion of the vector potential using symmetry
constraints, is used at points close to the axis. Here, the term close means a small distance
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Figure 9.14: Aligned domains in a permanent magnet, definition of the easy axis.

compared to the axial scale length for field variations. In practice, this usually means to a few
element widths.

9.6 Properties of permanent magnet materials

Permanent magnets are materials where the domains are aligned and locked in place during
the manufacturing process [see, for instance, M. McCaig and A.G. Clegg, Permanent Mag-
nets in Theory and Practice, 2nd Edition (Wiley, New York, 1987)]. Figure 9.14 shows
a schematic view of the configuration. Permanent magnets are inherently anisotropic – the
direction of average alignment is called the easy axis of the material. They can produce strong
magnetic fields in external volumes with no power input – the field energy was supplied during
manufacturing. The quality of a permanent magnet material depends on two factors: 1) how
well the domains are aligned and 2) how strongly the domains are locked in alignment.

Application of a moderate applied field perpendicular to the easy axis has little effect on
the domains. Therefore, the total magnetic field in this direction is approximately equal to the
applied field. We can represent the material response with a relative magnetic permeability,

µ⊥ =
B⊥

Bo⊥

∼= 1. (9.64)

The relationship between total and applied flux densities along the easy axis is more in-
teresting. The response is usually represented with a demagnetization curve, a plot of applied
field opposing the magnetization versus total field in the material. The plot corresponds to
the second quadrant of the hysteresis curve discussed in Section 9.3. The measurement is per-
formed with the system of Figure 9.10a. A drive coil encloses a toroidal permanent magnet
with the easy axis in the azimuthal direction. With no drive current (B0‖ = 0.0), the magnetic
flux density inside the torus has a value determined by the degree of alignment, a function of
the material structure. The value is called the remanence flux density and is denoted Br. For
example, the ceramic magnet represented in Figure 9.15 has Br = 0.287 tesla, a small value
compared with the saturation field of iron (2-3 tesla).
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Figure 9.15: Demagnetization curves for a ceramic permanent magnet (Indiana General Indox
3).

To perform the measurement, we slowly apply a current to create an applied flux density
in the direction opposite the remanence flux density until the total flux density in the material
equals zero. The applied field value for this condition is called the coercive force, Hc. The
corresponding flux density is Bc = µ0Hc. If the applied field had no effect on the configuration
of the material, then it would simply subtract from the remanence flux density. In this case,
the demagnetization curve is a straight line with slope -1 and Bc = −Br. Modern magnetic
materials like neodymium iron and samarium cobalt approach this ideal behavior. In contrast,
there is considerable deviation for conventional materials like ceramics, Alnico, ferrites and
cobalt steel. The domains are not strongly locked and can shift with an applied field. The total
field drops below the ideal value. The response of the material is apparent in a plot of the field
contribution from the material,

Bm‖ = B‖ −B0‖, (9.65)

versus the applied flux density B0‖. This plot, called an intrinsic demagnetization curve, is
illustrated in Figure 9.15. Domains begin to shift at an applied flux density of about -0.17 tesla
and the material is completely demagnetized at -0.26 tesla. In this state, the permanent magnet
can produce no external field when the applied current is removed and must be remagnetized
before use. The intrinsic demagnetization curves of modern materials like samarium cobalt are
almost flat out to very large values of applied field. Commercial demagnetization curves are
usually displayed in terms of the total flux density B‖ in kilogauss and the coercive field H‖ in
kilooersteds. Multiplying both axes by 0.1 converts the curves to B‖ versus B0‖ in tesla. Finally,
we should note that demagnetization curves apply only to quasi-static applications where the
magnet is slowly introduced into its working configuration. The material properties can be
quite different in time-varying fields (i.e., electrical motors) or if the magnets are dropped on
the floor.

The magnet circuit of Figure 9.16a illustrates how to use the demagnetization curve in the
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Figure 9.16: Design of a simple permanent magnet device. a) Geometry, one half of system.
A: Cylindrical Alnico 5 magnet. B: Soft iron flux return structure. C: Neumann boundary.
rmin = 0.0 cm, rmax = 3.0 cm. zmin = 0.0 cm, zmax = 3.5 cm. b) Computed magnetic field lines
separated by equal increments of flux. c) Axial magnetic flux density versus r at z = 0.0 cm.
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design of a simple device. A permanent magnet of length Lm and cross-section area Am with
easy axis in the horizontal direction creates a field in an air gap of length Lg and area Ag. A
soft iron flux return structure completes the magnetic circuit. We approximate the iron as an
ideal conductor of magnetic flux with µr ≫ 1.0. Ignoring details of fringing and leakage fields,
conservation of magnetic flux through the device implies that

AgBg = AmB‖. (9.66)

The quantities Bg and B‖ represent the total magnetic flux density in the gap and magnet.
Introduction of an air gap into a permanent magnet circuit is equivalent to the application of
a negative applied field to the material [see, for instance, S. Humphries, Jr., Principles of
Charged Particle Acceleration (Wiley, New York, 1986), 103]. Ampere’s law implies that
the integral of applied field around the magnet circuit equals zero,

B0‖ Lm = −B0g Lg. (9.67)

Taking B0‖ = Bg, we find that the total and applied fields in the magnet material are related
by

B‖ = −
[

AgLm

AmLg

]

B0‖. (9.68)

The intersection of the line of Equation 9.68 with the demagnetization curve gives the operating
point of the material in the circuit. We can then use the value of B‖ to find the magnetic flux
density in the gap. For example, the condition Am ≈ Ag holds for the device of Figure 9.16a.
The gap width is 0.5 cm and the total length of the two Alnico 5 magnets is 3.5 cm. The line
B‖/B0‖ = 7.0 intersects the curve of Figure 9.15 at B‖ = 0.44 tesla. Figures 9.16b and 9.16c
show field lines in the device and a plot of horizontal field over the midplane. The average
operating point and the peak gap field are close to the predicted value.

The target for magnetic field energy in the gap is set by the application requirements. We
shall see in Section 10.2 that the gap field energy is given by

Ug
∼= BgBog

2µo

AgLg. (9.69)

Substitution from Eqs. 9.66 and 9.67 gives

Ug =

[

B‖Bo‖

2µo

]

AmLm. (9.70)

Equation 9.70 shows that Ug is proportional to the magnet volume – we can achieve higher
fields by buying larger magnets. We can also maximize the field energy by seeking an operating
point that gives the highest value of B‖B0‖, thereby using the material most effectively. The
bracketed quantity in Equation 9.70 is called the energy product and has units of J/m3. The
energy product is a measure of material quality. The maximum energy product for a ceramic
magnet is about 10 kJ/m3 compared with values exceeding 100 kJ/m3 for neodymium-iron.
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9.7 Magnetostatic solutions with permanent magnets

Section 8.4 discussed the finite element equations for solutions on a conformal triangular mesh
for linear anisotropic dielectrics. The anisotropy lead to modified expressions for the coupling
constants. With minor changes, the results apply to permanent magnets. The total and applied
flux density in an element can be resolved into components along the easy and normal axes:
B‖, B0‖, B⊥ and B0⊥. The field components perpendicular to the easy axis are related by

B⊥ = µ⊥(|B⊥|)B0⊥. (9.71)

The relative magnetic permeability µ4 is written as a function of the normal component of total
flux density. Because there is little data available on this quantity, we typically set it equal to
unity. The equation for the flux density components along the easy axis is

B‖ = µr‖(|B‖|)(B0‖ −Bc). (9.72)

The functional dependence of µr‖ is given by the demagnetization curve. For an ideal material,
µr‖ = 1.0.
Depending on the magnetic material, we can create numerical models of varying levels of
complexity. We begin with the simplest case, a planar geometry with an ideal magnet where
µr⊥ = µr‖ = 1.0. If the easy axis makes an angle θ with the x axis, the applied field is related
to the total field by

Bo = B+Bc = B+Bc cos θ x+ Bc sin θ y. (9.73)

Application of Ampere’s law (Equation 9.43) around the path shown in Figure 9.12 gives a
relationship between the vector potential at a point and its neighbors. New terms arise from
the circuital integral ofBc. Following the mathematics of Sects. 9.4, the finite element difference
equation is

Ao =
1

∑

iWi

×
[

∑

i

WiAi +
∑

i

µojiai
3

−
∑

i

Bci

2
[cos θi(xi − xi−1) + sin θi(yi − yi−1)]

]

(9.74)

The sum extends over the elements surrounding a vertex, which may represent vacuum, fer-
romagnetic materials, coils or permanent magnets. The coupling constants are given by Eqs.
9.54. Equation 9.74 is the same as Equation 9.53 with the exception of the third term in brack-
ets. This source term for permanent magnet elements is a specified spatial function and makes
contributions similar to those from applied currents. We can understand the physical meaning
of Equation 9.74 by considering a homogeneous permanent magnet where all elements have the
same value of easy axis angle and coercive field. The sum of the third term in brackets equals
zero at internal vertices surrounded by permanent magnet elements. Values are non-zero only
for vertices on boundaries adjacent to both magnet and external elements. Therefore, the ideal
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Figure 9.17: Examples of permanent magnet calculations. a) Planar solution, one quarter of a
1 tesla permanent magnet ring dipole showing directions of magnetization. Neodymium iron.
xmin = 0.0 cm, xmax = 12.0 cm, ymin = 0.0 cm, ymax = 12.0 cm. b) Calculated magnetic field
lines for the ring dipole. c) Magnetic field lines for a cylindrical PPM (periodic permanent
magnet) structure for electron beam focusing. Annular Alnico 5 magnets separated by iron
inserts. Peak field on axis: 0.083 tesla. rmin = 0.0 cm, rmax = 6.0cm, zmin = 0.0 cm, zmax = 9.0
cm.

magnet generates field by producing a surface current density. Equation 9.74 can easily be
extended to cylindrical systems using the analogy between magnetization and applied current.
Following the discussion of Section 9.4, no changes are necessary in the source terms. The
difference is that the solution is carried out for the stream function and a factor of 1/r is intro-
duced in the definition of coupling constants (Equation 9.59). In these solutions, is important
to remember that the device magnetization must be either axial or radial to satisfy cylindrical
symmetry.

Figure 9.17a is an example of a planar field calculation for a ring dipole magnet. Eight
permanent magnet blocks are arranged as shown to generate a vertical magnetic field By ≈
−1.0 tesla. The directions of magnetization are marked with arrows. Because of the system
symmetry, it is only necessary to model the quadrant of the structure shown with a Dirichlet
boundary on the left (Az = 0.0) and Neumann boundary on the bottom (dAz/dy = 0.0). The



Finite-element Magnetostatic Solutions 169

problem has four regions, the air region of the solution volume and three neodymium-iron
blocks with Bc = −1.12 tesla. Figure 9.17b shows the resulting flux density lines. Finally,
Figure 9.17c shows flux density lines in a Periodic Permanent Magnet (PPM) array for beam
focusing in traveling wave tubes. The annular Alnico magnets with axial magnetization produce
an periodic variation of axial magnetic fields with a peak field of ±0.075 tesla on axis.

The next level of difficulty is to handle permanent magnet materials that follow an approx-
imately straight-line demagnetization curve that falls below the ideal. This approximation de-
scribes most neodymium-iron and samarium-cobalt magnets. Here, we must handle anisotropies
because µ⊥ ≈ 1.0 while µ‖ > 1.0. The equations for these materials are most conveniently ex-
pressed in terms of the inverse relative magnetic permeabilities, γ⊥ = 1/µ⊥ and γ‖ = 1/µ‖. The
equations for the coupling constants are slightly different from those for anisotropic dielectrics
(Section 8.4). Replacing the surface integral with the line integral of Ampere’s law leads to the
form

Wi = wia + wi+1b, (9.75)

where

wia =
γyyiyi(yi − yi−1) + γyxixi(yi − yi−1) + γxyiyi(xi − xi−1) + γxxixi(xi − xi−1)

4ai
, (9.76)

and

wib =
−γyyiyi−1(yi − yi−1)− γyxixi−1(yi − yi−1)− γxyiyi−1(xi − xi−1)− γxxixi−1(xi − xi−1)

4ai
.

(9.77)
The values of inverse permeability projected on the coordinate axes are given by

γxx = γ‖ cos
2 θ + γ⊥ sin2 θ,

γxy = γyx = (γ‖ − γ⊥) cos θ sin θ,

γyy = γ‖ sin
2 θ + γ⊥ cos2 θ. (9.78)

The final challenge is to treat standard magnetic materials like Alnico which are both anisotropic
and non-linear. The extra task is to find self-consistent values for γ‖ and γ⊥ in each element from
the local magnetic field. As with any non-linear boundary value problem, we must cyclically
compute the fields and correct values of the material parameters. The process is straightforward.
We resolve the magnetic field vector in each element into amplitude components along the easy
and normal axes. Numerical tables for each material give interpolated values for µ⊥(|B⊥|) and
µ‖(|B‖|). Finally, we insert the values into Eqs. 9.78 to find γ values along the coordinates axes
and then recompute coupling constants for affected vertices. The example of Figure 9.16 was
solved with this method.
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Exercises

9.1. We measure the following components of current density in a flowing plasma: jx = 400
A/m2, jy = 550 A/m2 and jz = 350 A/m2. Find the total current through a circular loop lying
in the x-y plane of radius 0.025 m.
9.2. Use Equation 9.6 to find the magnetic field at the center of a square current loop. The
loop carries current I = 1500 A and has sides of length a = 0.04 m.
9.3. An electron with kinetic energy Te = 10 keV (1.6×10−15 J) is injected normal to a uniform
magnetic flux density B0 = 0.010 tesla. The electron moves in a circular orbit of radius rg.
Show by balancing centrifugal and magnetic forces that the radius is given by rg = γmeβc/eB0,
where me is the electron rest mass and c is the speed of light. The parameters β and γ are
relativistic factors defined in Section 10.6.
9.4. Show that the on-axis magnetic fluw density produced by a thin circular coil of radius R
carrying current I is

Bz(0, z) =
µoIR

2

2 (R2 + z2)3/2
.

9.5. A long solenoid magnet coil with a large number of windings creates an internal magnetic
field B0. Use Equation 9.9 to show that the total force per unit area on the windings equals
B2

0/2µ0 newtons/m
2. For B0 = 2.0 tesla, compare the value to the force per unit area correspond

to one atmosphere.
9.6. A large pulsed current I = 2.5× 106 A passes axially through the array of wires illustrated
in the figure. The array with radius 0.035 m is composed of 12 wires of diameter 2.5× 10−4 m.

a) Find the force on a wire.
b) If the wires are composed of aluminum with density 2700 kG/m3, find their initial accel-
eration.

9.7. A long solenoid coil of radius R1 is centered inside a perfectly conducting metal cylinder
of radius R2. The coil current per unit length has a step excitation to J0 at t = 0.0.

a) Find the magnetic flux density in the regions 0.0 ≤ r ≤ R1 and R1 ≤ r ≤ R2.
b) Find the vector potential Aθ as a function of radius.
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9.8. Prove the relationship

∇ · (∇×A) = 0,

by expanding the operators in Cartesian coordinates.
9.9. Confirm that the vector potential around a long straight wire carrying current I is

Az(r) = −µoI

2π
ln
(

r

R

)

+ A0.

where r is the distance from the wire center and A0 is the value on the wire surface. Find an
equation for the magnetic flux density lines from two wires that carry currents ±I at positions
(−x0, 0.0) and (x0, 0.0).
9.10. A current sheet with an x-directed current density jx = j0 cos(πy/2D) extends infinitely
in the y and z directions. For the parameters j0 = 1.5 × 105 A/m2 and D = 0.10 m, use
Ampere’s law to find magnetic fields inside and outside the sheet.
9.11. Confirm the vector identity

∇× (∇×A) = ∇(∇ ·A)−∇2A,

by expanding the operators in Cartesian coordinates.
9.12. Confirm that the total flux of Br through a cylindrical surface of radius r between points
(r, z1) and (r, z2) equals 2πr[Aθ(r, z2)− Aθ(r, z1)] (see Equation 9.39).
9.13. Construct diagrams of magnetic flux density near current loops to confirm the following.

a) The magnetic force on a loop in an applied field flips so that the field inside the loop is
in the same direction as the applied field.
b) The magnetic force on a loop in the field created by another flips the loop so that the
external fields on the two loops are in opposite directions.

9.14. There are alternatives to Equation 9.42 to define the magnetic permeability that depend
on the application. For example, the quantity called the small signal magnetic permeability
represents the effect of the material on small AC variations of field about a bias level. The
quantity is given by µs = dB/dB0. The following table of values shows B0 as function of B for
a material. Add additional rows for µ(B) and µs(B). Calculate µ from Equation 9.42 and use
the second order polynomial fit of Exer. 8.4 to find µs.

B B0 B B0

0.00 0.00× 10−4 0.60 1.65× 10−3

0.10 1.93× 10−4 0.70 2.29× 10−3

0.20 3.64× 10−4 0.80 3.15× 10−3

0.30 5.68× 10−4 0.90 4.32× 10−3

0.40 8.30× 10−4 1.00 5.91× 10−3

0.50 1.18× 10−3

9.15. Consider a boundary between air and a ferrite with µr = 250 along the line y = 0.0.
The flux densityh components near the boundary inside the ferrite are Bx = 0.055 tesla and
By = 0.046 tesla. Give values for the flux density components on the air side of the boundary.
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9.16. The fgure shows a cross-section of an H magnet that produces a vertical dipole field. The
structure extends a long distance out of page. Each coil shown carries 7500 A. Assuming iron
has very high relative permeability and for dimensions given, use Ampere’s law to estimate the
magnetic field in the gap.

9.17. The figure shows a cross-section of a cylindrical laboratory magnet.
a) What value of coil current creates a magnetic flux density of 0.8 tesla in the gap. b) We
have a 50 A power supply that can drive the coils in series. How many turns should be in
each coil?
c) If the wires have a square cross section and fill the coil region, give the wire cross-section
area and total length of each winding.
d) For copper wires with volume resistivity 1.72× 10−8 Ω-m, what is the resistance of each
winding?
e) How much power does the magnet consume?

9.18. Show that the operating point of an ideal permanent magnet material for maximum
energy product is Bm = Br/2, B0m = −Br/2.
9.19. Find the operating point parameters for maximum energy product for a material with
a straight line demagnetization curve that passes through the points (B = Br, B0 = 0.0) and
(B = 0.0, B0 = −Bc). Give a value for the maximum energy product for SmCo 22B with
Br = 1.05 tesla and Bc = 0.78 tesla.
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9.20. The figure shows a permanent magnetic assembly to produce a dipole field in a particle
spectrometer. The structure extends a long distance out of the page. Assume that 1) Ag = Am,
2) Lm = 0.075 m, 3) the magnetic material is ideal with Br = −Bc = 1.1 tesla, and 4) the iron
return structure has effectively infinite magnetic permeability.

a) Find the value of Lg that makes the most effective use of the magnet.
b) What is the field in the gap for this choice?
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Chapter 10

Static Field Analysis and Applications

This chapter covers techniques to apply solutions of previous chapters to the design of electric
and magnetic field devices. Section 10.1 discusses volume and surface integrals over the regions
of triangular meshes. These quantities can be used to determine inductances, capacitances and
forces. Volume integrals are useful when we know the distribution of current or space-charge
over a spatial region. Surface integrals are necessary when field-dependent material charges
or currents are concentrated on boundaries. Section 10.2 derives expression for magnetic field
energy density and applies volume integrals to find field energy in regions of a solution space.
Section 10.3 reviews capacitance calculations from electrostatic solutions including mutual ca-
pacitances between multiple electrodes. Section 10.4 describes methods to find self and mutual
inductances in systems with arbitrary sets of coils. Section 10.5 covers techniques to find electric
and magnetic forces on rigid body regions.

The next two sections deal with charged particle devices. Section 10.6 reviews particle
orbit tracking in vacuum using numerical field solutions. The results apply to accelerators
and electro-optical devices. Section 10.7 extends the methods to the design of high current
electron and ion guns where the particles make significant contributions to the field solution.
These types of solutions are important for the design of high power RF and microwave tubes.
Finally, Section 10.8 describes simulations of the response of Hall-effect probes, devices used
for magnetic field measurements. The solutions illustrate the implementation of generalized
Neumann boundary conditions in finite-element solutions.

10.1 Volume and surface integrals on a finite-element

mesh

In two-dimensional solutions, volume and surface integrals are equivalent to weighted sum-
mations over element areas or the lengths of vectors on boundaries. To illustrate the procedures,
consider routines to find the volume and surface area of regions in a planar solution volume
on a conformal triangular mesh. If Nreg is the maximum number of regions, we set up two
arrays, Volume(1:NReg) and SurfArea(1:NReg), with entries initially equal to zero. To find
the volume, we cycle through all elements of the mesh, checking the region number N and dis-
carding elements with N = 0. For a valid element with index i, we determine the cross-section
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area ai using the routine of Section 7.1 and then increment Volume(N) by the quantity. At the
end of the procedure the array contains the volumes (per length in z) of the solution regions.
Regions with zero volume are unfilled and correspond to boundaries or points. In cylindrical
solutions the elements represent toroidal shapes that encircle the z axis. In this case, the volume
increment is approximately equal to

∆V = 2πRiai, (10.1)

where Ri is the average of the element vertex radii.
The calculation of surface areas involves a check of all mesh lines between vertices following

the procedure of Section 7.4. We determine the region numbers of adjacent elements. If one
number equals that of the target region and the other does not, the line is on a boundary. The
corresponding component of the SurfArea array is incremented by the length of the line, ∆l,
for a planar solution. At the end, SurfArea contains the surface area (per length in z) of all
valid regions. In cylindrical coordinates, the increment is

2π
ra + rb

2
∆l, (10.2)

where ra and rb are the radii at the endpoints of the line.

10.2 Electric and magnetic field energy

Section 3.1. showed that the work to assemble the charge distribution of an electrostatic solution
can be expressed as a volume integral over the energy per volume,indexElectric field!energy
density

ue =
ǫrǫ0E

2

2
. (10.3)

We can find the electrostatic energy for regions in a numerical solution by applying the volume
integral technique of the previous section. After setting up an array Energy(1:NReg), we check
each element to determine the region number N and the electric field amplitude Ei (Section
7.3). In planar problems, the array components are incremented by

Energy(N) = Energy(N) +
ǫriǫ0 E

2
i ai

2
. (10.4)

In Equation 10.4, ǫri is the relative dielectric constant of the element and ai is the cross-section
area. The calculation yields the region energy per unit length in z. The energy increment in
cylindrical coordinates is

Energy(N) = Energy(N) +
2πRi ǫriǫ0 E

2
i ai

2
. (10.5)

where Ri is the average element radius.
To find the energy of magnetic fields, we must recognize that µ may change substantially

during the creation of fields inside materials. Furthermore, time-dependent effects must be
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Figure 10.1: Calculation of field energy. a) Geometry for the application of Faraday’s law. b)
Configuration of a long solenoid coil.

considered to find the work involved in generating a field distribution. The derivation requires
Faraday’s law (discussed further in Section 11.1). Consider the fixed closed path in space shown
in Figure 10.1a. Application of a time-varying magnetic flux through the surface enclosed by
the loop creates an electric field according to the relationship

∮

E · dl = −
∫ ∫ ∂B

∂t
· n dA. (10.6)

The circuit integral on the left-hand side of Equation 10.6 extends around the loop. The
term on the right-hand side is the integral of the normal component of magnetic field over the
enclosed area. We shall apply Faraday’s law to the special geometry shown in Figure 10.1b,
a solenoid coil of length L and cross section A with N turns per length wrapped around an
isotropic magnetic material. The applied magnetic field is related to the current by

B0 = µ0NI. (10.7)

The energy to create the field is the time integral of power from the drive circuit, the product of
the current and voltage. Equation 10.6 implies that the voltage per turn is V/(NL) = A(dB/dt).
The work to create the field in the solenoid is

U =
∫ t

0
dt′ B0

dB

dt′
(AL). (10.8)

Dividing Equation 10.8 by the volume of the solenoid, AL, gives an expression for the energy
density of magnetic fields,
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um =
1

µ0

∫ B

0
B0(B

′) dB′. (10.9)

Equation 10.9 applies to isotropic materials. The notation B0(B) denotes that the applied fluw
density can be expressed as a function of total field in the material during the field generation
process. The integral in Equation 10.9 is taken over the material hysteresis curve (Section 9.3).
We can write the energy density in an alternate form for soft magnetic materials where the
applied flux density is a single-valued function of the total flux density magnitude,

um =
1

µ0

∫ B

0

B′dB′

µr(B′)
. (10.10)

Given µr(B), we can construct a table of um(B) by numerical integration.
Another form for energy density, similar to Equation 10.3, holds when µr is approximately

constant over the range of field values.

um =
B2

2µoµr

. (10.11)

In air regions, the field energy density is B2
0/2µ0.

As an example, consider the total field energy in a planar solution with several soft magnetic
materials. The loop over elements is the same as in the electrostatic case. The increment of
energy in a region corresponding to a magnetic material is

Energy(N) = Energy(N) + um(Bi) ai. (10.12)

In Equation 10.12 Bi is the magnitude of the total field in element i and ai is the cross-section
area. The quantity um(Bi) is determined by interpolation of a table that must be supplied to
the program.

10.3 Capacitance calculations

In a system with two electrodes the capacitance equals the magnitude of the charge induced on
the surface of one electrode divided by the voltage between them,

C = Q/V. (10.13)

If the system is originally charge neutral and the application of a voltage creates a charge +Q
on one electrode, the charge on the other electrode is −Q. We can show that the total field
energy in the system is

U =
CV 2

2
. (10.14)

One way to find the capacitance of a two-electrode system is to generate an electrostatic solution
with an applied voltage difference of 1 volt, determine the total field energy U using the method
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Figure 10.2: Mutual capacitance calculation for a voltage probe. Geometry and equipotential
lines. A) Grounded chamber. B) High-voltage electrode. C) Probe electrode.

of Section 10.3 and then set C = 2U . For a planar solution, the procedure yields the capacitance
per unit length.

Alternative approaches are necessary when there are three or more electrodes. For example,
consider the voltage measurement illustrated in Figure 10.2. A cylindrical electrode inside a
grounded vacuum chamber has applied voltage V (t). An isolated circular section of the chamber
connected to ground through a current monitor acts as a probe. The mutual capacitance
between the electrode and the probe, Cp, equals the charge induced on the probe divided by the
electrode voltage. If the time scale for voltage changes is long compared to the electromagnetic
propagation time over the system, the current in the probe circuit equals 223

i(t) = Cp
dV

dt
. (10.15)

If we know Cp, we can find the voltage from the time-integral of the probe current.
Mutual capacitance calculations require a routine to find the total surface charge on electrode

regions. For this function we can combine Equation 2.25 with the surface integral technique of
Section 10.1. Suppose we have a target region that corresponds to a fixed potential electrode.
The routine identifies mesh lines, Li = (xi1, yi1, xi2, yi2) that are adjacent to a single element of
the target region. The points in each line vector are ordered so that they point in the direction
of positive rotation with the electrode element on the inside. The other adjacent element must
have a non-zero region number that does not correspond to a fixed potential. The routine finds
the electric field Ei and dielectric constant ǫi in this element and increments the accumulated
induced charge per length on the electrode by

dqi(N) =
(Li × z) · Ei

ǫi
. (10.16)

Equation 10.16 uses the result from Section 2.7 that the unit vector pointing out of the electrode
is given by n = Li × z/|Li|. The charge increment for a cylindrical problem is

dQi(N) =
2πRi (Li × z) · Ei

ǫi
. (10.17)

For the example of Figure 10.2 the procedure gives a induced surface charge on the probe of
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Figure 10.3: Inductance calculations for a simple transformer consisting of two circular coils.
Coil 1 has a uniform density of N1 windings, drive current i1, and total current I1 = N1i1.

−2.058 × 10−13 coulombs for an applied voltage of 1 V. The mutual capacitance is therefore
Cp = 0.2058 pF.

We must exercise caution applying surface integral methods when the calculated values of
the electric field near the surface may be inaccurate. A common example is a rectangular
electrode, where the field calculation in elements adjacent to the sharp edges may have large
errors. An alternative for difficult shapes is to integrate the normal electric field around a
surrounding path that is well removed from the points of discontinuity. Gauss’s law states that
the integral gives the total enclosed charge. As an example, consider calculating the charge
on the surface of the sharply curved central electrode of Figure 10.2. The surface integral
routine yields a value 1.698 × 10−11 coulombs. This is significantly larger that the prediction
of 1.387 × 10−11 coulombs from a calculation of the total field energy in the vacuum gap. In
contrast, a Gauss’ law integration around a surface approximately 1 cm from the electrode gives
1.386× 10−11 coulombs.

10.4 Inductance calculations

The field solutions discussed in Chapter 9 may be used to find the inductances of sets of coils in
two dimensional geometries. To illustrate the definition of inductance, consider the two circular
coils of Figure 10.3. Coil 1 has a uniform density of N1 windings and a drive current i1. The
total coil current is I1 = N1i1. The second coil has the parameters N2, i2 and I2. Some of
the magnetic flux generated by Coil 1 will pass through Coil 2. The flux generated by Coil 1
enclosed within Coil 2 is

Φ12 =
∫ R2

0
2πrdr Bz1. (10.18)

The quantity Bz1 is the axial magnetic field generated by Coil 1 at Coil 2. Faraday’s law
(Equation 10.6) states that the magnitude of voltage across the leads of Coil 2 is
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V2 =
d

dt
(N2Φ12). (10.19)

The flux linked by Coil 2 is proportional to i1:

N2 Φ12 =M12 i1. (10.20)

The constant of proportionality, M12 is called the mutual inductance between Coils 1 and 2.
The unit of inductance is the henry. The flux generated by Coil 1 that links itself is

N1Φ11 = L11i1. (10.21)

The quantity L11 is the self-inductance of the coil. Given the inductances, we can write the
circuit equation for the simple transformer as

V1 = L11
di1
dt

+M21
di2
dt
,

V2 =M12
di1
dt

+ L22
di2
dt
. (10.22)

E Equation 10.22 can be extended to systems of three or more coils.
Although analytic methods give estimates of the inductances for simple coil geometries, we

must turn to numerical methods when the coils have large or irregular cross sections. We can
apply the solutions of Chapter 9 when the following conditions are satisfied.

• The relative spatial variations of time-varying fields are close to those of static fields.

• Magnetic materials in the solution volume exhibit an approximately linear response.

• The density of windings is uniform over the coil cross-section areas.

The first condition holds at low frequency, while the second assumption ensures that the total
field is the superposition of fields from individual coils. As an illustration, consider calculating
M21 for a two-coil system. We set up a field solution with I2 = 0.0 and a current I1 in Coil 1
and find the stream function,

ψ12(r, z) = rAθ(r, z). (10.23)

In the finite-element treatment, the cross-section of Coil 2 is divided into several triangles. The
value of the stream function in element i, ψ12i, is the average of values at the vertices. Following
the discussion of Section 9.2, the axial magnetic flux inside the element radius is

∆φ12i = 2πψ12i. (10.24)

If Coil 2 has cross-section area A2 and the element has area a2i, the total number of turns
passing through the element is N2a2i/A2. Therefore, the total flux linked by the element is
2πψ12iN2a2i/A2. A sum over the elements of Coil 2 gives the total flux linkage. The mutual
inductance equals the flux divided by i1,
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Figure 10.4: Inductance calculation in planar geometry for coils with arbitrary orientation.
Region 1: Solution volume (air). Region 2: Dirichlet boundary. Regions 3 and 4: Drive coil.
Regions 5 and 6: Pickup coil.

M12 =
2πN2

A2i1

∑

i

ψ12ia2i =
2πN2N1

A2I1

∑

i

ψ12ia2i. (10.25)

In Equation 10.25 the quantity I1 is the total amp-turns in Coil 1, I1 = N1i1. Using similar
reasoning, the self-inductance of Coil 1 is

L11 =
2πN2

1

A1I1

∑

i

ψ11ia1i. (10.26)

The sum in Equation 10.26 includes all elements of Coil 1. It is easy to extend Eqs. 10.25 and
10.26 to any collection of coils. Solutions with excitation of Coil 1 give the quantities L11, M12,
M13, .... Similarly, a solution with an applied current in Coil 2 gives M21, L22, M23, ....

In planar systems we seek inductance per length in z. The process involves choosing a
drive coil and finding the flux linked by one or more pickup coils. In the general case the coils
can be tipped with respect to the axes and each other as in Fig 10.4. In the example, Coil 1
is represented by two regions that carry currents of equal magnitude and opposite direction.
Consider the calculation of flux linkage between the two regions of Coil 2 (marked 2a and 2b).
Suppose we pick a reference point on the surface between the two regions. Following Section
9.2, the magnetic flux per axial length between the reference point and an element of region 2a
equals the difference in vector potential, A2ai−Az0. A sum over the elements of the region gives
the total flux per meter between the reference point and the coil. Similarly, the flux between
the point and an element of region 2b is Az0 − A2bi. Therefore, the total magnetic flux per m
between the regions of Coil 2 is



Static Field Analysis and Applications 183

Table 10.1: Flux integrals for the example of Figure 10.4

Region number Inductance factor (H-A/m)
1 −1.10216× 10−7

3 4.18666× 10−4

4 −4.18672× 10−4

5 3.48825× 10−5

6 8.41368× 10−6

φ12 = N2





RegA
∑

i

Aziai
A2a

−
RegB
∑

i

Azia2bi
A2b



 . (10.27)

In Equation 10.27 the quantities A2a and A2b are the areas of Regions 2a and 2b. If Coil 1
carries a total current I1, the mutual inductance per meter is given by

m12 =
N2N1

I1





RegA
∑

i

Aziai
A2a

−
RegB
∑

i

Aziai
A2b



 . (10.28)

Similar expressions apply for the calculation of self inductances. To illustrate, consider the
system of Figure 10.4.The values in Table 10.1 are the sums of Equation 10.28 for each region
with non-zero area for I1 = 1000 A. The self-inductance of Coil 1 equals the difference between
the values for Regions 3 and 4 multiplied by (N2

1/I − 1). Taking N1 = 100 and N2 = 25, the
result is l11 = 8.372 mH/m. The mutual inductance equals the difference between the integrals
of Regions 5 and 6 multiplied by N2N1/I1, or m21 = 66.17 µH/m.

10.5 Electric and magnetic forces on materials

We next review methods to calculate force density on elements and volume-integrated forces on
regions in two-dimensional solutions. To begin, consider magnetic forces in a planar geometry.
Currents in the z direction create flux-density components Bx and By. The forces are normal
to the current and lie in the x-y plane. The choice of procedure depends on whether the
current density distribution is known (such as a specified coil) or whether it depends on the
field solution. The latter option applies to surface current densities on magnetic materials.

Suppose that we know the applied current density j0 over the elements of a region that is
not ferromagnetic. Applying Equation 9.9, the magnetic force components on element i are

fxi = −j0i ai Byi,

fyi = j0i ai Bxi. (10.29)
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Treating the region as a rigid body, the force per unit length equals the sum of the element
components over the cross-section area. In a cylindrical solution with azimuthal current, the
elements forces are

Fzi =
∑

i

−2πRi ai j0i Bri,

Fri =
∑

i

2πRi ai j0i Bzi. (10.30)

where Ri is the average radius. The radial force in Equation 10.30 is the hoop stress on the
region.

The torque on a body is the volume integral of force density weighted by distance from a
rotation axis. If the axis is located at vector position xc, then the torque equals

T =
∫ ∫ ∫

dV (x− xc)× f . (10.31)

In two-dimensional calculations, torque is meaningful only in planar geometry. For an axis at
position (xc, yc), the magnetic torque per unit length on an element is

tzi = (xi − xc)joiaiBxi + (yi − yc)joiaiByi. (10.32)

where (xi, yi) is the center-of-mass of element i.
It is more challenging to determine forces on ferromagnetic regions. Here, the atomic current

densities are mainly confined to a thin layer on the region surface. We can derive useful
expressions if we convert volume integrals for forces to surface integrals. The total magnetic
force on a body is

F =
∫ ∫ ∫

dV j×B. (10.33)

In Equation 10.33 the quantity j is the total current density in the material, the sum of applied
and atomic contributions. Equation 9.21 implies that

j =
1

µ0

∇×B. (10.34)

Substituting in Equation 10.33, the body force is

F =
1

µ0

∫ ∫ ∫

dV (∇×B)×B. (10.35)

The component form of Equation 10.35 in planar geometry for elements of height ∆z is

F =
∆z

µo

∫ ∫

dA

[

x

(

−By
∂By

∂x
+ By

∂Bx

∂y

)

+ y

(

−Bx
∂Bx

∂y
+ Bx

∂By

∂x

)]

(10.36)

Equation 10.36 involves field gradients. It is not useful for finite-element calculations where
fields are uniform in element volumes. To find an alternative form, consider the divergence of
the following vector,

Sx = x
B2

x −B2
y

2
+ y BxBy. (10.37)
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The result is

∇ · Sx = Bx
∂Bx

∂x
− By

∂By

∂x
+ By

∂Bx

∂y
+ Bx

∂By

∂y
. (10.38)

Applying ∇ ·B = 0, the sum of the first and last terms equals zero. Note that the remaining
terms are identical to the first term in parenthesis of Equation 10.36. We can therefore write
the x component for force per unit length as

fx =
1

µ0

∫ ∫

dA ∇ · Sx =
1

µo

∫

dl Sx · n =
1

µ0

∮

Sx × dl. (10.39)

The first alternate form in Equation 10.39 follows from the divergence theorem. We can express
the force in terms of a surface integral over the region boundary. The final form follows from
Equation 2.60. The quantity dl is a vector component of the region boundary pointing in the
direction of positive rotation. If we denote the line segments constituting a region boundary as
dlk = ∆xk x+∆yk y, the total x component of force per unit length is given by the sum

fx =
1

µ0

∑

k

[

−∆xk BxBy +∆yk
B2

x −B2
y

2

]

. (10.40)

To include the effect of atomic surface currents the field quantities in Equation 10.40 must be
evaluated in elements adjacent to the boundary segments outside the material region.

Following similar reasoning, we can show that the y component of force is given by

fy =
1

µ0

∑

k

[

∆xk
B2

x −B2
y

2
+ ∆yk BxBy

]

. (10.41)

The region forces in cylindrical coordinates are

Fr =
2π

µ0

∑

k

rk

[

−∆rk BrBz +∆zk
B2

r −B2
z

2

]

,

Fz =
2π

µ0

∑

k

rk

[

∆rk
B2

r − B2
z

2
+ ∆zk BrBz

]

. (10.42)

A parallel treatment can be applied to electrostatic solutions by integrating the force density

ρE = ǫ0 (∇ · E) E. (10.43)

and applying the condition ∇× E = 0. The expressions are the same as those of Eqs. 10.40,
10.41 and 10.42 with the replacements Bx → Ex, By → Ey, Bz → Ez and Br → Er.
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10.6 Charged particle orbits

Many electronic devices and industrial processes depend on the motion of charged particles
through regions of vacuum or low-density gas. Examples include particle accelerators, X-ray
generators, cathode ray displays, high-power microwave sources, and electron beam welders.
The force on a particle with charge q with velocity v is given by the Lorentz expression,

F = q E+ q v ×B. (10.44)

All quantities in Equation 10.44 are evaluated at the position of the particle, x. The equation
of motion specifies how a force changes the momentum of a particle,

dp

dt
= F. (10.45)

The special theory of relativity gives the following relationship between momentum and velocity

dx

dt
=

p

γ
, (10.46)

where

γ =

√

√

√

√1 +
p2

m2
oc

2
. (10.47)

The quantity p in Equation 10.47 is the magnitude of the momentum vector and m0 is the
particle rest mass. The kinetic energy T is given by

T = (γ − 1) m0c
2. (10.48)

If we know the electric and magnetic fields as a function of position and time, the calculation
of a particle orbit involves a straightforward numerical integration of Eqs. 10.45, 10.46 and 10.47
over small intervals ∆t. We can extend the two-step method Section 4.2 to the set of non-linear
coupled differential equations. To start, we shall express the equations in an convenient form
for numerical calculations. It is usually easy to visualize results when the particle position is
expressed in meters and elapsed time in seconds. On the other hand, values of momentum are
small numbers that do not appeal to the intuition. We can simplify the equations and generate
quantities that are easier to interpret by using a dimensionless momentum that is on the order
of unity,

Px = px/moc,

Py = py/moc,

Pz = pz/moc. (10.49)

For non-relativistic particles, the quantity γ is close to unity. In this case Equation 10.47
involves small differences between numbers. It is more useful to track the quantity
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δγ = γ − 1. (10.50)

The energy factor δγ is a useful quantity for both non-relativistic and relativistic calculations.
The full set of differential equations for particle motion in Cartesian coordinates are

dx

dt
=

cPx

1 + δγ
,

dy

dt
=

cPy

1 + δγ
,

dz

dt
=

cPz

1 + δγ
,

dPx

dt
=
[

q

moc

]

Ex +

[

q

mo(1 + δγ)

]

(PyBz − PzBy),

dPy

dt
=
[

q

moc

]

Ey +

[

q

mo(1 + δγ)

]

(PzBx − PxBz),

dPz

dt
=
[

q

moc

]

Ez +

[

q

mo(1 + δγ)

]

(PxBy − PyBx),

δγ = −1 +
√

1 + P 2
x + P 2

y + P 2
z (10.51)

In analytic orbit calculations it sometimes useful to express the equations of motion in cylin-
drical or spherical coordinates. Generally, non-Cartesian coordinate systems should be avoided
in numerical calculations. Special coordinates give no accuracy advantages and they often lead
to program errors. For example, in cylindrical coordinates there is a numerical discontinuity in
the azimuth, radial velocity, and angular momentum when particles pass near the axis.

To demonstrate application of the two-step method to Eqs. 10.49, we shall write out ex-
pressions for components in the x direction. Consider advancing from tn to tn+1. First, we find
estimates at the midpoint of the interval,

xn+ 1

2

= xn +
cPxn

1 + δγn

∆t

2
,

Pxn+ 1

2

= Pxn +

[

(

q

moc

)

Exn +

(

q

mo(1 + δγn)

)

(PynBzn − PznByn)

]

∆t

2
,

δγn+ 1

2

= −1 +
√

1 + P 2
xn+ 1

2

+ P 2
yn+ 1

2

+ P 2
zn+ 1

2

(10.52)

The second step of the integration is

xn+1 = xn +
cPxn+ 1

2

1 + δγn+ 1

2

∆t,

Pxn+1 = Pxn +





(

q

moc

)

Exn+ 1

2

+





q

mo(1 + δγn+ 1

2

)



 (Pyn+ 1

2

Bzn+ 1

2

− Pzn+ 1

2

Byn+ 1

2

)



∆t,

δγn+1 = −1 +
√

1 + P 2
xn+1 + P 2

yn+1 + P 2
zn+1(10.53)
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Figure 10.5: Numerical calculation of trajectories of electrons trapped in a magnetic mirror
generated by two coil. Plot shows magnetic field lines and the orbits of 5 electrons with
different pitch angle at the midplane.

The field quantities are determined either from analytic expressions or interpolations of nu-
merical data. The main task in orbit calculations on a conformal triangular mesh is to locate
the element occupied by the particle (Section 7.1). A full mesh search is usually necessary
to initiate the particle orbit. Thereafter, a local search of elements surrounding the previous
position is sufficient if the time step is not too large.

Figure 10.5 shows an example of a numerical calculation for the orbit of an electron trapped
in a magnetic mirror. The field, produced by two circular coils, has lower magnitude at the
midpoint. Electrons follow an approximately circular orbit normal to the field while oscillating
axially in the reduced field region. The plot is a projection of the three-dimensional orbit into
the r-z plane of the cylindrically-symmetric system.

More involved integration techniques such as the fourth-order Runge-Kutta method give
better results if we know field values with unlimited accuracy. This is true if the fields
are given by analytic expressions. On the other hand, interpolations of numerical quantities
introduce errors. Therefore, higher order integration methods that require field interpolations
at several intermediate locations may not give higher accuracy. Furthermore, the optimum time
step is often set by the application rather than the integration scheme. One example is the
assignment of space-charge (discussed in the next section). Here, we choose ∆t so that particles
move about one element per time step.

10.7 Electron and ion guns

Models of beam devices become more difficult when the fields created by the particles are
comparable to the applied fields. Applications of high-current beams include klystron guns,
intense ion beam extractors and plasma devices. The challenge is that the particle orbits
simultaneously depend on and affect the total fields of the system. In the discussion of this
section we shall limit attention to electric field contributions. Although beams create both
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Figure 10.6: Particle orbit traces and assignment of space-charge on a triangular mesh.

electric and magnetic fields, magnetic forces are significant only when particles have relativistic
energies. The following models apply to low energy electron devices and ion extractors.

We can divide high-current beam solutions into initial value and boundary value types. An
example of an initial value problem is the particle-in-cell simulation method applied in plasma
physics. The strategy is to represent the behavior of large distributions with a limited number
of model particles. These computational particles characterize the average behavior of the
distribution. The model particles are injected into a solution volume and advanced in position
over small time steps. At each step the charges, positions and velocities are analyzed to estimate
distributions of charge and current density, ρ and j. The source functions are then used to
advance static or dynamic fields. The book C.K. Birdsall and A.B. Langdon, Plasma Physics
Via Computer Simulation (McGraw-Hill, New York 1985) gives a complete description of
the process. In this book we shall limit attention to boundary value solutions that apply to
steady-state beams. The category also encompasses pulsed beams when the duration is long
compared to particle transit times through the device. We can separate solutions for steady-
state high-current beam devices into two categories. In the first we know the characteristics
of particles that enter the solution volume. The task is to calculate trajectories through the
device using self-consistent fields. An example is a beam transport line where the entering beam
parameters are determined by an external source. The second category applies to the design of
injectors that create beams. Here, both the entering particle properties and downstream orbits
depend on fields that are initially unknown.

We shall start with transport problems. In order to calculate electrostatic fields, we must
know the space-charge density of the beam, ρ(X). We can estimate the quantity by replacing
the beam with a number of model particles. Because of the laminar nature of particle orbits
in the absence of collisions, a model particle orbit represents the average behavior of many
neighboring particles in phase space [see, for instance, S. Humphries, Jr., Charged Particle
Beams (Wiley, New York, 1990), Chps. 2 and 7]. The procedure is to follow the model orbits
as though they were single electrons or ions but to assign space-charge along the trajectory as
though the particle carried a significant portion of the beam current. Suppose a model particle
carries current ∆Ii and that we have an initial approximation to the total electric field. We
apply the orbit integration technique of the previous section to find the model particle trajectory,
advancing with a uniform time step ∆t. The integration yields a set of line segments that define
a particle streamline called the trace of the particle orbit (Figure 10.6). The coordinates of a
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Figure 10.7: Self-consistent field calculation for a high-current beam. Injection of a slot beam
into a metal-walled transport chamber. Beam linear current: 1750.0 A/m. Beam kinetic energy:
250 keV. Beam width: 1.0 cm. Chamber width: 4.0 cm. Chamber length: 8.0 cm. a) Orbits
of 100 model particles on second cycle. b) Orbit distribution after 9 cycles. c) Self-consistent
electrostatic potential distribution – maximum potential: 210 kV.

segment for particle i from time tn to tn+1 are xin and xin+1. For continuous beams, each
segment represents a charge ∆qi = Ii∆t centered at xin+ 1

2

. To set the space-charge density on
a mesh, we check each segment as it is generated and find which element contains the midpoiny
coordinate. The space-charge density of this element is incremented by

∆qi
∆Vi

=
Ii∆t

∆Vi
, (10.54)

where ∆Vi is the element volume. After advancing through all model particles, the mesh
contains a map of the space-charge density of the beam.

The problem is that we do not know the fields in advance. The method used in orbit tracing
programs to resolve the conundrum is apply cyclic correction. Initially, the applied field solution
is used to find approximate particle trajectories. After depositing space-charge from the initial
orbits, the field is recalculated with the extra contributions to ρ(x). The corrected fields give
better approximations for the orbits which, in turn, lead to an improved field estimates. With
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appropriate charge averaging, the process usually converges to a self-consistent solution even
for a high-intensity beams. Figure 10.7 shows an example that illustrates the method, injection
of a high-current proton beam into a vacuum transport region. There is no applied field so the
electrostatic potential results solely from the beam space-charge. A 250 keV slot beam with
linear current density J = 1750 A/m and width 1.0 cm enters through the grounded left-hand
boundary. The beam is represented by 100 model particles, each carrying 17.5 A/m. If the
particles traveled in a straight line, the space charge potential at the midplane of the transport
volume would be 250 kV. Clearly this is inconsistent with propagation. Instead, the protons
generate a virtual anode a short distance from the entrance foil. The particles slow almost to
stopping and there is a traverse explosion of the beam. Figure 10.7a shows orbits generated
by a numerical code on the second cycle. The particles moved in the field created by the
particles of the first cycle. The first cycle particles crossed the solution volume in straight-line
orbits because there was no applied field. They created a potential symmetric in x with a
maximum value of 250 kV. Therefore, on the second cycle all orbits were driven to the side
wall. After several iterations, the maximum potential dropped because of beam expansion,
allowing a portion of the particles to propagate forward. Figures 10.7 b and c show the final
self-consistent beam traces and the potential distribution.

Turning next to injectors, the values of current assigned to the model particles depends on
electric field values near the source if the device operates at the space-charge limit . We can
understand the basis of space-charge limited flow by considering the one-dimensional gap of
Figure 10.8a. We shall treat electron flow – modifications for ions are straightforward. The
gap has width d and an applied voltage V0. In steady-state, the time derivative of space charge
density is zero so that the current density must have a constant value j0 at all positions in the
gap. Therefore, the charge density of non-relativistic electrons is given by

ρe(x) = −e ne(x) = − j0
ve(x)

= − j0
√

2eφ/me

. (10.55)

where ve is the local electron velocity. Because the electron density is proportional to 1/ve, the
value divergences at the cathode. The second form of Equation 10.55 follows from conservation
of energy if the electrostatic potential is taken as zero at the source, 1

2
mev

2
e = eφ.

The one-dimensional Poisson equation may be written

d2φ

dx2
=

j0

ǫ0
√

2eφ/me

. (10.56)

Equation 10.56 can also be written in terms of the dimensionless variables Φ = φ/V0 and
χ = x/d as

d2Φ

dχ2
=

Γ√
Φ
, (10.57)

where

Γ =
jo d

2

ǫo
√

2e/me V
3/2
o

. (10.58)
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Figure 10.8: Space-charge-limited emission of electrons. a) Geometry for Child law derivation.
b) Emission surface construction for a numerical solution.

We can solve Equation 10.57 for different values of Γ with the boundary conditions Φ(0) = 0
and Φ(1) = 1. For example, with no space-charge (Γ = 0) the solution is a linear variation of
potential. In this case, the field at the cathode has the value dΦ(0)/dχ = 1. Increasing values
of Γ give reduced values of the field at the cathode. The limiting case is where dΦ(0)/dχ = 0.
Any higher value of Γ would correspond to a decelerating field at the source, inconsistent with
extraction of zero energy electrons.

Solution of Equation 10.57 with the condition Φ′(0) = 0 gives the maximum value Γ =
4/9 = 0.44444. The corresponding maximum current density is

jo =
(

4ǫo
9

)

√

2e

me

V 3/2
o

d2
. (10.59)

Equation 10.59 is the Child law for space-charge limited flow. In this case, the electrostatic
potential varies as φ = V0(x/d)

4/3. The electric field is zero at x = 0.0 and has the value
Ex = −1.333V0/d at x = d.

The zero field condition presents problems for numerical models of space-charge limited
guns. It is impossible to start model particles at the source because they never advance. A
common solution is to originate orbits at a hypothetical emission surface a short distance ds
from the source. Model particle currents are assigned by applying Child’s law over the thin gap
(Figure 10.8b). An iterative process gives the self-consistent value for φs, the absolute potential
at the emission surface. Suppose we make an initial guess of φs. Model electrons reach the
emission surface with velocity
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ve =

√

2eφs

me

, (10.60)

and carry current consistent with the current density

jo =
(

4ǫo
9

)

√

2e

me

φ3/2
s

d2s
. (10.61)

The current for a model particle is the product of the current density and cross-section area
occupied the particle at the surface. The electrons have non-zero velocities in the region down-
stream of the emission surface. Therefore, we can find the associated space-charge from an
integration of the relativistic equations of motion and the prescription of Equation 10.54.

The problem is how to assign charge to the elements between the source and emission
surfaces. Direct calculations from the analytic Child law expressions are difficult to implement
on an arbitrary mesh. An alternative is to project model electrons from the emission surface
toward the source with a velocity given by the negative of Equation 10.60 and current derived
from Equation 10.61. This procedure can lead to density divergences because the particle
velocity approaches zero at the cathode. We can circumvent the problem with a trick. Instead
of the density variation of Equation 10.55, we use an equivalent uniform density that gives the
correct value of electric field at the emission surface, Ex = 1.333φs/ds. The difference between
fields generated by the two distributions is negligibly small when ds ≪ d. The motivation
is that we set a uniform charge density on a triangular mesh by projecting model particles
backward at constant velocity. A solution of the one-dimensional Poisson equation shows that
the desired density value is ρ0 = 4ǫ0φs/6d

2
s. This density results if the model particle moves

backward from the emission surface to the source with the current density of Equation 10.61
and a velocity equal to two-thirds that of Equation 10.60,

vx = −
(

2

3

)

√

2eφs

me

. (10.62)

This method is easy to implement on a two-dimensional mesh because the logic of particle
tracking and charge assignment is the same for forward and backward motions. After several
iterations, the emission surface potential in a planar gap approaches the value

φs = V0

(

ds
d

)4/3

. (10.63)

and the current density carried by model particles approaches the value of Equation 10.59.
Benchmark tests against analytic solutions show that the method predicts absolute values

of emitted current with an absolute accuracy of about 0.1 per cent. Figure 10.9a shows an
application example, a converging beam electron gun for a traveling wave tube. The goal is
to produce a narrow beam with relatively high current density. The empty space between the
cathode and the plotted orbits corresponds to the emission layer. The gun produces a total
current of 1.12 A that compresses to a radius of 1.2 mm at the entrance to the tube. Numerical
calculations are essential in gun design because beam quality is sensitive to small changes in
geometry. The calculation shows some over-focusing on the beam edge resulting in the hollow
profile of Figure 10.9b.
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Figure 10.9: Cylindrical converging beam electron gun for a traveling wave tube. a) Geometry
showing equipotential lines and traces of 46 model electrons with current density assigned to
give space-charge-limited emission. Length in z: 12.0 mm, width in r: 7.5 m. Emission surface
0.3 mm from the cathode surface. A) Cathode (-10 kV), B) focusing electrode (-10 kV), C)
anode and transport tube (0 kV). Current after 12 cycles, 1.12 A. b) Current density near the
exit boundary determined by assigning model electron current to radial bins.
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Figure 10.10: Schematic view of a Hall effect probe showing electric and magnetic forces.

10.8 Generalized Neumann boundaries - Hall effect

devices

Hall effect probes are solid state devices used to measure static and time-varying magnetic
fields. Figure 10.10 shows a schematic geometry. The probe consists of a thin sheet of metal
or semiconductor deposited on an insulating substrate. Electrodes at the ends drive a current.
A component of magnetic field normal to the sheet exerts a transverse force on the conduction
particles. Displacement of the charge generates a transverse electric field that compensates the
magnetic force, allowing particles to travel in relatively straight lines between the electrodes.
Detection of the resulting voltage gives a measurement of the magnetic field. We shall use
equations appropriate to an n-type material where electrons are the majority carriers. If field
variations are slow compared with the electron transit time, a steady-state solution is sufficient.
In this case, the governing equations are

∇ · J = S, (10.64)

and

E = ρJ−KH(J×B), (10.65)

Equation 10.64 expresses conservation of charge – the quantity S is the source current per
volume added or extracted at a point. Equation 10.65 describes current flow in the presence of
crossed electric and magnetic fields. The quantity ρ is the volume resistivity of the material and
KH is the Hall coefficient, a negative number when the majority carriers are electrons. In the
absence of a magnetic field, Equation 10.65 is equivalent to Ohm’s law. With low resistivity,
the equation expresses the balance of electrical and magnetic forces normal to the current.

Commercial Hall probes are usually thin compared to their transverse dimensions. There-
fore, a two-dimensional planar solution is adequate. If the probe lies in the x-y plane and the
magnetic field is in the z direction (B = B0z) the component forms of Equation 10.65 are
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Ex

ρ
= Jx − αJy, (10.66)

Ey

ρ
= Jy + αJx, (10.67)

where α = KHB0/ρ. Solving for the current density components gives

Jx =
Ex + αEy

ρ (1 + α2)
, (10.68)

Jy =
Ey − αEx

ρ (1 + α2)
. (10.69)

We can find finite-element equations for a Hall probe on a conformal triangular mesh by sub-
stituting Eqs. 10.68 and 10.69 into Equation 10.64 and taking volume integrals of both sides
of the equation over the standard path of Figure 2.12a. The right hand side equals one third
of the sum of the current added to the surrounding elements,

∑

i=1

Siai
3
. (10.70)

Current sources may be used to represent the effect of circuit loading on contact pads. The
left-hand side can be expressed as a surface integral. Following Equation 2.60 and 2.61, the
contribution to the integral in Triangle 2 is

w2 z
∫ ∫

J2 · na = w2 (J2 × L). (10.71)

The quantity w2 is the height of the element in z. This quantity is taken as an element
characteristic in order to model Hall probes with varying thickness. Substituting into Equation
10.69 from Eqs. 2.61 and 2.62 and taking E = −∇φ gives the relationship

w2

ρ2(1 + α2
2)

[[

(y2 − y1)u

2
− (x2 − x1)v

2

]

+ α2

[

(y2 − y1)v

2
− (x2 − x1)u

2

]]

, (10.72)

where ρ2 and α2 represent material properties of Element 2.
The first bracketed term in Equation 10.72 is similar to the expressions in the electrostatic

treatment of Chapter 2. It leads to a form for the coupling coefficients similar to Equation 2.67,
with the replacement of the element dielectric constant ǫi by

γi =
wi

ρi(1 + α2
i )

(10.73)

The second bracketed term in Equation 10.72 represents the effect of the magnetic field. Sub-
stituting for u and v from Eqs. 2.56 and 2.57 reduces the term to the expression

α2
φ2 − φ1

2
. (10.74)

Adding terms for the surrounding elements and solving for the potential at the enclosed vertex
gives the final result,
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φo =

∑

i=1 Vi φi +
∑

i=1 Siai/3
∑6

i=1Wi

. (10.75)

where

W1 =
(γ2 cot θ2b + γ1 cot θ1a)

2
, ...

W6 =
(γ1 cot θ1b + γ6 cot θ6a)

2
, (10.76)

and

V1 =
(γ2 cot θ2b + γ1 cot θ1a + γ2 α2 − γ1 α1)

2
,

...

V6 =
(γ1 cot θ1b + γ6 cot θ6a + γ1 α1 − γ6 α6)

2
. (10.77)

Equation 10.75 describes the potential at internal vertices of the solution region with any
spatial variation of magnetic field, resistivity, Hall coefficient and thickness. With no modifi-
cation, the equation also applies to generalized Hall boundaries with curvature and arbitrary
variations of medium properties. The treatment parallels that of a Neumann boundary in
electrostatics except that the condition is that the normal component of J is zero along the
boundary. This condition implies that electric fields intersect the boundary at the Hall angle,
θH = tan−1 α. We can implement the Hall boundary simply by treating the computational
region as though it were surrounded with a layer of elements with αi = 0 and γi = 0. In
this way, all points are treated equivalently and all boundaries automatically assume the Hall
condition unless they have a fixed potential (Dirichlet condition). A Hall boundary adjacent
to elements with αi = 0 is identical to a specialized Neumann boundary.

The following construction gives insight into the physical meaning of Equation 10.75. Figure
10.11 shows a reference point on a Hall boundary for a homogeneous medium. Triangles 1, 2
and 3 are inside the solution volume while Triangles 4,5 and 6 are outside. We determine an
equation that relates φ0 to φ1, φ2 and φ3 by applying Gauss’s around the dashed line. Because
there is no space charge, the integral of normal field equals zero. If the values of α and γ are
zero in the external triangles, then we know from the discussion of Section 2 that the integral
around the curve in the internal triangles is φ0 (W6 +W1 +W2 +W3). To do the integral along
the boundary, note that the condition J⊥ = 0 implies that E⊥ = αE‖. The integral of parallel
electric field from point a to point o is (φ3 − φ0)/2. Therefore, the integral of normal electric
field over the boundary from point a to point b is

∫ b

a
E⊥ · ds = α (φ3 − φ6)

2
. (10.78)

Gathering terms in the integral and solving for φ0 replicates the result of Equation 10.75. For
a homogeneous medium terms of the form (γi+1αi+1 − γiαi) in the expression for Vi cancel in
adjacent triangles except when the surrounding points are on a Hall boundary.

Figure 10.12 illustrates an application of the model. The solution region represents a thin
layer of homogeneous n-type material with a Hall angle of 16.7o. There are driving electrodes at
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Figure 10.11: Integration path for the total current flux away from a reference point on a Hall
boundary. Triangles 1, 2 and 3 part of the probe, while Triangles 4, 5 and 6 are external. The
Hall boundary lies on the lines from vertex 3 to 0 and vertex 0 to 6.

the right and left boundaries. The circles at the top and bottom center are conducting contact
pads. The mesh triangles (Figure 10.12a) conform to the boundaries and allow enhanced
resolution near the pads. Figure 10.12b shows equipotential lines for a solution with the pads
connected to an open circuit. There is a smooth transition from the Dirichlet condition on the
side boundaries to Hall boundaries. The lines intersect open boundaries at the Hall angle, even
in regions of strong curvature. Figure 10.12c shows the effect of circuit loading between the
pads, approximately halving the measure voltage.
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Figure 10.12: Example of a Hall probe model. Height in y direction: 40 µm. Length in x
direction: 100 µm. Thickness: 1.0 µm. Bz = 0.01 tesla. Applied voltage: 10 mV. KH = −3.0×
10−2 V-m/tesla-A. ρ = 0.001 Ω-m. a) Triangular mesh with 3600 elements. b) Equipotential
lines of solution at an interval of 0.25 mV, open circuit between contact pads at top and bottom.
c) Equipotential lines with 620 Ω load on contact pads.
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Exercises

10.1. Use calculus to find expression for the volume of a torus of the figure with circular
cross-section. The torus has major radius R and minor radius a.

10.2. Find the volume of a torus of Exercise 10.1 by splitting it into radial slices and summing
the product of the slice area times 2πr using a spread sheet. The torus has major radius
R = 0.10 m and minor radius a = 0.04 m. Use 4, 10, and 20 radial slices. Compare the results
to the prediction of Exercise 10.2 and a rough estimation from the formula (πa2)(2πR).
10.3. For the table of µ(B) listed below, apply a spreadsheet to find the energy per unit volume
of the material at B = 1.35 tesla. Compare the result to the prediction of Equation 10.11 using
an average value of µ.

B (tesla) µ B (tesla) µ
0.000 1074.918 1.279 456.734
0.214 1053.649 1.297 432.190
0.404 1010.527 1.312 409.998
0.565 949.611 1.326 389.986
0.703 881.153 1.339 371.899
0.820 817.114 1.351 355.533
0.917 764.000 1.363 340.677
0.999 713.144 1.374 327.534
1.066 666.011 1.384 314.371
1.121 622.707 1.393 301.819
1.166 583.062 1.401 291.348
1.203 546.843 1.406 284.198
1.233 513.866
1.258 483.891

10.4. Estimate the amount of field energy stored in the dipole magnets of a large synchrotron
at a peak energy of 400 GeV. The ring radius is 1000 m and the peak magnetic field is 2.0 tesla.
Assume that dipole magnets fill half the ring and have an air gap with cross-section area 10−2

m2.
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10.5. A capacitive probe is used to measure time-variations of voltage on the center-conductor
of a vacuum coaxial transmission line. The probe is a section of the outer conductor with a
rectangular projection that extends 0.01 along z and 0.02 m along θ. The line has inner and
outer radii Ri = 0.075 m and Ro = 0.120 m.

a) What is the capacitance between the center conductor and the probe?
b) The probe drives a 50 Ω terminated cable. What is the signal voltage is the voltage on
the center conductor is V0 cos(2πft), where V0 = 7.5× 104 V and f = 20 MHz.

10.6. The figure shows an array of cylindrical metal plates. The two central plates are suspended
from the top and bottom plates by 8 dielectric rods with radius a = 0.025 m and ǫr = 7.8. For
the dimensions given, estimate the mutual capacitances C14, C12, C13 and C23.

10.7. A magnetic field is created by a current I1 in a thin loop with N1 turns and radius R1.
Use the result of Exercise 9.4 to estimate the flux linked by a smaller second loop with N2 turns.
The loops are coaxial and separated by a distance D = 1.5R1. What is the mutual inductance
M12 for the values N1 = 100, R1 = 0.10 m, N2 = 75 and R2 = 0.06 m?

10.8 The figure shows a detector used to sense the passage of a metal projectile. A permanent
magnet creates a solenoid field of 0.070 tesla inside a cylindrical shell 0.03 m in radius. The
flux inside the shell is constant during the rapid passage of the bullet. A 10 turn loop of radius
0.015 m senses flux exclusion from the metal. Estimate the peak amplitude and waveform of
the probe signal for a projectile of radius 0.003 m, length 0.02 m and velocity 1000 km/s.
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10.9. Find an expression for the self inductance of a solenoid coil with an internal ferrite slug.
The coil has length L and radius R with n turns/length. The slug has µr = 50.0 and a radius
R/3.
10.10. A magnetic parallel to a metal surface is turned on instantaneously at t = 0 s. If B0

is the field magnitude, the field distribution as a function of depth in the material is given by

B(ζ) = B0 exp(−ζ/δ). The quantity δ is the skin depth given by δ =
√

2ρt/µ (see Exercise

12.12).
a) Give an expression for the current density in the metal.
b) Integrate over the current sheet to show that the total force per unit area on the metal
is B2

0/2µ0.
c) What is the force per unit area for B0 = 2.5 tesla?

10.11. The circular current loop of the figure has radius R, carries current I and pivots on an
axis along z. There is a uniform magnetic field B0 in the x direction. Give the torque on the
loop as a function of the angle θ.

10.12. A proton beam moving in the z direction with velocity vz = 7.5×106 m/s has the radial
variation of current density j(r) = j0 exp(−r2/R2), where j0 = 5.0 × 103 A/m2 and R = 0.01
m. The beam movesin a magnetic field with vector components in tesla of B = (0.25,0.10,0.60).
Find the components of net force on the beam.
10.13. Use a vector of the form

Sy = − x BxBy + y
B2

x −B2
y

2
,

to derive the formula for the y-directed force in a planar solution (Equation 10.41)
10.14. A uniform electric field accelerates electrons across a planar gap. The gap has width
d = 0.05 m and applied voltage V0 = 1.5 MV. If the electrostatic potential has the value
φ = 0 at the source, then the electron kinetic energy at any position in the gap is Te = eφ.
Consequently, the relativistic energy factor is γ = 1+eφ/mec

2. Set up a spreadsheet to estimate
the relativistically correct transit time of an electron in the gap, ∆t. Divide the space into 20
sections. Check the result by ensuring that ∆t > d/c.
10.15. Investigate particle oscillations in the relativistic and non-relativistic limits using two-
step integration procedure on a spreadsheet. Pick good normalizing form for force to shift from
non-relativistic to relativistic. Use Eqs. 10.52 and 10.53.
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10.16. Suppose we represent a uniform current-density cylindrical beam of radius 2.0 cm carry-
ing 25 A by 19 model particles. The particles are distributed uniformly in radius with spacing
∆r. Particle n starts at radius (n − ∆r/2. What current should be assigned to each model
particle?
10.17. A high-current 10 MeV electron beam crosses a gap between wire grids. The gap has
width d = 0.05 m and accelerating voltage V0 = 1 MeV. We want to ensure that secondary
electrons generated on the entrance grid are not accelerated. Applying a one-dimensional
treatment, what is the beam current density such that the electric field on the entrance grid
has a positive value and decelerates low energy electrons?
10.18. Give a value for the Child limited current density of He+ ions in a one dimensional gap
with width d = 0.05 m and applied voltage V0 = 5.0× 104 V.
10.19. A simple Hall probe is a rectangular layer with thickness ∆, length L between the drive
electrodes and widthW between the pickups. The material has Hall coefficient KH and volume
resistivity ρ. Assume that L≫ W .

a) If the drive voltage V0 is constrained, show that the ratio of output to drive voltage is
given approximately by

VH
V0

=
KHW

Lρ
B.

b) If the drive current I0 is constrained, show that the ratio of output voltage to drive
current is approximately

VH
Io

=
KH

∆
B.

10.20. In many references Hall effect characteristics of materials are given in terms of quantity
RH , defined by

E = ρJ−RH(J×H).

a) Show that Kh = RH/µ0.
b) For a material with RH = 1.0× 10−10 m3/A-s, ρ = 1.0× 10−6 Ω-m, and ∆ = 1 µm, find
the probe output voltage for a drive current of 1 mA and a magnetic field of 0.005 tesla.
(Use the results of Exercise 10.20).
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Chapter 11

Low-frequency Electric and Magnetic
Fields

In this chapter we advance to numerical solutions for electric and magnetic fields with time
variations. Section 11.1 reviews the physical implications of the Maxwell equations in integral
and differential form. Complete solutions lead to the phenomenon of electromagnetic radiation,
the subject of Chapters 13 and 14. On the other hand, there are many applications where
time variations of fields are important but where radiation is negligible. Rather than solve the
complete Maxwell equations and deal with radiation boundary conditions and severe limitations
on time step, it is often more efficient to simplify the equations. We shall cover such approximate
solutions here and in Chapter 12.

Time-dependent solution methods fall into two classes: frequency domain and time domain.
This chapter concentrates on frequency domain solutions. Here, we seek a steady state where all
sources and fields vary harmonically at a given angular frequency ω. Continuous wave solutions
are boundary value problems; therefore, we can adapt methods developed in previous chapters.
It is important to note that the condition of a unique frequency is valid only in systems with
linear materials. Non-linear materials may lead to frequency conversion. For linear materials,
we can apply Fourier analysis to find the fields resulting from non-harmonic periodic drives.
These include step-function and sawtooth waveforms. The procedure is to find a solution for
each Fourier component and then to combine solutions following the principle of superposition.

Time-domain calculations involve direct solutions of the field equations over small time
steps for specified initial conditions. You might ask, if we can solve initial value problems
with arbitrary time dependencies why bother with difficult boundary value problems? The
answer is that the initial value approach is inefficient for many applications. For example,
suppose we tried to calculate power loss as a function of frequency in an audio transformer by
initiating a sinusoidal excitation at t = 0. Depending on the losses, it may take 10 to 100 cycles
for transients to damp. It would therefore be necessary to make an extended run with the
possibility of accumulated errors. Time-domain solutions are most effective to model devices
with non-linear materials or to calculate the transient behavior of isolated pulses.

The field equations that we shall derive in Sects. 11.3 and 11.5 can be written succinctly in
terms of complex numbers. In preparation, Section 11.2 reviews harmonic functions in complex
exponential notation. Section 11.3 discusses equations for electric fields created by electrodes
with harmonic voltages in imperfect dielectrics. The relationships hold at low to moderate
frequencies. Applications include industrial RF heating, electrosurgery, and plasma processing

205



206 Finite-element Methods for Electromagnetics

Figure 11.1: Illustration of Faraday’s law, voltage induced on a wire loop by a changing magnetic
flux.

of microcircuits. Resistive materials carry both displacement and conductive current. We can
represent the material response in terms of a complex dielectric constant. Section 11.4 covers
methods to solve for the potential with finite-element techniques and to interpret the results.
Section 11.5 covers the mathematic description of magnetic fields generated by harmonic applied
currents in the presence of materials that may have both ferromagnetic and resistive properties.
In this case, the electric fields associated with time-varying magnetic flux drive eddy currents .
These current components may significantly affect the design of transformers, pulsed magnets
and magnetic recording devices.

11.1 Maxwell equations

The Maxwell equations inspire awe because they convey so much information in such a succinct
form. The four simple equations form the basis of the physical universe, the world economic
system, and most advanced video games. On the negative side, summing the hours invested by
decades of perplexed students, these relationships have made impressive contributions to the
sum of human misery. Our goal is to exert some control over this knowledge. Sections 2.3 and
9.1 discussed the static form of the equations in integral and differential form. In this limit the
relationships for electric and magnetic fields are independent. Charges give rise to electric fields
while charges in motion create magnetic fields. Clearly, this viewpoint is not totally consistent.
The motion of a charge depends on the frame of reference. A correct theory should hold in any
frame and must therefore couple electric and magnetic fields.

In this section, we shall complete the picture by including time variations of fields. The time-
dependent Maxwell equations follow from two sources. The first is the experimental observation
by Faraday that electric fields are produced by time-varying magnetic fields. The second is the
postulate of Maxwell that time-varying electric fields create magnetic fields. The introduction
of the displacement current density , proportional to the time-derivative of local electric fields,
unites classical electromagnetism.

To understand Faraday’s law, consider a wire loop of arbitrary shape immersed in a magnetic
field (Fig. 11.1). The voltage between the leads equals the circuit integral of electric field around
the loop,
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V =
∮

E · dl. (11.1)

By convention, the line integral follows the direction of positive rotation given by the right-hand
rule applied along the z axis shown. The magnetic flux linked by the loop is the integral of the
normal component of magnetic field over the surface bounded by the loop,

Φ =
∫ ∫

dA B · n. (11.2)

The unit vector n is normal to the surface and points in the positive z direction. The integral
form of Faraday’s law states that the voltage on the loop equals the negative of the time rate
of change of the flux,

∮

E · dl = −dΦ
dt

= − d

dt

∫ ∫

dA B · n. (11.3)

In applications where elements may move, it is important to recognize that there are several
ways that the quantity Φ in Equation 11.3 can change.

• Time variations of a local magnetic field acting on a rigid and stationary loop.

• Motion of a rigid loop in a constant magnetic field with spatial gradients

• Changes in the area of a stationary loop in a constant magnetic field.

General flux changes may result from any combination of the above processes.
It is important to note that the differential form of Faraday’s law is defined with respect to

fixed surface elements in a stationary coordinate system. Therefore, flux changes result only
from time variations of the local field. The derivation is similar to that of Sects. 2.3 and 9.1.
For example, the circuit integral in Equation 11.3 applied around an element ∆x∆y in the x-y
plane leads to the z component of the curl operator. The complete result is

∇× E = −∂B
∂t
. (11.4)

The partial time derivative denotes a change of magnetic flux density with time at a constant
position.

The circuit shown in Fig. 11.2 illustrates the concept of displacement current. A source
applies a time varying voltage across a fixed parallel plate capacitor C. As discussed in Section
10.3, the charge stored in the capacitor at any time is Q(t) = CV (t). Therefore, the source
must supply a current

I = C
dV

dt
. (11.5)

The circuit is continuous if we postulate that a current equal to that of Equation 11.5 flows
across the capacitor gap. The capacitance between parallel plates with area A and spacing d is

C =
ǫA

d
. (11.6)
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Figure 11.2: Illustration of displacement current – capacitor driven by an AC voltage source.

Inserting Equation 11.6 in 11.5 and noting that the electric field in the gap equals V/d, the
current density is

j =
I

A
=
ǫ

d

dV

dt
= ǫ

dE

dt
. (11.7)

Experiments show that current density in a capacitor is more than an abstraction. It gener-
ates magnetic fields the same way as a real current density. The general expression for the
displacement current density is

jd = ǫ
∂E

∂t
. (11.8)

The partial derivative denotes a time change of electric field at a given location.
Adding displacement current to the differential form of Ampere’s law gives

∇× B

µ
= j0 + ǫ

∂E

∂t
. (11.9)

In Equation 11.9, the quantity j0 is the applied current (i.e., specified coil current) and ǫ and µ
are total values of local dielectric constant and magnetic permeability, ǫ = ǫrǫ0 and µ = µrµ0.
Again, the spatial variations of the quantity µ represent effects of atomic currents in isotropic
magnetic media. The integral form of Equation 11.9 for media with constant properties is

∮ 1

µ
B · dl =

∫ ∫

dA jo · n+ ǫ
d

dt

∫ ∫

dA E · n. (11.10)

Again, the time derivative in the last term may arise from changes in the local value of the
electric field or time variations in the integration path. For reference, the full set of coupled
Maxwell equations in differential form are

∇ · ǫE = ρ0, (11.11)

∇ ·B = 0, (11.12)

∇× E = −∂B
∂t
, (11.13)

∇× B

µ
= j0 + ǫ

∂E

∂t
. (11.14)
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Figure 11.3: Circuit to illustrate complex number solutions. Series inductor, resistor, and
capacitor driven by an AC voltage source.

11.2 Complex numbers for harmonic quantities

The solutions discussed in Sections 11.3, 11.4 and 11.5 are relatively easy if we represent poten-
tials as complex numbers. This section reviews the relationship between harmonic and complex
exponential functions and shows how to extract real physical quantities from complex values.
To illustrate the procedures, consider finding the current in the circuit of Fig. 11.3. The circuit
consists of a series combination of inductor, resistor, and capacitor driven by an AC voltage
source. The condition of zero voltage around the circuit gives the differential equation,

α
di

dt
+ β i+ γ

∫

idt = V0 cosωt. (11.15)

The solution of Equation 11.15 may involve a particular part that represents transients and a
homogeneous solution that corresponds to the steady state. The current of the steady-state
solution varies harmonically at angular frequency ω,

i = I0 cos(ωt+ φ). (11.16)

The goal is to find the amplitude and phase of the current: I0 and φ. One approach is to
substitute Equation 11.16 into Equation11.15 and to manipulate the trigonometric functions,
a laborious process for complicated circuits. We can simplify the mathematics by converting
trigonometric functions to complex notation. It is important to remember that the answers to
physical problems must be real numbers. Therefore, in the end it should be possible to group
the complex numbers of a solution so that imaginary parts cancel.

The complex exponential function is related to trigonometric functions by Euler’s formula,

exp(jωt) = cos(ωt) + j sin(ωt), (11.17)

where j =
√
−1. The inverse relationships are

cos(ωt) =
exp(jωt) + exp(−jωt)

2
,

sin(ωt) =
exp(jωt) + exp(−jωt)

2j
. (11.18)

We rewrite the right-hand side of Equation 11.15 as V0[exp(jωt) + exp(−jωt)]/2 and express
the current in the form
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i(t) = A exp(jωt) + B exp(−jωt). (11.19)

The coefficients A and B in Equation 11.19 are complex numbers that contain amplitude and
phase information. We can find their values by substituting Equation 11.19 in Equation 11.15
and recognizing that terms involving exp(jωt) and exp(−jωt) must be individually equal.

A =
jωVo
2

(−αω2 + jωβ + γ),

B =
−jωVo

2
(−αω2 − jωβ + γ). (11.20)

The complex conjugate of a number C is denoted C∗ and equals the value of C with −j
substituted for j. Inspection of Equation 11.20 shows that B = A∗.

Equations 11.20 give the mathematical answer; we must rewrite the results in terms of real
numbers to extract the physical solution. Expressing Equation 11.16 in complex notation and
setting the result equal to Equation 11.19, we find that

A exp(jωt) + A∗ exp(−jωt) = Io
2

[exp(jωt) exp(jφ) + exp(−jωt) exp(−jφ)]. (11.21)

Equation 11.20 implies that

A =
I0
2

exp(jφ) =
I0
2

[cos(φ) + j sin(φ)]. (11.22)

Multiplying Equation 11.22 by its complex conjugate gives an expression for the current am-
plitude,

I0 = 2
√
AA∗ =

ωVo
√

(γ − αω2)2 + ω2β2
. (11.23)

The phase is given by

φ = tan−1

[

Im(A)

Re(A)

]

= tan−1

[

γ − αω2

ωβ

]

. (11.24)

Half the effort in the above solution was redundant. There was no need to find information
on the complex conjugate of the current. We could have arrived at the same result with the
following convention.

• For the drive term, substitute V0 exp(jωt) for V0 cos(ωt).

• Assume a current variation of the form i = A exp(jωt) and solve for the complex number
A.

• Determine the real values of the current amplitude and phase from the following relation-
ships
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I0 =
√
AA∗,

φ = tan−1

[

Im(A)

Re(A)

]

. (11.25)

The procedure can be adapted to any steady state harmonic problem. We shall see how to
interpret electrostatic solutions with complex potentials in Section 11.4

11.3 Electric field equations in resistive media

In this section we shall discuss methods to find low-frequency electric fields in resistive media.
Figure 11.4 shows an example to motivate the discussion, a three-phase 440 Hz high-voltage
transmission line. The outer boundary is a 6” diameter ground shield. The applied voltages
on the three wires have 100 kV amplitude and phases of -120o, 0oand +120o. The assembly
is immersed in a polyethylene dielectric with ǫr = 2.71. The wires are surrounded by carbon-
loaded conductive polyethylene sheaths (conductivity of 4.0× 10−8 S/m) for field grading. The
goal is to find the peak electric field amplitude and to evaluate power losses in the conductive
sheaths.

For the parameters of the problem, we can reduce the Maxwell equations to a form similar
to the electrostatic equations of Chapter 2. At low frequency radiation effects are negligible.
The criterion is that the system size L is much smaller than the wavelength of electromagnetic
radiation, or

Lω

2π
√
ǫµ

≪ 1. (11.26)

For the example with L = 0.15 m, ω = 2.8× 103, µ = µ0 and ǫ = 2.71ǫ0, the ratio L/λ equals
only 2.3× 10−6. In this case, the electric field arises primarily from Equation 11.11 and

∇× E ∼= 0. (11.27)

Equation 11.27 implies that the electric field can be approximated as the gradient of a scalar
potential, E(x, t) = −∇φ(x) exp(jωt). Finally, we assume that the properties of the medium
do not change with time (∂ǫ/∂t = 0) and that currents result primarily from conduction.

The conductive current density is related to the electric field by

jc = σE, (11.28)

where σ is the material conductivity. In contrast to the discussion of Section 5.4, the time-
varying conductive current generates local concentrations of space charge, ρc. The equation for
the conservation of conductive current is

∂ρc
∂t

= jωρc = −∇ · jc = −σ ∇ · E. (11.29)
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Figure 11.4: Cross-section of a three-phase 440 Hz high-voltage transmission line. a) Geometry.
Outer shield is 6” in diameter. The applied voltages on the wires have amplitude 100 kV and
phases of -120o, 0oand +120o. The polyethylene dielectric has ǫr = 2.71. The carbon-loaded
wire sheaths have volume resistivity ρ = 1.25 × 107 Ω-m. b) Contour plot of the real part of
the potential at 0ophase.
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Equation 11.11 implies that

∇ · (ǫE) = ρc. (11.30)

Combining Eqs. 11.29 and 11.30 gives

∇ · (ǫE) = ∇ · jσ
ω
E (11.31)

or

∇ ·
[(

ǫ− jσ

ω

)

∇φ
]

= 0. (11.32)

Equation 11.32 is identical to Poisson’s equation if we interpret the quantity in brackets as
a complex dielectric constant,

ǫ = ǫ′ + ǫ” = ǫrǫo −
jσ

ω
. (11.33)

The implication is that the finite element equations for low-frequency fields in resistive media
are the same as those for electrostatics except that the quantities φi, ǫi and Wi may be complex
numbers. Physically, this means that there are phase differences in electric fields at different
locations because the medium has both resistive and capacitive properties. Figure 11.4b shows
the solution for the three-phase line. Contours of the real part of the potential are plotted at
t = 0.0. In contrast to an electrostatic solution, the lines are skewed because of phase shifts in
the conductive sheaths. The following section describes how to solve Equation 11.32 and how
to understand results like those of Fig. 11.4.

11.4 Electric field solutions with complex number

potentials

In this section we shall concentrate on electric field solutions in conductive media using a
two-dimensional triangular mesh. The three main tasks are understanding boundary conditions,
solving the simultaneous set of linear equations, and interpreting the results. For illustration,
Figure 11.5 shows an example from bioengineering, heating of subcutaneous tissue by bipolar
electrical probes pressed into the skin. By symmetry, only half the problem need be represented.
Because of the poor conductivity of the epidermal layer, DC probe voltages would be useless
for the application. On the other hand, the layer can conduct significant displacement current
at high frequency. To ensure that the special Neumann condition (Equation 2.72) applies
on unspecified boundaries, we set up an indexing system so that all elements external to the
solution region have zero real and imaginary parts of the dielectric constant. On fixed potential
surfaces (such as the electrodes) the amplitude and phase of the voltage are given in terms of real
and imaginary parts. Because we do not expect applied space-charge in the physical systems
modeled, elements have only two material properties: the real part of the relative dielectric
constant ǫr and the electrical conductivity σ. Given the frequency of the probe voltage, we
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Figure 11.5: 11.5. Heating of tissue of small bipolar electrical probes. a) Geometry. xmin =
−1.5 mm. xmax = 0.0 mm. ymin = −1.2 mm. ymax = 1.5 mm. A) Grounded solution boundary.
B) Symmetry boundary, ground. C) Air. D) Probe, V0 = 60 V, φ = -90o. E) Epidermal layer
with ǫr = 60 and zero conductivity. F) Subcutaneous tissue with ǫr = 2, σ = 1 S/m. b)
Contour plot of the real part of the potential at φ = −90o. c) Potential contour plot at φ = 0o.
d) Contour plot of power deposition.
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can find the complex dielectric constant. For example, the value in element n which is part of
material region k is

ǫn = ǫrk ǫ0 − j
2πσ(k)

f
. (11.34)

Values of potential at vertices have the form

φ(x, y, t) = Φ(x, y) exp(jωt). (11.35)

The complex number Φ contains information on amplitude and phase. We disregard the com-
mon factor of exp(jωt) in all source and field values and solve the boundary value problem for
Φ. The complex potential is normally stored as a two component record consisting of real and
imaginary parts, Φ = [Φr,Φi]. A grounded boundary has the fixed value Φ = [0, 0]. For a probe
with amplitude V0 and phase φ, the fixed potential is

Φ = [Vo cosφ, Vo sinφ] (11.36)

In the example of Fig. 11.5, the probes have amplitude ±60 V and phases ±90o, or Φ = [0, 60]
and [0, -60]. The calculation is performed inside a grounded box.

The coupling constants on a conformal triangular mesh are given by Eqs. 2.67 or 2.74.
Equations 2.68 and 2.73 determine the potential values. The difference is that the quantities
Φ, ǫ and W are complex numbers. The equations can be solved with the same relaxation or
matrix routines that we have developed simply in FORTRAN by changing variable types to
COMPLEX.

Regarding interpretation of the solutions, the main quantities of interest are interpolated
values for the amplitude and phase of the potential and the two electric field components
(Ex, Ey) or (Ez, Er). Again, we can easily adapt existing routines. The linear three-point
formula or least squares fit procedure are applied separately to the real and imaginary parts
of the complex potential to determine the quantities Φr, ∂Φr/∂x, ∂Φr/∂y, Φi, ∂Φi/∂x, and
∂Φi/∂y. The amplitude and phase of the potential at the target point are

φ0 =
√

Φ2
r + Φ2

i ,

α = tan−1
(

Φr

Φi

)

. (11.37)

The real and imaginary parts of the electric field components are given in terms of the spatial
derivatives of the complex potential. For example, assuming a form Ex0 cos(ωt+ αx) for the x
components of electric field, the amplitude and phase are given by

Ex0 =

√

∂Φr

∂x

2

+
∂Φi

∂x

2

, (11.38)

and

αx = tan−1

[

∂Φi/∂x

∂Φr/∂x

]

. (11.39)
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Amplitude and phase information for the fields can be plotted using the techniques of Chapter
7. A useful quantity for applications to radio-frequency heating is the time-averaged resistive
power density in elements with non-zero conductivity,

p =
σ (E2

xo + E2
yo)

2
. (11.40)

The factor of two in the denominator results from averaging over the harmonic time variation.
We can find the total power deposited in a solution region by multiplying the quantity of
Equation 11.40 by the element volume and summing over all elements in the region.

In the probe example of Fig. 11.5, the skin layer has zero conductivity and a relative
dielectric constant of ǫr = 60. The subcutaneous medium has ǫr = 2.0 and σ = 1.0 S/m.
Figure 11.5b shows contours of the real value of potential at zero phase for f = 100 MHz.
Although most of the electrical field is concentrated in the skin layer some energy is coupled to
the region below. Figure 11.5c shows a contour plot of power density. An integral over elements
gives a total power deposition of 1.46 kW/m. The power density information can be coupled
to a thermal transport code (Chapter 12) to find temperature changes in the tissue.

11.5 Magnetic fields with eddy currents

In the static magnetic field solutions of Chapter 9, we dealt with applied currents in coils and
atomic currents that result from domain alignment. Time-varying magnetic fields can generate
a third type of current. The electric field associated with changing magnetic flux drives currents
through conductive materials. Eddy currents are of particular concern in magnetic materials
with high conductivity like iron. They can significantly reduce the effectiveness of transformers
and other devices.

To derive approximate equations we assume that real currents in the solution volume are
much larger than displacement currents. The condition is equivalent to

f ≪ σ

2πǫ
. (11.41)

In ferrites with low conductivity, the limit of Equation 11.41 holds for frequencies below about
1 MHz. The approximation holds for most frequencies of interest in iron. Dropping the dis-
placement current, Equation 11.14 becomes

∇× B

µ
= Jo + Jc. (11.42)

In Equation 11.42 the quantity J0 is the applied current density in coils and Jc is conductive
current in metals and semiconductors. The magnetic flux density can be expressed in terms of
a vector potential (Equation 9.24). We can rewrite Faraday’s law as

∇× E = − ∂

∂t
(∇×A). (11.43)

If there are no free charges to create electrostatic-type fields, then Equation 11.43 implies that
the total electric field is related to the vector potential by



Low-frequency Electric and Magnetic Fields 217

E = −∂A
∂t

(11.44)

The conductive current is therefore given by

Jc = −σ ∂A

∂t
(11.45)

Combining Eqs. 11.42 and 11.45 gives a differential equation for the vector potential,

∇ · ( 1
µ
∇A) = −Jo − σ

∂A

∂t
= −Jo − jσωA. (11.46)

The final form applies to a system with steady-state harmonic drive currents at angular fre-
quency ω.

Equation 11.46 is the same as the static equation for magnetic field with the exception of
the term jσωA. We can apply the method described in Section 9.4 to convert the equation to
the finite-element form on a conformal mesh, treating the eddy current density the same way as
the source current. For example, consider a planar solution determined by the vector potential
Az. The eddy current contributes a term

j
∑

i

σi ω ai Azi

3
. (11.47)

We must decide how to take the sum in Equation 11.47 over the vector potential in surrounding
elements. If the local variation of Az is approximately linear with x and y, contributions to the
average from neighboring vertices cancel and it is sufficient to approximate the term as

jωAzo

3

∑

i

σiai. (11.48)

In Equation 11.48, the quantity Az0 is the value at the test vertex. By analogy with Section
9.4, the finite-element difference equation at a vertex is

∑

i

WiAzi − Azo

∑

i

Wi = −
∑

i

Jzoiai
3

− jωAzo

3

∑

i

σiai. (11.49)

Solving for Azo gives a form suitable for a relaxation solution,

Azo =

∑

i WiAzi +
∑

i Jz0iai/3
∑

i Wi − jω
∑

i aiσi/3
. (11.50)

In contrast to the electric field solutions of Section 11.4, the coupling constants Wi are real
numbers. The quantities that must be stored as a complex numbers are the vector potential
(or stream function) and the sum of applied current densities around a point,

∑

i

Jz0iai
3

. (11.51)

The complex values of Jz0i represent the amplitude and phase of element drive currents. The
mechanics of the solution is similar to that for static field solutions. For example, in a relaxation
solution we calculate a complex residual
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Figure 11.6: Benchmark eddy current solution, penetration of an AC magnetic field into a
metal slab with µr = 1.0, σ = 1.011 × 104 S/m. Predicted skin depth at 1 MHz: δ = 0.5 cm.
Plot of the amplitude of By(ζ).

R =

∑

i WiAzi +
∑

i Jz0iai/3
∑

i Wi − jω
∑

i aiσi/3
− Az0. (11.52)

for each vertex and correct values according to

A′
z0 = Azo + ωR. (11.53)

The quantity ω in Equation 11.53 is the over-relaxation factor. Determination of the amplitude
and phase of magnetic fields from the complex vector potential is similar to the procedure
described in Section 11.4. Again, resistive power dissipation per volume may be of interest for
applications. The value in an element with vertices 1, 2 and 3is approximately

p =
ω2σ

2

(

Az1 + Az2 + Az3

3

)2

. (11.54)

Figure 11.6 shows a benchmark test to check the algorithm, penetration of an oscillating
magnetic field into a metal surface. The analytic result [see, for instance J.D. Jackson, Classical
Electrodynamics, Second Edition (John Wiley, New York, 1975), 336] is that the magnetic
field parallel to the surface varies inside the metal as

B = Bo exp(−ζ/δ) exp(jζ/δ) = Bo exp(−ζ/δ)[cos(ζ/δ) + j sin(ζ/δ)]. (11.55)

In Equation 11.55, B0 is the field at the surface, ζ is the distance from the surface, and δ is the
skin depth,

δ =

√

1

πµσf
. (11.56)
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Figure 11.7: Frequency response of a recording head. xmin = 0.0 mm. xmax = 6.0 mm.
ymin = −3.0 mm. ymax = 6.0 mm. A) Ferrite with small gap, µr = 500, σ = 103 S/m. B) Top
of drive coil. C) Bottom of drive coil. a) Geometric definitions and magnetic field lines at 1000
Hz. b) Magnetic field lines at 2 MHz.

The quantity σ is the conductivity, µ is the magnetic permeability, and f is the field oscillation
frequency. In the example, the choice of µ = µ0, σ = 1.011 × 104 S/m and f = 1 MHz gives
a skin depth of δ = 0.5 cm. For the solution, we create a magnetic flux by assigning constant
vector potential values of 0.0 tesla-m to the left boundary and 2.5× 10−4 tesla-m to the right.
Figure 11.6 shows the variation of By(ζ). The field is constant in the air region and falls off
exponentially with depth in the metal. The field amplitude at a depth of 0.5 cm is within 0.2
per cent of the theoretical value and the phase difference is 55.6o, close to the predicted value
of 57.3o.

Figure 11.7 shows an applications example, calculation of the frequency response of a record-
ing head. The coil creates a high frequency magnetic field carried through a ferrite to a narrow
gap. The concentrated field magnetizes a tape passing over the gap. The solution region ex-
tends 6 mm in x and 9 mm in y. The top and bottom sections of the coil have equal amplitude
and a 180ophase difference. The ferrite has µr = 500 and σ = 1.03 S/m, giving a skin depth of
δ = 1 mm at f = 505 kHz. Figure 11.7a shows magnetic field lines at low frequency (1 kHz).
The result is indistinguishable from a static solution. The field is distributed throughout the
ferrite with low values of fringing field near the gap and a small leakage flux. The results of
Fig. 11.7b at high frequency (2 MHz) are quite different. The field cannot penetrate the ferrite
and is concentrated near the coils. Because of the increased leakage flux, the field magnitude
at the gap drops by a factor of 3.5.
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Exercises

11.1. A magnetic field is produced by loop of radius R = 0.3 m carrying I = 5.0 × 104 A. A
smaller loop moves along the axis from z = −∞ to z = ∞ at a constant velocity of 5 m/s.
This loop, with 10 turns at radius a = 0.02 m, is connected to a high-impedance oscilloscope.
Plot the measured voltage as a function of time.
11.2. A long aluminum cylinder collapses radially toward the axis. At t = 0/0, the cylinder
has radius R = 0.03 m, thickness δ = 0.002 m, and radial velocity -1000 m/s. At this time, the
interior volume is filled with a solenoid magnetic field of magnitude B0 = 0.1 tesla.

a) Neglecting resistance, plot the magnetic field as a function of time and the acceleration
history of the cylinder.
b) What is the peak magnetic field at the turning point?
c) Aluminum has the following properties (at room temperature). Density: 2700 kG/m3,
melting point: 660 oC, volume resistivity 2.65x10−8 Ω-m and specific heat 890 J/kg-oC. Make
a rough estimate to determine if the cylinder reaches the turning point before melting.

11.3. The figure shows a circuit driven by an AC voltage source, V0 cosωt.
a) Find an expression for the current through the resistor.
b) Find the amplitude and phase of the current for V0 = 12.5 V, L = 50.0 × 10−6 H,
C = 2.5× 10−6 F, R = 2.75 Ω, and ω = 1.2× 104 s−1.

11.4. An AC voltage V0 cos(2πft) is applied across circular parallel plates with spacing d and
radius R.

a) Assuming constant voltage over the plate areas and neglecting edge effects, find an
expression for the magnetic field between the plates as a function of distance from the
center.
b) Find the magnetic field at r = R/2 if d = 0.015 m, R = 0.25 m, V0 = 1500.0 V and
f = 50 MHz.
c) Is the assumption of constant voltage on the plates justified for the parameters of Part
b)?

11.5. An AC electric field solution gives the following expression for the complex potential,

φ(x, y) = 100.0 [1 + cos(xy)− x2] + 50.0j [sin2(y)− x+ y3].

Find numerical values for the amplitude and phase of φ, Ex and Ey at the point (1.5,0.75).
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11.6. The figure shows a space of width d = 0.02 m between parallel plates of area 1 m2. The
space is divided into two layers of width 0.01 m. Layer 1 has parameters ǫr = 2.7 and σ = 0.0,
while Layer 2 has ǫr ≪ 1.0 and σ = 2.78×10−3 S/m. The right plate is grounded and a voltage
V0 cosωt is applied to the left plate. Use values V0 = 50 V and ω = 6.283× 107 s−1.

a) Use the complex form of the Laplace equation (Equation 11.33) to find an expression
for the complex value potential at the interface between the materials. Give values for the
amplitude and phase of the potential.
b) Layer 1 acts like a capacitor and Layer 2 acts like a resistor. Find equivalent values of C
and R for the layers.
c) Solve the equivalent RC circuit and show that it leads to the same results as Part a)

11.7. A medium with graded conductivity fills a space of width d = 0.075 m between parallel
plates. The right plate is grounded and the left plate has an AC applied voltage with amplitude
V0 = 100 V, phase φ = 60o and frequency f = 5.0× 104 Hz. The medium has uniform relative
dielectric constant ǫr = 10.0 and a spatially-dependent conductivity σ(x) = 105 (x/d) S/m.

a) What are the values of complex potential on the two electrodes.
b) Solve the one-dimensional Poisson equation for the complex potential with the given
boundary conditions to find the voltage amplitude and phase as a function of position.

11.8. Take the curl of Equation 11.43 to show that one-dimensional diffusion of AC magnetic
fields into a uniform material with no applied current density is described by the equation,

d2By

dx2
= jσωµBy.

Verify Equation 11.55 by substitution into the above equation and confirm the skin depth
expression of Equation 11.56.
11.9. An AC current I0 cosωt is applied to the long conducting rod of radius A. The rod
has uniform values of µ and σ. We want to find the distribution of current density using a
one-dimensional model. Confirm that Ampere’s law gives the following relationship between
the toroidal magnetic field and current density in the rod.

dBθ

dr
= rµjz.

Faraday’s law relates the two quantities as

djz
dr

= jωσBθ.
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so that the diffusion equation for axial current density is

d2jz
d2r

= jωσµrjz.

In the limit of high frequency, the equation implies that the current density is confined to the

surface of the rod within a distance equal to the skin depth, δ =
√

2/ωµσ. At low frequency,
we expect that the current density is uniform in radius.

a) Estimate the transition frequency by a dimensional analysis of the above equation.
b) Estimate the transition frequency by setting L/R = 1/ω, where the inductance per unit
length of the rod is about L ∼ µ/2π and the resistance per length is R ∼ 1/σπA2.
c) Alternatively, we could use the two equations to derive a diffusion equation for Bθ. What
is the advantage of this approach?

11.10. A high-frequency transformer core is composed of laminations of thin silicon steel. The
laminations have width 0.05 m, thickness 5× 10−5 m, average magnetic permeability µr = 500
and volume resistivity 50 × 10−8 Ω-m. What is the approximate limit on frequency such that
the core behaves like an ideal inductor?
11.11. A transmission line has a solid copper inner conductor of radius Ri = 0.010 m and
volume resistivity 1.7× 10−8 Ω-m. The copper outer conductor has radius Ro = 0.025 m. The
line carries an AC signal with current I = 50.0 cosωt. Estimate the power loss per meter in
the inner and outer conductors at frequencies f = 20.0 MHz and 500 MHz.



Chapter 12

Thermal Transport and Magnetic Field
Diffusion

In this chapter we advance to fully time-dependent initial value solutions. We shall concentrate
on diffusion solutions, an important class in all areas of physics and engineering. Applications
include neutron transport in reactors, doping of semiconductors, dispersal of pollutants, and
the distribution of ion species in plasma etching devices. As an introduction, the first three
sections deal with thermal energy transport in solids. The goal is to find temperature variations
in space and time in systems that consist of contiguous volumes of solid materials. An example
is the transient temperature distribution in a nuclear fuel rod.

Section 12.1 applies the law of energy conservation to find the differential and integral equa-
tions of thermal transport. Section 12.2 reviews the conversion of the differential diffusion
equation to a set of difference equations using finite-difference methods on a rectangular mesh.
There are several options, some of which lead to severe constraints on the time step for nu-
merical stability. The implication is that some methods may be mathematically correct but
impractical. The section introduces the Dufort-Frankiel algorithm to solve diffusion problems.
This technique is easy to implement in computer programs and is stable for any choice of ∆t.
Section 12.3 derives thermal transport difference equations from the finite-element viewpoint
on a conformal mesh. A modified version of the Dufort-Frankiel method applies. It is relatively
easy to extend solutions to complex materials where the thermal conductivity and specific heat
vary with temperature. Section 12.4 discusses special problems of numerical stability on trian-
gular meshes. Instabilities can be avoided by setting constraints on triangle geometry in the
mesh generation process.

Section 12.5 shows that pulsed magnetic field penetration into conductive materials is
governed by diffusion equations. Applications include high-field magnets, magnetic shaping
of metal parts, pulse transformers and high-power plasma devices. The section covers two-
dimensional finite-element solutions with a single component of vector potential.

223
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12.1 Thermal transport equation

The conduction of heat in one dimension between two positions in a solid is approximated by
the relationship

qx = −k T (x2)− T (x1)

x2 − x1
. (12.1)

The quantity T (x) is the local temperature and qx is the thermal flux in units of watts/m2. The
quantity k is the material thermal conductivity with units joule/m-oK. We shall assume that k
is independent of direction (isotropic material) but may vary with temperature. Equation 12.1
states that heat flows from locations of high temperature to those of low temperature. The
flux is proportional to the temperature difference and inversely proportional to the distance
between the locations. The three-dimension form is

q = −k ∇T. (12.2)

Note that the thermal flux is a vector quantity.

A thermal equation with temperature as the only dependent variable can be derived by
applying the principle of energy conservation to a small volume. We include the option of a
volumetric heat source U(x, y, z, t) with units of W/m3. The source and thermal flux change
the local energy density in the medium. In that limit that the material density is constant (no
work by pressure forces), we can write the rate of change in energy density as

ρCp
∂T

∂t
(12.3)

In Equation 12.3, the quantity ρ is the material density in kg/m3 and Cp is the specific heat at
constant pressure in J/kg-oK. Equating the expression of Equation 12.3 to the power contribu-
tion of sources and the incoming thermal flux gives the equation

∫ ∫ ∫

dV ρCp
∂T

∂t
= −

∫ ∫

q · n dS +
∫ ∫ ∫

UdV. (12.4)

The first term on the right-hand side of Equation 12.4 is a surface integral of thermal flux.
Here, the quantity dS is an area element of the surface and n is a unit vector pointing out of
the volume normal to the surface. We can use the divergence theorem to convert the surface
integral to a volume integral of∇·q. Taking the limit at a point and substituting from Equation
12.2 leads to the differential form of the thermal transport equation,

ρCp
∂T

∂t
= ∇ · (k∇T ) + U. (12.5)

Section 12.2 shows how to solve thermal diffusion problems by converting Equation 12.5 to a
set of difference equations on a rectangular mesh. Section Section 12.3 derives finite-element
difference equations by applying Equation 12.4 to volumes on a conformal triangular mesh.
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It is informative to work through a solution of Equation 12.5. The results are useful for
estimating parameters for numerical solutions and creating benchmark tests. Consider a one-
dimensional system that consists of a homogeneous material over the region −L/2 ≤ x ≤ L/2.
The medium has no thermal sources and uniform values of k and Cp. The initial temperature
distribution T (x, 0) has the uniform value T0 over the range −αL/2 ≤ x ≤ αL/2, where α < 1.
The temperature at the boundaries has the constant value T (−L/2) = T (L/2) = 0.0.

Applying separation of variables, we assume a solution that consists of a set of Fourier
spatial modes

T (x, t) =
∞
∑

n=1

Ton fn(t) cos(
πnx

L
). (12.6)

We can find the temporal variations of each mode, fn(t) by substituting Equation 12.6 in
Equation 12.5. The result is

∂fn
∂t

= −
[

k

ρ Cp

]

[

πn

L

]2

fn. (12.7)

If we assume that the temporal functions equal unity at t = 0.0, the solution of Equation 12.7
is

fn(t) = exp(−t/τn). (12.8)

The mode time constant in Equation 12.8 is

τn =
ρ CpL

2

k π2n2
. (12.9)

We can find the mode amplitude T0n from a Fourier cosine series analysis of the initial temper-
ature distribution. The result is

Ton =
2 sin(nπα/2)

nπ
. (12.10)

The sharp temperature boundary means that there is initially a substantial contribution from
higher order modes (n > 1). Inspection of Equation 12.9 shows that these modes decay rapidly.
During an initial transient period diffusion solutions relax to the fundamental mode T (x) ∼
cos(nπx/L). Thereafter, they decay at the rate given by τ1. Figure 12.1 shows the temperature
distribution for α = 0.25. The calculation, performed with a finite element code with 50
elements across the width, agrees with the prediction of Equation 12.6.

We can analyze Equation 12.9 to estimate the time step required for good accuracy in a
numerical solution,

∆t <
ρCp ∆x2

kπ2
. (12.11)

In Equation 12.11, ρ and Cp are local values of the thermal constants and ∆x is a scale length
for significant temperature variation. In the numerical solution of Figure 12.1, the quantity ∆x
is initially small because of the sharp temperature discontinuity. We cannot resolve variations
to a length smaller than the element size; therefore, ∆x ≈ L/50. Therefore, the initial time
step must be short. After the decay of higher order modes, the scale length approaches ∆x ≈
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Figure 12.1: One-dimensional thermal diffusion. Step function initial temperature from x = 0.0
mm to x = 1.25 mm (L = 0.01 m, α = 0.25). Medium properties: ρ = 1.0 kg/m3, Cp = 1.0
W/kg-oK, k = 1.0 W/m2-s. Finite element calculation with 50 elements along the width.
Neumann boundary on the left-hand side. Plots at 0, 1, 2, 5 and 10 µs.

L/2. The allowed time step increases by a factor of approximately 625. The time step was
automatically adjusted during the solution of Figure 12.1 using the method described in Sects.
12.2 and 12.3.

12.2 Finite-difference solution of the diffusion equation

As an introduction to numerical solutions of initial value problems we shall discuss the finite-
difference representation of Equation 12.5 in a one-dimensional system with uniform material
properties. The solution space is divided into uniform sections of width ∆x and time into
intervals ∆t. The index i denotes the mesh point position xi = i∆x and n designates time,
t = n∆t. Following Section 4.1, the difference expression for the second spatial derivative at xi
and tn is

∂2T (xi, tn)

∂x2
∼= T n

i+1 − 2T n
i + T n

i−1

∆x2
. (12.12)

We have several options for difference expression in time. The simplest is the Euler method
(Section 4.2) where the time derivative is expressed in terms of the temperature distribution at
the current time. Substituting in Eq, 12.5 and solving for temperature at the advanced time
gives

T n+1
i = T n

i +
κ ∆t

∆x2
[T n

i+1 − 2T n
i + T n

i−1]. (12.13)
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where κ = k/ρCp. As we saw in Section 4.2, the expression of Equation 12.13 is not time-
centered. Therefore, it is accurate only to first order in ∆t.

A second problem with Equation 12.13 is that it places strong limits on the time step for
numerical stability. To show this we resolve the spatial variation of temperature into Fourier
modes

T n
k exp(jkx). (12.14)

The mode stability properties are given by the amplification factor

gk = T n+1
k /T n.

k (12.15)

The solution is stable only if the condition

|gk| ≤ 1, (12.16)

holds for all modes. Substitution of Eqs. 12.14 and 12.15 into Equation 12.13 gives the following
relationship,

gk = 1 +
κ∆t

∆x2

[

eik∆x − 2 + e−ik∆x
]

= 1 +
κ∆t

∆x2
[cos(k∆x)− 2] . (12.17)

The final term in brackets has the extreme value -4 when k∆x = π. In this case, the condition
to satisfy Equation 12.16 is

∆t ≤ ∆x2/2κ. (12.18)

A comparison of Equation 12.18 to Equation 12.9 shows that the time step for stability may
be much shorter than the time step necessary for accuracy. At late times ∆t must reflect the
scale length of the mesh rather than of the system. Therefore, the computation time required
with the Euler method may be 100 to 1000 times longer than that with more stable methods.

There are several time-centered alternatives to the Euler method that relax the stability
condition of Equation 12.18. A good choice is the Dufort-Frankiel method. It requires a small
number of operations per step, is easy to program, and is numerically stable for any choice of
∆t. The price for these advantages is low – the method requires one additional array to store
previous values of temperature. The one-dimensional expression to advance the temperature is

T n+1
i = T n−1

i +
2κ∆t

∆x2
[T n

i+1 − T n−1
i − T n+1

i + T n
i−1]. (12.19)

The difference from the Euler expression is that Equation 12.19 represents an interval 2∆t from
tn−1 to tn+1. A combination of old and new values gives an expression for the second spatial
derivative that is time-centered at tn. Note that the contribution of the temperature at xi is
the average of past and future values. Solving Equation 12.19 for the future temperature gives
the equation

T n+1
i =

(

1− α

1 + α

)

T n−1
i +

(

α

1 + α

)

(T n
i+1 + T n

i−1) (12.20)

where
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α =
2κ∆t

∆x2
. (12.21)

Implementation of Equation 12.20 on a computer requires two arrays: one to store the present
values, T (i), and one that holds both the past and future values, TOldNew(i). In a time step,
previous values at all positions are replaced by future values and then the arrays T (i) and
TOldNew(i) are exchanged.

To analyze the stability properties of the Dufort-Frankiel method, we again consider a
Fourier mode expansion. Substituting Eqs. 12.14 and 12.15 in Equation 12.20 gives

g2k =
(

1− α

1 + α

)

+
(

α

1 + α

)

g cos(k∆x). (12.22)

Applying the quadratic formula, the amplification factor is

gk =
α cos(k∆x)±

√

1− α2 sin2(k∆x)

1 + α
(12.23)

We can understand the implications of Equation 12.23 by considering limiting cases. For small
time step the following condition holds:

α2 sin2(k∆x) ≤ 1 (12.24)

In the limit of Equation 12.24, the amplification factor of Equation 12.23 is real and both roots
have magnitude less than unity for any choice of k. For large time step, the amplification factor
is complex with a magnitude given by

|gk| =
1− α

1 + α
. (12.25)

The expression of Equation 12.25 has a value less than unity. We can investigate intermediate
values numerically to show that the Dufort-Frankiel method is stable for any choice of time step.
It is straightforward to extend the derivation to two dimensional calculations on a rectangular
mesh with spacings ∆x and ∆y. The conclusion is that the calculation is stable for any choice
of ∆y/∆x or α.

With stability assured, we can adjust the time step in the calculation to minimize com-
putational time while maintaining accuracy. Automatic time step adjustment is an essential
feature of any practical diffusion program. To illustrate methods for picking ∆t, consider a two-
dimensional finite-difference solution with uniform k and Cp on a square mesh with spacing ∆.
The Dufort-Frankiel algorithm is

T n+1
i,j = T n−1

i,j +
2κ∆t

∆2
[T n

i+1,j + T n
i−1,j + T n

i,j+1 + T n
i,j−1 − 2T n−1

i,j − 2T n+1
i,j ]. (12.26)

We seek a criterion to pick the time step that will work with arbitrary spatial boundaries. One
option is to take averages over all vertices that do not have fixed temperature. The following
expression works well for most problems,

∆t = Sf

[

ρCp∆
2

k

]

〈Ti,j〉
1

〈Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1 − 4Ti,j〉
(12.27)
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Figure 12.2: Application of energy conservation near a vertex of a conformal triangular mesh.
The volume integral of thermal energy extends over the portion of the surrounding elements
within the dashed line.

The averaging symbols denote root-mean-squared averages. The quantity Sf is a safety factor
with a value less than unity. A smaller time step or a different averaging technique may be
necessary for problems with strong temperature gradients over small mesh regions.

12.3 Finite-element diffusion solutions

It is easy to extend the concepts of the previous section to solutions on a conformal triangu-
lar mesh. We shall first consider planar solutions and then extend the results to cylindrical
geometry. We take the volume and surface integrals of Equation 12.4 over the path of Figure
12.2 that encloses one-third of the volume of each element. With the approximation that the
temperature varies linearly in each element, the heat flux vector q is an element constant. We
assume that the thermal properties (k, ρ, Cp and U) are also element constants. If the system
extends a unit distance in z, the volume integral on the left-hand side of Equation 12.4 is

∂To
∂t

6
∑

i=1

ρiCpiai
3

, (12.28)

where the quantities ai are the element areas. The volume integral over heat sources is

6
∑

i=1

Uiai
3

(12.29)

By analogy with the Gauss’ law derivation of Section 12.7, the integral of heat flux over the
twelve facets of the surface is

6
∑

i=1

WiTi − To
6
∑

i=1

Wi. (12.30)
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The coupling coefficients are given by

W1 =
k2 cot θ2b + k1 cot θ1a

2
,

W2 =
k3 cot θ3b + k2 cot θ2a

2
,

...

W6 =
k1 cot θ1b + k6 cot θ6a

2
. (12.31)

We can incorporate Equation 12.30 into a difference equation that implements the Dufort-
Frankiel method,

T n+1
o = T n−1

o +
6∆t

∑

ρiCpiai

[

∑

WiT
n
i − T n+1

o + T n−1
o

2

∑

Wi +
∑ Un

i ai
3

]

(12.32)

Solving Equation 12.32 for T n+1
0 gives an equation to advance the temperature at each point.

We must address some preliminaries before beginning calculations. Following the discussion
of Section 2.8, the condition on free boundaries in finite-element thermal solutions is that the
normal derivative of the temperature equals zero. Therefore, an unspecified boundary represents
an ideal thermal insulator. The alternative is a Dirichlet boundary where vertices are set to a
temperature, either constant or varying in time. When the thermal conductivity varies with
time or temperature, the coupling constants must be updated at each time step. The number
of operations can be minimized using the methods described in Section 9.5. Ideally, the second
term in brackets of Equation 12.32 should have the form

T n+1
o

∑

W n+1
i + T n−1

o

∑

W n−1
i

2
(12.33)

where the coupling constant sums are evaluated at future and past times. Maintaining past,
present and future values of the coupling constants increases storage requirements and slows
the calculation. In practice, material properties change little in one time step and it is sufficient
to use only present coupling constants in Equation 12.32

Figure 12.3 illustrates a finite-element solution of a challenging problem, propagation of a
bleaching wave. The strongly nonlinear material has a sharp increase in thermal conductivity
by a factor of 100 at 20o. Thermal solutions in such a medium are qualitatively different from
those described in Section 12.1. A shock-like transition from 0oto 20opropagates at a velocity
set by the heat capacity of the medium and conduction of heat through the high-conductivity
material behind the front. In the system of Figure 12.3, the left boundary has a fixed time
variation of temperature, a linear change from 0oC to 25oC in 0.1 ms starting at t = 0. Heat
conduction to the bleaching front through the high conductivity region roughly follows Equation
12.1. Because the propagation distance increases, the bleaching wave velocity decreases with
time.
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Figure 12.3: Thermal transport in a highly non-linear medium – bleaching wave propagation.
xmin = 0.0 cm, xmax = 4.0 cm, ymin = 0.0 cm, ymax = 2.0 cm. The fixed temperature on the
left-boundary rises to 25oC in 0.1 ms. Thermal conductivity: k = 1.0 W/m2-s for T < 19 oC
and k = 100 W/m2-s for T > 21 oC. a) Geometry and computational mesh. b) Wireframe plot
of temperature distribution at 3.5 ms showing a sharp thermal transition moving away from
the left-hand boundary.
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Figure 12.4: Instabilities of diffusion calculations on a conformal triangular mesh. a) Geometry
of benchmark test and computational mesh. Bottom boundary fixed at 0oC and top boundary
at 1.0oC. Initial temperature of 0oC on all other vertices. Neumann boundaries on the left
and right. xmin = 0.0 cm, xmax = 5.0 cm, ymin = 0.0 cm, ymax = 3.0 cm. k = 200.0 W/m2-
s, ρ = 1000 kg/m3, Cp = 1.0 W/kg-oC. Isosceles triangle mesh with ∆y/∆x = 0.475. b)
Temperature distribution at t = 0.2 ms.

12.4 Instabilities in finite-element diffusion solutions

In contrast to diffusion solutions on a regular mesh, calculations on a conformal mesh may
exhibit numerical instabilities for some choices of element geometry. In this section, we shall
discuss how to prevent such problems. Figure 12.4a shows the mesh for a benchmark calculation.
The solution region has an initial temperature of 0oC, Neumann boundaries on the left and right,
and fixed temperatures of 0oC and 1oC at the bottom and top. Ultimately the temperature
should relax to a linear variation in y. With the base of the triangular elements fixed at
∆x = 0.001 m, we investigate solution stability for different choices the height, ∆y. The result
is that the solutions are stable when ∆y > ∆x/2. When ∆y ≤ ∆x/2, the solutions are unstable
for any choice of time step. The temperature contour plot of Figure 12.4b shows the problem at
an early stage for ∆y/∆x = 0.475. Note that the temperature deviations are above and below
the correct values on alternate rows.

We can investigate the stability of the Dufort-Frankiel algorithm on the uniform mesh of
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Figure 12.5: Simple mesh geometry to model diffusion instabilities.

triangles shown in Figure 12.5. The angles in the figure are given by

β = tan−1
(

2∆y

∆x

)

,

γ = π − 2β. (12.34)

The coupling coefficients to the six neighbors of a vertex are

W1 = cot(β),W2 = cot(β),W3 = cot(γ),

W4 = cot(β),W5 = cot(β),W6 = cot(γ). (12.35)

Note that when ∆y ≤ ∆x/2 the angle γ is larger that π/2 and the coupling coefficients W3 and
W6 have negative values.

Under the conditions that there are no sources and that all elements have equal areas and
thermal properties, Equation 12.32 reduces to

T n+1
o = T n−1

o + α

[

∑

WiT
n
i +

T n+1
o + T n−1

o

2

∑

Wi

]

, (12.36)

where

α =
∆t

ρ Cp a
. (12.37)

Motivated by the results of Figure 12.4, we shall investigate a mode that is uniform in x but
reverses sign on each row in y. This solution has the following values of temperature at vertices
surrounding a test vertex with temperature T0: T1 = −T0, T2 = −T0, T3 = T0, T4 = −T0,
T5 = −T0 and T6 = T0. Further, because the instability is independent of time step we
shall take α = 1.0. Substitution in Equation 12.36 gives a relationship for the value of the
temperature at the test vertex for the mode at three times,

T n+1
o

(

1 +

∑

Wi

2

)

+ T n
o (W1 +W2 −W3 +W4 +W5 −W6)− T n−1

o

(

1 +

∑

Wi

2

)

= 0. (12.38)
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Figure 12.6: Stable triangular mesh with short elements (∆y/∆x < 0.5) and no obtuse triangles.

Assume that the mode grows as T n+1
0 = g T n

0 . The solution is unstable if |g| ≥ 1.0. Equation
12.38 implies that the growth constant is

g =
−B ±

√
B2 − 4AC

2A
, (12.39)

where

A = 1 +
∑

Wi/2,

B =
∑

Wi − 2(W3 +W6),

C = −1 +
∑

Wi/2. (12.40)

We can confirm the solution is unstable when β ≤ π/4 by direct substitution from Eqs. 12.35.
The general conclusion is that the mesh instability occurs when there are extended regions of

contiguous triangles that have one internal angle greater than 90o. This limit makes it difficult
to generate meshes with fine resolution in y (∆y < ∆x/2) under the mesh logic of Section
5.2. Figure 12.6 shows one solution. The logical mesh is initially composed of right triangles
with neutral stability properties. We can create a logical mesh with all angles less than 90oby
making small positive displacements in x of all vertices on odd rows and negative displacements
on even rows (Fig 12.6). When the logical mesh is distorted to fit boundaries, some triangles
may violate the stability criterion. The next issue is to determine how many connected bad
triangles are necessary to drive the instability. Although there is no definitive answer for all
meshes, we can make simple tests for guidance. In the mesh of Figure 12.7a, twelve triangles
have been modified to include angles greater than 90oby moving four points on an odd row
in the negative x direction. The temperature contours of Figure 12.7b confirm that there is
a slow-growing instability in the region of modified triangles. The solution is stable if fewer
points are shifted. Generally, a few connected triangles with large angles are not dangerous in
diffusion calculations.
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Figure 12.7: Investigation of the number of contiguous obtuse triangles to drive a diffusion
instability. a) Destabilized mesh – displacement of 4 vertices (lower, left of center) to create 12
obtuse triangles. b) Temperature contours showing a slowly growing instability in the region.

12.5 Magnetic field diffusion

In this section we shall discuss time-domain magnetic field solutions in the eddy current regime
of Section 11.5. The goal is to generate equations for initial value problems with arbitrary
time-variations of driving currents. For stationary media, magnetic fields obey the diffusion
equation. Therefore, the numerical techniques developed for thermal transport can be applied
directly to magnetic fields. For convenience, we study the differential forms and then write the
finite-element difference equations by analogy with previous sections.

There are three governing relationships. The first is Faraday’s law

∇× E = −∂B
∂t
. (12.41)

Ampere’s law has the form

∇×
(

B

µr

)

= µoJc + µ0J0. (12.42)

In Equation 12.42, the quantity µr is the local value of relative magnetic permeability, Jc is the
current density induced in materials by changing magnetic fields, and J0 is the current density
in driving coils. In most problems, the drive current is a specified function of time. The final
equation is Ohm’s law,

Jc =
E

ρ
, (12.43)
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where ρ is the volume resistivity in Ω-m.
The strategy for combining Eqs. 12.41, 12.42 and 12.43 into a single diffusion equation

depends on the geometry. We shall limit the discussion to two-dimensional solutions and seek
equations that involve a single scalar quantity. The magnetic field is given by

B = ∇×A. (12.44)

Substituting Equation 12.44 into Equation 12.43 gives

∇× E = − ∂

∂t
(∇×A). (12.45)

In the limit that there are no electrostatic fields, Equation 12.45 implies that

E = −∂A
∂t

. (12.46)

Substituting Eqs. 12.43 and 12.46 in Equation 12.42 gives the following relationship for the
vector potential:

∂A

∂t
= − ρ

µo

[

∇× 1

µr

(∇×A)

]

+ ρ J0. (12.47)

To begin, consider a system uniform in z with variations in x and y. As we saw in Chapter
9, the quantity Az is the only non-zero component of vector potential. The drive current in
the z direction generates field components Bx and By. For the two-dimensional geometry, the
component form of Equation 12.47 is

∂Az

∂t
=

ρ

µo

[

∂

∂x

1

µr

∂Az

∂x
+

∂

∂y

1

µr

∂Az

∂y

]

+ ρ Jz0. (12.48)

The Dufort-Frankiel form of Equation 12.48 on a conformal triangular mesh is

An+1
zo = An−1

zo +
2∆t

∑

ai/3ρni

[

∑

W
nAn

zi

i − An+1
zo + An−1

zo

2

∑

W n
i +

∑

aiJ
n
z0i

]

. (12.49)

The coupling constants have the form

W n
1 =

cot θ2b/µ
n
r2 + cot θ1a/µ

n
r1

2µo

. (12.50)

The extension of Eqs. 12.49 and 12.50 to cylindrical coordinates closely follows the development
of Section 9.4. The solution gives the time dependence of rAθ from which Bz and Br can be
derived.

Equation 12.49 can be solved with specified driving currents and Neumann or fixed Dirichlet
boundary conditions on Az. Alternatively, some initial value solutions are most conveniently
approached by setting a waveform for Az on boundaries to specify a time-dependent flux. In
the system of Figure 12.8a a current is driven through a shaped conductor with height h in z by
applying a time dependent voltage, V (t). The goal is to find the current density and magnetic
field distributions in the material. These quantities are given respectively by time and space
derivatives of Az. If the solution boundary is distant from the object, the magnetic field lines are
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Figure 12.8: Magnetic field diffusion solution – pulsed current in a long bus bar. a) System
geometry and magnetic field lines, one quadrant shown. xmin = 0.0 cm, xmax = 5.0 cm,
ymin = 0.0 cm, ymax = 5.0 cm. A) Stainless steel bus bar with ρ = 81× 10−8 Ω-m. B) Vacuum.
C) Neumann boundaries. D) Fixed vector potential boundary to represent a constant applied
axial field of 0.1 V/m, Az0(t) = −0.1t. Magnetic field lines plotted at 0.02 ms. b) Time history
of current density near the surface and near the center of the bar.



238 Finite-element Methods for Electromagnetics

Figure 12.9: Geometry for a pinch type field solutions of Bθ(r, z, t). An annular metal
shell carries a pulsed axial current I(t). The Dirichlet boundary conditions at ri and ro are
Bθ(ri, z, t) = 0.0 and Bθ(ro, z, t) = µ0I/2πro. The Neumann boundary conditions at z = 0.0
and z = z0 imply that Er = 0.0.

approximately parallel to the surface and the axial electric field is almost constant. Applying
Equation 12.46, the time-variation of the vector potential on the boundary is

Az(t) =

∫ t
0 V (t′)dt′

h
. (12.51)

Figure 12.8a illustrates the condition of Equation 12.51. A pulsed axial current penetrates a
stainless steel bus bar. One quarter of the geometry is shown. The bar has length 10 m and
total cross-section area 0.0016 m2. The bottom and left sides are Neumann boundaries and
the curved boundary has a given vector potential Az0(t) = −0.1t. Equation 12.51 implies a
step voltage pulse of 1 V along the bar length starting at t = 0.0. With a volume resistivity of
81×10−8 Ω-m, the bar resistance is R = 5.1 mΩ. The inductance of the bar volume is L ≈ 2 µH.
Therefore, the field penetration time is roughly L/R ≈ 0.4 ms. For the simulation, the air space
between the boundary and the bar has a resistivity ρ = 0.001 Ω-m, about 1000 times that of the
bar. This value is high enough to ensure rapid diffusion of vector potential to the bar surface.
The expected current in the quarter section of the bar for long times (t≫ L/R) is V/R = 49 A.
The current is smaller early in time because the current flows in only a fraction of the volume.
Figure 12.8a illustrates that the magnetic field early in time (0.02 ms) is constrained to the
surface. Figure 12.8b plots the time history of current density at two positions in the bar. The
curves show the delay in current density moving into the bar and confirm that the average
current varies approximately as (1− exp[−t/(L/R)]) with L/R = 0.35 ms. A spatial integral of
current density in the bar at t = 1.0 ms gives 45.3 A, consistent with the long-term prediction..

Figure 12.9 shows an alternate two-dimensional geometry that applies to simulations of
high-power plasma or metal pinches. Here, an axial current flows through a cylindrical system.
Azimuthal symmetry implies that there is only one component of magnetic field, Bθ. Therefore,
it is most convenient to cast the diffusion equation directly in terms of this quantity. For pinch
applications we make two simplifying assumptions: the medium is not ferromagnetic (µr = 1.0)
and there are no internal applied currents (J0 = 0.0). Equation 12.42 becomes
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Jc =
1

µ0

∇×B. (12.52)

Combing Eqs. 12.41, 12.43 and 12.52 gives

∂B

∂t
= − 1

µ0

∇× (ρ ∇×B). (12.53)

The component form of Equation 12.53 is

∂Bθ

∂t
= − 1

µ0

[

1

r

∂

∂r
ρ r

∂Bθ

∂r
+

∂

∂z
ρ
∂Bθ

∂z

]

. (12.54)

The finite-element difference equivalent of Equation 12.54 using the Dufort-Frankiel method is

Bn+1
θo = Bn−1

θo +
3∆t

∑

Wi
∑

riai

[

∑

WiBθi −
∑

Wi
Bn+1

θo + Bn−1
θo

2

]

, (12.55)

with coupling coefficients of the form

W1 =
ρ2 r2 cot θ2b + ρ1 r1 cot θ1a

2
. (12.56)

Figure 12.9 illustrates boundary conditions for a typical application of Equation 12.55. A
axial large current is driven through a conducting cylindrical shell clamped to metal plates at
the left and right. The condition on the inner cylindrical boundary (bottom) is that Bθ = 0.0
because current cannot flow inside the shell. The top boundary (the outer radius of the solution
volume) also has a Dirichlet condition. Following Equation 9.12 the toroidal field is a specified
function of time related to the axial current supplied by an external circuit,

Bθ(rout, z, t) =
µoIz(t)

2πrout
. (12.57)

Finally, the condition on the conducting plates at the left and right is that Er = 0/0. Applying
Equation 12.44, the condition is equivalent to ∂Bθ/∂z = 0/0. Therefore, the boundaries satisfy
the specialized Neumann condition.

Exercises

12.1. A long bar of steel at temperature T0 = 500 oC in suddenly dipped into a large vat of
water. The water conducts heat rapidly because of convection and the generation of steam. We
can approximate it as an ideal thermal reservoir at T = 30 oC. The cross-section of the bar is a
rectangle with dimensions 0.02 m x 0.15 m. Use the following values for thermal conductivity,
specific heat and density: k = 80.2 W/m-oK, Cp = 449 J/kg-oK, ρ = 7874 kg/m3.

a) Use the theory of Section 12.1 to find an expression for the temperature at the center of
the bar as a function of time.
b) What is the temperature at t = 5 s?
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12.2. Use a spreadsheet to investigate the stability of the Euler difference method for the
solution of the one-dimensional thermal diffusion equation. Columns represent the spatial
distribution of temperature at different times. Consider a system that extends from x = −0.5
m to 0.5 m with boundaries at fixed temperature T = 0 oC. At t = 0, the region from x = −0.25
to 0.25 has initial temperature T0 = 1 oC. Take κ = 1.0. Apply symmetry at x = 0 to model
half the system. Use a uniform vertex spacing ∆x = 0.05 m. Program the spreadsheet cells in
subsequent columns to advance according to Equation 12.13. Pick time steps above and below
the value of Equation 12.18 to confirm the stability limit.
12.3. Modify the spreadsheet of Exercise 12.2 to advance temperature by the Dufort-Frankiel
method. Conform that the calculation is stable for any choice of ∆t and experiment with the
effect of time-step on accuracy.
12.4. Modify the spreadsheet of Exercise 12.3 to include automatic time step adjustment,
applying Equation 12.27 to the values in one-column to determine the time step to the next
column.
12.5. Derive finite-difference equations for two-dimensional thermal diffusion in the Dufort-
Frankiel form. Assume a uniform regular mesh with spacings ∆x and ∆y. Apply the treatment
of Section 12.2. to confirm that the method is stable for any choice of ∆x, ∆y and ∆t.
12.6. Find finite-difference equations for thermal diffusion in a cylindrical system with uniform
mesh spacings ∆r and ∆z. Use the Dufort-Frankiel form.
12.7. Find an expression for the velocity of a thermal bleaching wave in a one-dimensional
system. The uniform medium has an abrupt change to conductivity k0 from a value k ≪ k0
at the critical temperature T0. The medium with density ρ and specific heat Cp is initially at
ambient temperature (T = 0.0). The temperature of a boundary at x = 0 changes abruptly
from T = 0 to T = Ts at t = 0. Take Ts > T0. Show that the position and velocity of the wave
font are approximately given by,

v =
ko
ρ Cp

[

Ts
To

− 1
]

12.8. Verify that Equation 12.35 gives the coupling constants for the mesh of Figure 12.5.
12.9. Fill in the steps to convert Equation 12.54 to the finite-element representation of Equation
12.55.
12.10. Use Ampere’s and Faraday’s laws to show that the one dimensional diffusion of mag-
netic field into a homogeneous conducting medium with magnetic permeability µ and volume
resistivity ρ is governed by the equation,

∂By

∂t
=

ρ

µ

∂2By

∂x2
.

If a step function in magnetic field to amplitude B0 is applied at the surface, shown by substi-
tution that the following function is a solution to the differential equation,

B(x, t) = Bo exp(−x/δ).

The time-dependent skin depth is

δ =
√

2ρt/µ.
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12.13. A large laboratory magnet has a solid iron flux return yoke with a pole cross-section of
dimensions 0.6 m × 0.6 m. The iron has a volume resistivity ρ = 10 × 10−8 Ω-m and average
relative magnetic permeability µr = 1000. Estimate how long it takes after activating the drive
coils for the fields to reach operating conditions where the field at the center is within 0.01 per
cent of its stead-state value.
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Chapter 13

Electromagnetic Fields in One
Dimension

Electromagnetic solutions divide into two types. The first is the time-domain solution which
describes the generation and propagation of electromagnetic pulses. Here, we deal with time-
centered difference expressions of the Maxwell equations to represent initial value problems.
The second type is the frequency-domain solution, which we can divide into two classes. The
first class is the scattering solution. It generally involves traveling wave propagation in open
systems. The associated techniques have application to radar and communications. For a given
frequency, we solve a boundary value problem using matrix inversion. The second class is the
resonant solution for waves in closed structures such as resonant cavities and waveguides. Here,
we seek modes where waves constructively interfere. The process involves a search using several
boundary value solutions at different frequencies.

This chapter introduces numerical electromagnetism through one-dimensional pulse and
wave propagation. The mathematics is straightforward and the physical foundations of the
solutions are easy to visualize. This groundwork will allow a smooth transition to the two and
three-dimensional solutions in the following chapter. Section 13.1 reviews the analytic theory
of one-dimensional electromagnetism. Topics include wave propagation in free space, reflection
and transmission at boundaries, and absorption by resistive media. Sections 13.2 through 13.4
cover one-dimensional finite-element models. The solutions exhibit a diversity of phenomena
that make them considerably more interesting than one-dimensional electrostatics. Section 13.2
concentrates on time-domain solutions for transverse electromagnetic (TEM) pulses. Here, the
electric field and magnetic intensity vectors are normal to the direction of propagation. We shall
derive finite element equations from the integral form of Maxwell’s equations. They advance
either Ex or Hy for propagation along z. Section 13.3 covers the mechanics of solutions. The
time step is constrained by the Courant condition, an upper limit for physical validity and
numerical stability. The section discusses open and short circuit boundaries and addresses
the important topic of the ideal absorbing boundary. This condition, which is essential for
simulations of wave interactions in unbounded volumes, is analogous to a matched termination
on a transmission line.

Section 13.4 proceeds to one-dimensional scattering solutions for steady-state systems. Here
all quantities have the harmonic time dependence exp[jωt]; therefore, time derivatives can
be replaced with the quantity jω. The finite-element relationships reduce to a set of linear
equations with complex variables to represent the amplitude and phase of field quantities. The

243
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equations can be solved by extensions of the matrix methods discussed in Chapter 6. If we take
ǫ and µ as complex numbers, the imaginary part gives frequency-dependent loss processes in
materials. Section 13.5 reviews the theoretical basis complex-number material properties and
the definition of perfectly absorbing boundaries for free-space simulations. Section 13.6 covers
resonant solutions. These apply to closed systems where reflection of waves at boundaries
gives rise to constructive interference at particular frequencies. The resulting solutions are
the resonant modes of the system. Determination of modes involves a search for interference
conditions and requires several solutions at different frequencies. The section reviews the theory
of driven LRC circuits to illustrate resonance criteria and summarizes numerical root-finding
methods to minimize the steps in the search.

13.1 Planar electromagnetic waves

To derive the properties of plane waves we shall express the Maxwell equations in a form that
is suitable for most radio-frequency and microwave calculations. One simplification is that the
solution volume has no externally generated space-charge. We shall limit the discussion to
materials that are isotropic and linear. The magnetic permeability µ and dielectric constant
ǫ are constant in time and uniform over element volumes. We include the option for time-
dependent source current density (Jo) to represent drive structures like coupling loops and
capacitive probes. We shall also consider the possibility of currents driven by electric fields
in materials with conductivity σ. This feature enables modeling of pulse attenuation and
implementation of absorbing boundaries. Section 13.3 generalizes the treatment of losses for
frequency domain solutions. In this regime we can represent high-frequency dissipation in
materials by complex values of ǫ and µ.

Under the limiting conditions the differential Maxwell equations are

∇× B

µ
= ǫ

∂E

∂t
+ Jo + σ E,

∇ ·B = 0,

∇× E = −∂B
∂t
,

∇ · ǫ E = 0. (13.1)

The equations are more symmetric if we write them in terms of the magnetic field ,

H =
B

µ
. (13.2)

The quantity H is proportional to the quantity that we have called the applied flux density ,
H = B0/µ0. It has units of A/m. Substituting Eq. 13.2 in Eqs. 13.1 gives
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∇×H = ǫ
∂E

∂t
+ Jo + σ E, (13.3)

∇ · µH = 0, (13.4)

∇× E = −µ∂H
∂t

, (13.5)

∇ · ǫ E = 0. (13.6)

To begin, consider wave propagation in a uniform medium without sources and with no
dissipation. In this case ǫ and µ are constant in space, σ = 0.0, J0 = 0.0 and all quantities vary
in time as exp(jωt) . Taking the curl of Eq. 13.5 and substituting from Eq. 13.3 gives

∇×∇× E = −µǫ ∂

∂t
(∇×H) = −µǫ ∂E

2

∂t2
= ω2µǫ E. (13.7)

The condition of Eq. 13.6 implies that we can rewrite the double curl operator in terms of the
Laplacian operation,

∇2E+ ω2µǫ E = 0. (13.8)

We seek plane wave solutions to Eq. 13.8 where quantities vary only in z. The condition that
∇ · E = 0 implies that there is no component Ez. We choose a coordinate system with the
electric field along x, so that

∂2Ex

∂z2
+ ω2µǫ Ex = 0. (13.9)

The function

Ex(z, t) = E0 exp[j(ωt± kz)], (13.10)

is a general solution of Eq. 13.9 if

k = ±ω√µǫ. (13.11)

Equation 13.10 represents a traveling wave, a harmonic function of space that moves in the
positive or negative z direction. The spatial wavelength is λ = 2π/k and the velocity of a point
of constant phase is

vphase = ∓ω
k
= ∓ 1√

µǫ
. (13.12)

The phase velocity depends on the properties of the medium. In vacuum where ǫ = ǫ0 and
µ = µ0, the phase velocity equals the speed of light, c = 2.997925× 108 m/s.

Equation 13.5 implies that there is also a magnetic field associated with the wave that is
perpendicular to both the electric field and the direction of wave propagation. For negative k
(wave propagation in the positive direction), the relationship is

Hy =
j

ωµ

∂Ex

∂z
=

k

ωµ
Ex =

Ex
√

µ/ǫ
. (13.13)
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Figure 13.1: Traveling wave incident on a boundary between media with different impedances.

The cross-product E×H points in the direction of propagation. Noting that the dimension of
Ex is V/m and Hy is A/m, the quantity in the denominator on the right hand side of Eq. 13.13
has units of ohms. This quantity is called the impedance of the medium. In vacuum, the value
is

Zo =

√

µ0

ǫ0
= 377.3 Ω. (13.14)

Note that could have derived an equation for Hy similar to Eq. 13.9 and then calculated Ex.
In one-dimensional solutions, both choices lead to the same results.

As an illustration, consider a wave traveling in the positive z direction incident on a plane
boundary at z = 0 between two media. Figure 13.1 shows the labeling conventions. The
incident wave generates a reflected wave traveling backward in Material 1 and a transmitted
wave moving forward in Material 2. We denote the amplitudes of the incident, reflected and
transmitting waves as Ei, Er and Et. From the discussion of Section 2.4, the parallel electric
field is continuous across the boundary, or

Ei + Er = Et. (13.15)

The common factor of exp[jωt] has been suppressed in Eq. 13.15. The applied magnetic field,
parallel to the interface, must also be continuous (Section 9.3). Therefore the amplitudes of
the magnetic field are related by

Hi −Hr = Ht. (13.16)

Note the minus sign in Eq. 13.16. A wave with positive Ex traveling in the negative z direction
must have negative Hy. Substituting from Eq. 13.13, we can rewrite Eq. 13.16 as

Ei

Z1

− Er

Z1

=
Et

Z2

. (13.17)

Combining Eqs. 13.15 and 13.17 gives reflection and transmission coefficients for the electric
and magnetic fields,
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Figure 13.2: Traveling wave incident on a matched resistive layer.

RE =
Er

Ei

=
Z2 − Z1

Z2 + Z1

, TE =
Et

Ei

=
2Z2

Z2 + Z1

. (13.18)

and

RH = −Hr

Hi

=
Z1 − Z2

Z2 + Z1

, TH =
Ht

Hi

=
2Z1

Z2 + Z1

. (13.19)

Note that conditions of Eqs. 13.18 and 13.19 are independent of frequency. Therefore, they
apply to pulses or continuous waves.

Consider a pulse incident on a material with low impedance (Z2 ≪ Z1) such as a dielectric
with high ǫr. The short circuit boundary condition gives total reflection of the wave with
inversion of the electric field. At the other extreme, the open circuit condition is Z2 ≫ Z1. The
pulse is again totally reflected but with positive electric field and inverted magnetic field. The
cancellation of H near the interface is analogous to the condition of zero current at an open
circuit. The special case where Z1 = Z2 is called an impedance match. Here the boundary has
no effect and the wave is totally transmitted. A related solution that is important for numerical
calculations is the termination of a wave by a lumped element resistor. Figure 13.2 shows the
geometry. We introduce a resistive layer with conductivity σ and thickness ∆ adjacent to an
open circuit boundary of a material with ǫ and µ. In the limit that ∆ ≪ λ, the electric field is
approximately uniform over the layer depth. There is no reflected wave if the resistor maintains
the same conditions on Ex and Hy as an infinite extension of the medium. We can derive the
correct value of σ by noting that the field Ex creates a linear current density of

Jx = σ ∆Ex. (13.20)

The quantity 1/σ∆ with units of ohms is called the surface resistance of the termination layer.
Assuming zero magnetic field on the right-hand side of the resistor, the value of magnetic field
on the left-hand side is Hy = Jx. Substituting in Eq. 13.13 gives the condition for a matched
termination,

Zo =

√

µ

ǫ
=

1

σ∆
. (13.21)
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Another example that we shall apply in benchmark tests in the following sections is wave
attenuation in a lossy material. The equation for electric field in a uniform, isotropic medium
with conductivity σ is

∂2Ex

∂z2
+ ω2µǫEx = jωσµEx. (13.22)

For a wave moving in the positive z direction, substituting Ex = E0 exp[j(ω±γz)] in Eq. 13.22
gives an expression for the propagation constant,

γ2 = µǫω2 − jωµσ. (13.23)

When damping is weak the second term on the right-hand side of Eq. 13.23 is small. In this
case we can apply the binomial equation to find the square root,

γ ≃ −ωµǫ
(

1− jσ

2ωǫ

)

. (13.24)

Equation 13.24 implies that the electric field varies as

Ex(z, t) ≃ E0 exp(−αz) exp[j(ωt− kz)], (13.25)

where k is given by Eq. 13.11 and

α =
σ

2

√

µ

ǫ
. (m−1) (13.26)

13.2 Time-domain electromagnetism in one dimension

This section covers finite-element equations for plane electromagnetic pulses. We shall develop
a model with options for variable-resolution meshes and arbitrary variations of material prop-
erties. The approach is to apply Eqs. 13.3 and 13.5 on the computational mesh of Figure 13.3.
Here a bounded region along the z axis is divided into small elements with indices i = 1 to I.
The element properties are the dielectric constant ǫi, magnetic permeability µi, source current
J0i and conductivity σi. Field values are defined at vertices marked with indices i = 0 to I.
Following Section 13.1, we can describe pulses either in terms of Ex or Hy. To derive the E
type equations, we combine Eqs. 13.3 and 13.5 to eliminate the magnetic field,

−∇× 1

µ
∇× E =

∂

∂t
(∇×H) = ǫ

∂2E

∂t2
+
∂Jo

∂t
+ σ

∂E

∂t
. (13.27)

Using Stoke’s theorem, we can rewrite Eq. 13.27 as

−
∮ 1

µ
∇× E =

∫ ∫

dS

[

ǫ
∂2E

∂t2
+
∂Jo

∂t
+ σ

∂E

∂t

]

. (13.28)

The surface integral on the right-hand side extends over the region bounded by the circuit
integral on the left.
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Figure 13.3: Computational mesh for one-dimensional finite-element equations of time-domain
electromagnetics. Dashed line shows path of circuital integral around vertex I.

Only derivatives in the z direction have non-zero values. Waves with field components Ex

and Hy are generated by source currents J0x in the x direction. We assume that the quantity
∂J0x/∂t is a known function of space and time and take the integration path near vertex i along
the dashed line in Figure 13.3. The enclosed space extends an arbitrary distance ∆y along y
and encloses half the volumes of adjacent elements. The left-hand side of Eq. 13.28 is

−
∮ 1

µ

∂Ex

∂z
= −∆y

[

1

µi

Ei − Ei−1

zi − zi−1

− 1

µi+1

Ei+1 − Ei

zi+1 − zi

]

, (13.29)

where Ei = Ex(zi). To evaluate the area integrals on the right-hand side we note that although
the quantities ǫ, σ and ∂J0x/∂t may vary significantly from element to element, changes in
electric field must extend over several elements for an accurate calculation. Therefore, it is
sufficient to approximate the electric field time derivatives by their value at the enclosed vertex
i. The right-hand side of Eq. 13.28 is approximately equal to

∆y
∂2Ei

∂t2

[

ǫi+1(zi+1 − zi) + ǫi(zi − zi−1)

2

]

+

∆y

[

(∂Ji+1/∂t)(zi+1 − zi) + (∂Ji/∂t)(zi − zi−1)

2

]

+

∆y
∂Ei

∂t

[

σi+1(zi+1 − zi) + σi(zi − zi−1)

2

]

, (13.30)

where ∂Ji/∂t = ∂J0x/∂t in element i.

Equation 13.30 applies to both time-domain and frequency domain solutions – the difference
lies in the expressions for the time derivatives. For time domain solutions we shall use the
time-centered forms for the first and second derivatives discussed in Section 4.1. Inserting the
difference expressions and dropping the common factor of ∆y, Eq. 13.30 becomes
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En+1
i − 2En

i + En−1
i

∆t2

[

ǫi+1(zi+1 − zi) + ǫi(zi − zi−1)

2

]

+

[

∂Jn
i+1

∂t

zi+1 − zi
2

+
∂Jn

i

∂t

zi − zi−1

2

]

+

En+1
i − En−1

i

2∆t

[

σi+1(zi+1 − zi) + σi(zi − zi−1)

2

]

(13.31)

The superscript n denotes quantities measured at time t = n∆t. Combining Eqs. 13.29 and
13.31 and solving for En+1

i gives a time-centered finite-element equation to advance electric
field values,

En+1
i =

−En−1
i (Ai − Ci) + En

i (2Ai −Wui −Wdi) + En
i+1Wui + En

i−1Wdi − Si

Ai + Ci

(13.32)

The quantities in Eq. 13.32 are

Ai =
ǫi+1(zi+1 − zi) + ǫi(zi − zi−1)

2∆t2
, (13.33)

Ci =
σi+1(zi+1 − zi) + σi(zi − zi−1)

4∆t
, (13.34)

Si =
∂Jn

i+1

∂t

zi+1 − zi
2

+
∂Jn

i

∂t

zi+1 − zi
2

, (13.35)

Wdi =
1

µi

1

zi − zi−1

. (13.36)

Wui =
1

µi+1

1

zi+1 − zi
, (13.37)

The final two terms are the coupling constants to the neighboring vertices. Equation 13.32 is
an impressively succinct relationship. We shall see in the following section that it encompasses
all one-dimensional pulse propagation phenomena.

We can also describe one dimensional pulses in terms of the magnetic field intensity. Dividing
Eq. 13.3 by the dielectric constant and taking the curl gives

∇× 1

ǫ
(∇×H) =

∂

∂t
(∇× E) +∇× Jo

ǫ
+∇× σE

ǫ
. (13.38)

We proceed in the same way as the electric field equation, eliminating the electric field by using
Eq. 13.5 to replace ∇×E, taking surface integrals and applying Stoke’s theorem to terms that
involve the curl operation. One potential problem is that the final term in Eq. 13.38 is not
proportional to ∇×E. This is easily resolved in a the linear finite-element treatment where σ,
ǫ and E are constant over element volumes. The surface integral of the term is

∫ ∫

dS ∇× σE

ǫ
=
∫ ∫

dS ∇
(

σ

ǫ

)

× E+
∫ ∫

dS
σ

ǫ
∇× E. (13.39)
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In summing over elements the gradients of σ/ǫ in the first term on the right-hand side are zero.
Therefore, we can eliminate the electric field by substitution from Eq. 13. 5.

For polarization Hy, the integral form of the one-dimensional equation for electromagnetic
pulse propagation is

−
∮ 1

ǫ

∂Hy

∂z
x · dl = −

∫ ∫

dS µ
∂2Hy

∂t2
+
∮ Jx

ǫ
x · dl−

∫ ∫

dS
σµ

ǫ

∂Hy

∂t
. (13.40)

We can apply a procedure similar to that for E type pulses to express the circuit and surface
integrals on the mesh of Figure 13.3. Here, the surfaces lie in the x-z plane. At the vertex i
the surface extends a distance ∆x along x and from (zi−1 + zi)/2 to (zi + zi+1)/2 along z. The
finite element equation for one-dimensional H type pulses is

Hn+1
i =

−Hn−1
i (Ai − Ci) +Hn

i (2Ai −Wui −Wdi) +Hn
i+1Wui +Hn

i−1Wdi + (Jn
i+1 − Jn

i )

Ai + Ci

(13.41)

The coefficients in Eq. 13.41 are

Ai =
µi+1(zi+1 − zi) + µi(zi − zi−1)

2∆t2
, (13.42)

Ci =
(σi+1µi+1/ǫi+1)(zi+1 − zi) + (σiµi/ǫi)(zi − zi−1)

4∆t
, (13.43)

Wid =
1

ǫi

1

zi − zi−1

, (13.44)

Wiu =
1

ǫi+1

1

zi+1 − zi
, (13.45)

13.3 Electromagnetic pulse solutions

We shall next discuss some of the solutions embodied in Eq. 13.32 or 13.41. The results are
useful because the mathematics of plane pulses is identical to that of transverse electromagnetic
pulses in transmissions lines. With the model we can address the full range of transmission line
problems including resistive terminations, mismatched connections, dissipation, and reactive
loads.

The choice of time step in an electromagnetic solution is important. For numerical stability,
it must satisfy the Courant condition,

∆t < min[
√
ǫiµi(zi+1 − zi)] = min

[

zi+1 − zi
vi

]

. (13.46)
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Figure 13.4: Numerical calculation of pulse propagation in vacuum. Solution width: 1 m.
Uniform medium with ǫ = ǫ0, µ = µ0 and σ = 0.0. Drive boundary on left generates Gaussian
pulse with full-width at half-maximum of 0.222 ns. Shorted boundaries on left and right.

The quantity vi is the speed of light in element i and the function min implies the smallest
value on the mesh. Equation 13.46 states that ∆t must be shorter than the time for an
electromagnetic disturbance to propagate across the smallest element. If the Courant condition
is violated, information can propagate through the mesh faster than the speed of light, violating
the principle of causality. Therefore, the first step in a simulation is to scan the elements to
find an acceptable value of ∆t. In contrast to the diffusion solutions of Chapter 12, Eq. 13.46
is a rigid constraint – the limit on time step applies through the full simulation.

As in previous discussions of numerical models we shall first find how to advance internal
points of the solution volume and then deal with boundaries. The application of Eq. 13.31 to
internal points is simple. We maintain two arrays for the electric field, Ex(i) and EOldNewx(i).
At the beginning of step n+1, Ex(i) contains values at t

n and EOldNewx(i) contains values at
tn−1. We loop through the array in any order, calculating values at tn+1. These can be stored in
EOldNewx(i) because values at tn−1 are no longer needed. Next, the time reference is shifted
by exchanging the arrays.

To illustrate implementation of boundary conditions and interpretation of solutions, we shall
use a baseline solution region of width L = 1 meter with 250 uniform elements. Pulses follow
a Gaussian waveform,

f(t) = exp

[

−
(

t− 0.667

0.133

)2
]

. (13.47)

where the time is given in nanoseconds. The pulse of Eq. 13.47 has a full-width at half-
maximum of 0.222 ns and a peak at t = 0.667 ns. In vacuum the spatial width is wp = 0.067
m and the time to cross the system is 3.336 ns.

To begin, consider E pulse propagation in a uniform vacuum region with metal boundaries.
We set ǫ = ǫ0, µ = µ0 and σ = 0.0 in all elements. The conditions Ex(0) = Ex(I) = 0.0
represent short circuit boundaries. We excite a pulse of 1 V/m amplitude by setting Ex(0)
equal to the function f(t) in Eq. 13.47 for a few nanoseconds and then clamp the value to
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Figure 13.5: Numerical calculation of pulse reflection from an open-circuit boundary.

zero. From the discussion of Section 13.1 we expect the pulse to propagate at the speed of light
with no change in amplitude, reversing polarity at each wall reflection. The results shown in
Figure 13.4 closely follow this behavior. The figure plots the pulse shortly after entry and after
one reflection. The velocity equals the speed of light to within the accuracy set by the mesh
resolution. The electrical field energy per unit cross section area in the pulse equals

U =
I
∑

1

ǫiE
2
i

2
(zi − zi−1). (13.48)

In checking energy conservation, we must take care not to apply Eq. 13.48 near a reflected wall
where the pulse energy is carried mainly in Hy. Extending the calculation of Figure 13.4 to 30
ns shows that Eq. 13.31 conserves energy to better than 1 part in 107.

The condition dEx/dz = 0.0 holds on an open-circuit boundary. The Neumann boundary
represents a symmetry plane where a traveling pulse is superimposed on a mirror pulse moving
in the opposite direction. To implement a Neumann boundary at point I, we setWuI = 0.0 and
calculate AI and CI with values ǫI+1 = 0.0 and σI+1 = 0.0. Figure 13.5 shows pulse reflection
from an open boundary. The wave amplitude is doubled at the point of reflection (solid line).
At this instant, the full pulse energy resides in the electric field. Application of Eq. 13.48 gives
an electric field energy twice that of the incident wave – the pulse amplitude doubles but the
volume is halved. The dashed line shows the reflected wave with positive electric field polarity.

Numerical simulations represent continuous physical systems with discrete equations. We
expect to find imperfections in the model. One problem is apparent if we extend the calculation
of Figure 13.5 to a long propagation distance. Figure 13.6a shows the pulse profile at 30 ns
after traveling 9 m (2200 elements). Although energy conservation is almost perfect, the pulse
exhibits noticeable distortion. This effect arises from numerical dispersion. The Gaussian pulse
can be represented as a spectrum of Fourier modes of the form exp[j(2πz/λ− ωt)]. The pulse
shape is preserved if all modes move at the same phase velocity. In the discrete approximation
there are shifts in phase velocity for modes with λ comparable to the element width. Therefore,
we expect more distortion for narrow pulses or larger elements. Figure 13.6b illustrates declining
fidelity with increasing element size. In the three cases the pulse width was 0.067 m and the
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Figure 13.6: Numerical dispersion in time-domain electromagnetics. Gaussian pulse in vacuum
with full-width at half-maximum of 0.067 m. a) Pulse shapes after 0.6 m and 9 m of propagation
for an element width of 0.004 m. b) Pulse shapes after 2.5 m of propagation as a function of
element width. Ratio of pulse width to element width: 16.6 (dotted), 8.3 (dashed), and 4.2
(solid).

propagation distance was 2.5 m. (Note that small time shifts have been introduced to separate
the pulses.) The plots correspond to different values of the element width. As a general rule,
dispersion is small if the distance of propagation is less than or comparable to 2w2

p/∆z, where
∆z is the element width.

We can represent non-uniform media simply by assigning different values for ǫi, µi and σi.
Figure 13.7a shows pulse reflection and transmission at a boundary between materials with
different impedances. The region to the left of the boundary (dashed line) is vacuum, while the
region to the right is a dielectric with ǫr = 2.5. The corresponding characteristic impedance is
Z2 = 238.6 Ω and the propagation velocity is v = 1.8961× 108 m/s. Equation 13.18 predicts a
reflected pulse amplitude of -0.2251 V/m and a transmitted amplitude of 0.7749. Figure 13.7a
shows a numerical solution 0.667 ns after the pulse peak strikes the interface. The amplitudes
are in good agreement. Note that the reduced propagation velocity results in a narrowed
transmitted pulse. The benchmark calculation of Figure 13.7b shows damping by a distributed
conductivity. For ǫr = 1, µr = 1, and σ = 5.306× 10−3 S/m, Eq. 13.26 gives α = 1 m−1. The
behavior of the pulse in Figure 13.7b is in agreement with the prediction of Eq. 13.25. The
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small change in pulse shape is physically correct – the high value of α marginally satisfies the
approximation of weak damping.

We can model pulse generation from distributed sources by assigning time-dependent J0
or ∂J0/∂t to elements. For example, a current density J0f(t) = 1250f(t) A/m2 in a central
element of the baseline geometry gives a peak linear current density of J0∆zf(t) = 5.0f(t)
A/m. Equation 13.41 implies that the pulsed current should create two Gaussian H pulses
that travel away from the source element with amplitude H0f(t) = ±2.5f(t) A/m. We can
check the correspondence of the models by using a source function ∂J0/∂t = 1250.0df/dt in
an E pulse solution. The results is two positive polarity waves moving away from the source
with amplitude E0f(t) = 943.3f(t) V/m. The amplitude is close to the predicted value of
E0 = 377.3H0.

In principle, we could have obtained the previous solutions with finite-difference methods
if we made some allowances for the fuzziness of material boundaries. The advantage of the
finite-element approach is apparent when we need advanced boundary conditions like ideal
absorbers. Implementing the matched termination condition in finite-difference formulations
with staggered field quantities is complex. The most common approach in finite-difference
time-domain calculations is the look-back method . Here, time-delayed field values are assigned
to a set of mesh points outside the solution region based on field values at points just inside
the boundary [see, for instance, K.S. Kunz and R.J. Luebbers, The Finite Difference Time
Domain Method for Electromagnetics (CRC Press, Boca Raton, 1993), Chapter 18]. If
the time delay equals the propagation time for waves between the two points, the boundary
simulates open space. The look-back method has drawbacks. It is straightforward to apply only
at planar boundaries of a regular mesh with uniform elements. Curved and sloped boundaries
are a challenge, and the method fails when portions of the boundary are adjacent to materials
with different propagation velocities. In contrast, the finite-element matched-termination that
we shall discuss is effective and easy to apply in any geometry.

To represent an absorbing boundary in a one-dimensional finite element model we leave the
boundary unspecified (open circuit) and assign an appropriate conductivity to a single adjacent
element. Following Eq. 13.21, if the element width is ∆z then the conductivity for a matched
termination is

σ =
1

∆z
√

µ/ǫ
. (13.49)

The values ǫ and µ apply to the termination element and the adjacent medium. The method
works for both E and H type pulses. Figure 13.8 shows the performance of a single-element
termination boundary for a normally incident pulse. The baseline Gaussian pulse enters from a
vacuum region. The figure plots the reflected pulse amplitude as a function of the termination
element width ∆z. At the baseline element width of 0.004 m the termination layer absorbs 99.86
per cent of the pulse energy. Reducing the element thickness gives better absorption because
the layer behavior approaches that of an ideal lumped resistor. On the other hand, because of
the Courant condition thin elements lead to short time steps and extended run times.

A useful feature of termination layers in finite-element calculations is the option to construct
generalized reactive boundaries. This is physically equivalent to transmission line terminations
with resistive, capacitive and inductive components. To illustrate, consider the reflection of a
pulse from the end of a vacuum transmission line terminated with a capacitor C. If the system
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Figure 13.7: Numerical calculations of pulse propagation. a) Reflection and transmission at a
boundary between materials with different characteristic impedances (dashed line shows bound-
ary). Z1 = 377.3 Ω, Z2 = 238.6 Ω. Top: Incident pulse. Bottom: Pulses 0.667 ns after the
incident pulse strikes the boundary. b) Pulse attenuation in a uniform conducting medium, 1 V
amplitude at the left hand boundary. Medium properties: ǫr = 1.0, µr = 1.0, σ = 5.306× 10−3

S/m and α = 1 m−1.
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Figure 13.8: Performance of a matched terminating boundary layer. Relative reflected energy
as a function of the ratio of layer thickness to pulse spatial width (Gaussian pulse full-width at
half-maximum).

extends an arbitrary distance L in the x and y directions, the capacitance of an element of
thickness ∆z adjacent to an open boundary is

C =
ǫ L∆z

L
= ǫ ∆z. (13.50)

To represent an ideal capacitor, we set σ = 0.0 and ǫ = C/∆z. The choice µ = 1/ǫv = ∆z/Cv
(where v is speed of light in the adjacent material) maintains continuity of the pulse velocity.
As an example, we expect that a capacitive termination will strongly affect a pulse of width ∆tp
on a transmission line with impedance Z0 if C0 = ∆tp/Z0. For the baseline pulse in vacuum
the values ∆tp = 0.222 ns and Z + 0 = 377.3 Ω correspond to C0 = 6.0 × 10−13 F. If C ≪ C0

the termination acts like an open circuit while the behavior approximates a short circuit when
C ≫ C0. Figure 13.9 shows the expected pulse reflection properties in the two regimes.

13.4 Frequency-domain equations

Frequency-domain solutions represent a steady state where all sources and fields have a har-
monic time variation with angular frequency ω. As discussed in Section 11.2, we shall represent
harmonic variations with complex numbers and eliminate the common factor of exp(jωt). The
remaining complex field quantities give amplitude and phase as a function of position. Tak-
ing a time derivative is equivalent to multiplication by jω. In frequency domain solutions we
can generalize the treatment of losses in materials. At microwave frequencies dissipation may
result from lagging response of molecular dipoles in dielectrics or domains in ferrites as well
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Figure 13.9: Demonstration of a reactive boundary layer – capacitive termination. Gaussian
pulse with full-width at half-maximum of 0.067 m. Layer thickness: 0.004 m. a) Low capaci-
tance, C = 0.35 pF. b) High capacitance, C = 35.4pF .

as common resistive processes. We can include these effects conveniently by adding complex
parts to the dielectric constant and magnetic permeability. The following section reviews the
theoretical basis of the representation and the definition of perfectly absorbing boundaries.

We shall concentrate on E type waves – the extension to H waves is straightforward. The
governing equation is

−∇×
(

1

µ
∇× E

)

= −ǫ ω2E+ jωJ0. (13.51)

The complex quantity E contains information on the amplitude and phase of the electric field.
In a one-dimensional finite-element representation, we integrate both sides of Eq. 13.51 over
an area surrounding a vertex (Figure 13.3) and apply Stoke’s theorem to transform the curl
terms. The expressions for the left-hand side are the similar to those of Section 13.2. The main
difference is that Wiu and Wid may be complex if µ includes energy loss. The right-hand side
of Eq. 13.51 at a vertex is

− ω2Ei

2
[ǫi+1(zi+1 − zi) + ǫi(zi − zi−1)] +

jω

2
[Ji+1(zi+1 − zi) + Ji(zi − zi−1)] . (13.52)

Combining results and solving for Ei gives a set of linear equations for the electric field,

Ei =
WiuEi+1 +WidEi−1 − jω [Ji+1(zi+1 − zi) + Ji(zi − zi−1)]

Wiu +Wid − Ai

. (13.53)

Expressions for the coupling coefficients are the same as Eqs. 13.36 and 13.37. The quantity
Ai is given by
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Ai = ω2 ǫi+1(zi+1 − zi) + ǫi(zi − zi−1)

2
, (13.54)

We can understand the physical implication of Eq. 13.53 by considering wave solutions in
a uniform material region with no damping on a uniform mesh. For mesh spacing ∆z the
coefficients in the equation are Wiu = Wid = 1/µ∆ and Ai = ω2ǫ∆z. Equation 13.53 reduces
to

Ei =
Ei+1 + Ei−1

2− µǫω2∆z2
. (13.55)

We can show that Eq. 13.55 leads to the traveling wave solutions of Eqs. 13.10. Substituting
Eq. 13.10 into Eq. 13.55 and canceling the factor of exp(jωt) gives

exp[j(ω∆z/v)] + exp[−j(ω∆z/v)]
2− µǫω2∆z2

=
cos(ω∆z/v)]

1− µǫω2∆z2/2
= 1. (13.56)

A binomial expansion of the cosine in the limit ω∆z/v = ∆z/λ≪ 1 confirms the identity.
Relaxation techniques do not give successful solutions of Eq. 13.51. Instead, we can modify

the method of backsubstitution to solve tridiagonal equations with complex numbers. The
implementation of short circuit (Ex = 0.0) and open circuit (dEx/dz = 0.0) boundary conditions
follows from the discussion of Section 4.4. We can initiate waves either by specifying the
amplitude and phase of current sources in one or more elements or by setting the magnitude
and phase of Ex on a boundary. The definition of absorbing or reactive boundaries with
termination elements is the same as that for time-domain solutions.

A solution of Eq. 13.51 consists of real and imaginary parts of Ex at mesh vertices. Trans-
mission line solutions are generally expressed in terms of standing and traveling waves. For
reference, we shall document the correspondence between the viewpoints. Given a complex
value of the electric field at a point z, Ex = [Exr, Exi], the physical electric field is given by

Ex(z, t) = Re[(Exr + jExi) exp(jωt)] = Exr(z) cos(ωt)− Exi(z) sin(ωt). (13.57)

Alternatively, we can express the field in terms of single-frequency waves moving in the ±z
directions,

E+ cos(kz − ωt+ φ+) + E− cos(kz + ωt+ φ−). (13.58)

Expanding Eq. 13.58 gives

E+[cos(kz + φ+) cos(ωt) + sin(kz + φ+) sin(ωt)] +

E−[cos(kz + φ−) cos(ωt)− sin(kz + φ−) sin(ωt)]. (13.59)

Comparison with Eq. 13.57 gives the correspondence between the complex number and traveling
wave viewpoints,

Exr = E+ cos(kz + φ+) + E− cos(kz + φ−),

Exi = −E+ sin(kz + φ+) + E− sin(kz + φ−). (13.60)
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Figure 13.10: Real and imaginary parts of the relative dielectric constant of purified water as
a function of frequency.

The values [Exr, Exi] at two points in the solution space define four equations that determine
the components E+, φ+, E− and φ−. To illustrate the inverse conversion, a traveling wave with
amplitude E0 moving in the +z direction in a uniform medium with φ+ = 0.0 is equivalent
to the complex components Exr = E0 cos(kz) and Exi = −E0 sin(kz). A standing wave with
φ+ = φ− = 0.0 corresponds to Exr = E0 cos(kz) and Exi = 0.0.

13.5 Scattering solutions

At high frequencies material responses may lag behind driving fields. In this case, the fields
created by shifts of dielectric charge or reorientation of magnetic domains may not be in phase
with applied fields. This leads to energy losses in the material. We can represent phase
differences with complex values of dielectric constant and magnetic permeability. The standard
notation is

ǫ = ǫ′ + jǫ′′,

µ = µ′ + jµ′′. (13.61)

As an illustration, Figure 13.10 shows the variation of ǫ′/ǫ0 and ǫ
′′/ǫ0 in purified water. At low

frequency the medium is an ideal dielectric with ǫ′/ǫ0 = 81 and ǫ′′/ǫ0 ∼= 0.0. At high frequency
inertial effects in the reorientation of polar molecules causes a drop in the real part of the
dielectric constant and increasing losses.

Poynting’s theorem describes conservation of electromagnetic energy flow,

−∇ · (E∗ ×H) = E∗ · ǫ∂E
∂t

+H∗ · µ∂H
∂t

+ E∗ · Jc. (13.62)
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Equation 13.62 is derived in most introductory texts, including D.K. Cheng, Field and Wave
Electromagnetics, Second Edition (Addison-Wesley, Reading, 1992), 38. The quantity in
parenthesis on the left-hand side is the Poynting vector, equal to the flux of electromagnetic
power. Quantities on the right-hand side are volumetric power losses. The quantity Jc in
the last term is the conductive current driven in resistive materials. Asterisks denote complex
conjugates. Assuming a harmonic field variation, applying Eq. 13.62 and substituting E =
Er + jEi and H = Hr + jHi, the right hand side of Eq. 13.62 becomes

2jω
[ǫ′(E2

r + E2
i ) + µ′(H2

r +H2
i )]

2
− ωǫ”(E2

r + E2
i )− ωµ”(H2

r +H2
i ) + σ(E2

r + E2
i ). (13.63)

The field quantities in Eq. 13.63 represent time averages. The first term in Eq. 13.63 is the time
derivative of the total field energy (Eqs. 3.17 and 10.11). The remaining three terms represent
power loss in materials. In the electric field terms we can combine contributions of material
response and resistivity into a single expression for the complex part of dielectric constant,

ǫ” → ǫ”− σ

ω
. (13.64)

Equation 13.64 agrees with the derivation of Section 11.3 (Eq. 11.34).
We can apply Eq. 13.63 to determine the properties on an ideal absorbing layer for a

frequency-domain solution. Consider first an E type solution where a plane wave moves from a
non-absorbing medium (Material 1) into an absorbing layer material of thickness ∆z (Material
2). Using Eq. 13.13 to evaluate the Poynting vector, the power per unit area entering the later

is Z1(E
2
r + E2

i ). The characteristic impedance of Medium 1 is given by Z1 =
√

µ′/ǫ′. If we
express dissipation in the layer with a complex dielectric constant, the power absorbed per unit
area is given by −ωǫ′′2(E2

r + E2
i )∆z. The condition for total absorption of E waves is

ǫ2” = − 1

ωZ1∆z
. (13.65)

The real parts of the material properties for Medium 2 are matched to those of Medium 1, ǫ′1 = ǫ′2
and µ′

1 = µ′
2. The procedure for H type waves is to use a complex magnetic permeability. The

condition for perfect absorption is

µ2” = − Z1

ω∆z
. (13.66)

Figure 13.11 shows benchmark solutions for wave propagation in a uniform vacuum of
length L = 1.0 m with no damping. In both cases the left drive boundary has the fixed value
Ex = [1, 0]. In Figure 13.11a the right boundary is a short circuit, Ex = [0, 0]. The frequency
of 6.0 × 108 Hz (L = 2λ) gives a standing wave with Exi = 0.0 at all points. We can create a
traveling wave solution by adding a termination and an open circuit condition on the right-hand
boundary. For a width ∆z = 0.004 m, the element on the right-hand side has ǫ = ǫ0(1−19.86j)
and µ = µ0. Figure 13.11b shows the result, a wave moving in the positive z direction with no
reflection.

Finally, Figure 13.11c shows an interesting solution that we can compare to transmission
line theory. Here, the right-hand half of the system consists of a dielectric with ǫ/ǫ0 = 2.5. The
absorbing cell on the right-hand boundary has ǫ = ǫ0(2.5− 31.40j) to match the characteristic
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Figure 13.11: Benchmark frequency domain solutions. System length: L = 1.0 m. Element
width: 0.004 m. Medium properties: µ = µ0, ǫ = ǫ0 and σ = 0.0. Left boundary: Ex = [1, 0].
a) Standing wave solution, right boundary Ex = [0, 0], f = 600 MHz. b) Traveling wave
solution. Right boundary is an open circuit and the final element is a matched termination
with σ = 0.6626 S/m. c) Mixed standing and traveling wave solutions. Transition to ǫ/ǫ0 = 2.5
at z = L/2. Final element is an absorbing layer with σI = 1.0477 S/m.
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Figure 13.12: Lower order E wave modes of a one-dimensional vacuum resonator. For L = 1/0
m, the predicted resonant frequencies are f1 = 149.8962 MHz, f2 = 299.7925 MHz and f3 =
449.6887 MHz.

impedance of 238.63 Ω. There are transmitted and reflected waves at the interface. An inspec-
tion of the real and imaginary parts of the solution shows a mixture of standing and traveling
waves on the left hand side and a pure traveling wave on right hand side. Equation 13.18 gives
an electric field reflection coefficient of RE = −0.2252. The predicted standing wave ratio is
(1 + |RE|)/(1− |RE|) = 1.581, consistent with Figure 13.11c.

13.6 One-dimensional resonant modes

Resonators are closed systems with trapped traveling waves. Certain values of frequency give
constructive interference, resulting in high field values for relatively weak excitation. The
strategy to find resonant modes is to set up frequency-domain solutions (following the methods
of Section 13.4) at several frequencies, looking for characteristic signs of resonance. Although
the modes of one-dimensional resonators are straightforward, the tools we develop in this section
are directly relevant to the two and three-dimensional systems of Chap 14.

Figure 13.12 shows the simplest one-dimensional resonator, a vacuum region between two
metal boundaries separated by a distance L. The boundary condition for E type waves is
Ex(0) = Ex(L) = 0.0. The condition for constructive interference of traveling waves with
wavelength λ is
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Figure 13.13: Driven LCR resonant circuit.

λ =
2L

n
, n = 1, 2, 3, ... (13.67)

The wavelength is related to frequency by λ = c/f . For L = 1.0 m the frequencies of the
first three modes are f = 149.8962 MHz, 299.7925 MHz and 449.6887 MHz. Figure 13.12 shows
the corresponding variations of E + x. The figure also illustrates a common method to excite
an E type modes, a drive current near the expected location of maximum magnetic field. To
check for a resonance, we sweep the drive through a range of frequencies and monitor the signal
on a probe near the point of maximum electric field. The probe response rises sharply near the
resonant frequency.

We can understand some features of resonance response by studying the behavior of the
circuit shown in Figure 13.13. The circuit is a lumped-element model for the lowest frequency
E wave mode. Here, the capacitive energy (electric field) is highest near the center of the cavity
and the inductive energy (magnetic field) at the edges. The drive current couples into a portion
of the cavity inductance denoted L1. The total system inductance is L = L1+L2. If a harmonic
current with amplitude I0 is applied at the drive point (with the sign convention shown) we
can find the drive voltage by calculating the complex circuit impedance. The impedances of
the individual circuit components are Z1 = jωL1, Z2 = jωL2, Z3 = R and Z4 = 1/jωC. The
total impedance at the drive is Z1 in parallel with (Z2 + Z3 + Z4), so that

Vo = − Z1(Z2 + Z3 + Z4)

Z1 + Z2 + Z3 + Z4

I0. (13.68)

We measure the voltage across the capacitive region of the cavity, as shown. The probe voltage
V is given in terms of V0 by the law of voltage division, V = V0Z4/(Z2+Z3+Z4). Alternatively,
we can write

V = − Z1Z4

Z1 + Z2 + Z3 + Z4

I0. (13.69)

Inserting expressions for the component impedances in Eq. 13.63 gives

V = I0
−jωL1

1− ω2LC + jωRC
. (13.70)
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We can generalize Eq. 13.70 by expressing it in terms of the circuit resonant frequency ω0, the
resonator characteristic impedance Z0, the quality factor Q and the dimensionless frequency
Ω = ω/ω0. The quantities are given by

ω0 =
1√
LC

,Z0 =
√

L/C ,Q =
Z0

R
. (13.71)

The parameter Q equals the ratio of stored electromagnetic energy U in the resonator multiplied
by ω and divided by the average resistive power dissipation P :

Q =
ω U

P
. (13.72)

The quantity 2π/Q is the approximate fraction of stored energy lost per cycle. A practical
resonator has Q≫ 1.0.

Equation 13.70 takes the form

V = I0

[

Z0
L1

L

]

[−Ω2/Q+ jΩ(Ω2 − 1)]

[(1− Ω2) + Ω2/Q2]
. (13.73)

The resonance condition is that Ω = 1.0. Figure 13.14 plots the variation of the real and
imaginary parts of V as a function of Ω near resonance. In the plot the drive current has 0o

phase (I0 = [1, 0]) and the circuit has low damping (Q = 250). The imaginary part of the
probe voltage has a sign change at resonance. At this point, the real part of the voltage has
maximum amplitude Vmax = −QZ0(L1/L)I0. Substituting Ω = 1 + ∆Ω and making binomial
expansions of terms in Eq. 13.70, we find that the amplitude of the real part of V drops to half
its maximum value at ±∆Ω = 1/2Q. This implies that the Q factor equals the reciprocal of
the frequency difference between the half amplitude points.

The above discussion suggests a numerical technique to find the properties of damped and
undamped resonators. As an example, consider E wave solutions in the system of Figure 13.12.
We set up a frequency-domain solution with a current source [1,0] in an element near the wall
and monitor the real and imaginary parts of Ex near the expected field maximum. For the
fundamental mode (n = 1), the best position is z = L/2. The next step is to pick upper and
lower frequencies that bracket the anticipated value of resonant frequency: fu and fd. Initial
solutions are performed to check that the imaginary part of the probe response is positive
at fu and negative at fd. This condition guarantees that there is a resonance in the range.
Subsequently, a frequency search for the sign change of the imaginary part gives the resonant
frequency f0 = 2πω0. Damping of the fields may result from volume resistivity in the medium,
wall resistivity or imperfect materials. To find the effect of dissipation, we can make several
solutions near f0 to determine the frequency spread between the half amplitude points of the
real part of the probe signal. The total quality factor is given by Q = 2|f − f0|/f0.

The open circles on the plot of Figure 13.14 shows numerical results for the system of Figure
13.12 with 250 elements. The predicted frequency of the n = 1 mode is f0 = 149.89623 MHz. A
uniform conductivity σ0 gives damping. The stored energy in an element is U = ǫ0E

2
x/2 and the

time-average power loss is P = σ0E
2
x. Therefore, the predicted quality factor is Q = 2πf0ǫ0/σ0.

A value σ0 = 3.33×10−5 S/m gives Q = 250. The points in Figure 13.14 are taken at increments
of 40 kHz. Note that the imaginary part reverses sign at f0 and that the full-width at half-
maximum of the real part is 0.6 MHz as expected. Far from the resonance the probe electric
field is purely imaginary, 90o out of phase from the drive current. The sign of the imaginary
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Figure 13.14: Resonant circuit, variation of V as a function of Ω near resonance. Drive current
I0 = [1, 0], Q = 250.

part is negative at low frequency implying that system acts like a capacitor. The impedance is
imaginary and positive at high frequency, implying inductive behavior.

For most applications we want to determine the resonant frequency to high accuracy. Each
point in a search involves a solution of finite element equations. Solutions can be time-
consuming in two and three-dimensional problems. The implication is that we should seek
methods to find the zero-crossing that minimize the number of steps. Figure 13.15a illustrates
the bisection method . The plot shows the imaginary part of the probe response as a function
of frequency, P (f). Initially, the frequency values fd and fu define a search range. Bisection of
the range gives f1 = (fd+ fu)/2. If P (f1) < 0.0, we use f1 → fu as the new interval; otherwise,
the interval is fd → f1. The bisection continues either for a maximum number of steps or until
the frequency width of the bisection region drops below a target frequency width. If ∆f is the
target width and ∆f0 is the initial range, the maximum number of steps is n = log2(∆f0/∆f).
The advantage of the bisection method is that it never fails to converge – the decreasing in-
tervals always bracket the zero crossing. For well-behaved functions, alternative methods can
achieve a target accuracy in fewer steps. Figure 13.15b shows the false position method for
root finding. Starting again from points fu and fd that bracket the root, we interpolate the
frequency as shown and calculate the corresponding value of P to find f1. We choose the range
fd → f1 or f1 → fu that encloses the root and repeat the interpolation. The bisection method
was used for the baseline calculation of Figure 13.14 with an initially broad range of 120 MHz
to 180 MHz. The search converged in 16 steps to the value 149.89496 MHz. The accuracy of 1
part in 1.2× 105 was limited by the mesh size. Table 13.1 shows predicted resonant frequencies
and numerical results for the first five modes of the one-dimensional resonator. The error is
approximately proportional to the ratio ∆z/λn where ∆z is the element size and λn is the mode
wavelength.
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Figure 13.15: Numerical determination of zero crossing point of a function. a) Bisection
method. b) False position method.

Table 13.1: Resonant frequency calculation - 250 elements

Mode f (predicted) f (numerical) Error
(MHz) (MHz)

1 149.89525 149.89623 0.0007%
2 299.78457 299.79246 0.0026%
3 449.66204 449.68869 0.0059%
4 599.52185 599.58492 0.0105%
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Exercises

13.1. Find the attenuation distance for a 100 MHz electromagnetic wave in the following
aqueous media.

a) Highly purified water with effectively zero conductivity (use the data of Figure 13.10).
b) Distilled water with volume resistivity ρ = 5 x 103 Ω-m.
c) Sea water, with ρ = 0.25 Ω-m.

13.2. A plane electromagnetic wave with electric field amplitude E0 = 105 V/m moves through
a uniform medium with ǫr = 4.5 and µr = 10.8. Find the amplitudes of the magnetic field H0

and magnetic flux density B0 of the wave.
13.3. An entering plane wave has electric field amplitude Ei = 3.3× 106 V/m in vacuum. The
wave is normally incident on a ferrite with µr = 50 and ǫr = 10.

a) Apply Eq. 13.62 to find the time-averaged power density of the incident wave.
b) Find the amplitudes of electric field and magnetic intensity in the transmitted and
reflected waves.
c) Give the time-averaged power densities of the transmitted and reflected waves.

13.4. Use a spreadsheet to investigate the stability of a one-dimensional time-domain electro-
magnetic calculation.

a) For an E type wave, write simplified forms of Eqs. 13.32 through 13.37 for a uniform
mesh with spacing ∆z. Assume the medium is homogeneous with no damping or internal
current sources.
b) Let each column of the spreadsheet represent a point in time. Model a region of width
1.0 m with 10 elements and 11 vertices. Set all initial values of Ex to zero.
c) Maintain the fixed value Ex(11) = 0.0 to represent a wall. The first vertex has the
fixed value Ex(0) = 1.0 to represent a step-function excitation. The other vertices advance
according to the equations of Part a. Investigate solutions for time steps just above and
just below Courant limit of ∆t = 0.1667 ns.

13.5. Find the resonant frequencies of a dielectric-filled one dimensional resonator. A distance
d = 0.5 m separates conducting plates. The region 0.0 ≤ x ≤ d/2 is occupied by a dielectric
with ǫr = 2.0, while the remaining volume is vacuum.
13.6. The figure shows a simple resonant circuit driven by an AC voltage.

a) Find the complex impedance of the circuit. Express the answer in terms of the parameters

ω0 = 1/
√
LC, β = R/

√

L/C, Ω = ω/ω0.

b) Plot the ratio of current through the capacitor to input current as a function of Ω.
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13.7. An AC voltage source with frequency f drives a transmission line of length L. The line
is filled with a uniform dielectric with material characteristics ǫ and µ.

a) Show that the wavelength of electromagnetic radiation in the line is λ = 1/f
√
ǫµ.

b) A resonance occurs in a driven undamped circuit when the input impedance diverges to
infinity. If the transmission line is shorted at the opposite end, explain why the resonance
condition is L = λ/4.
c) What is the resonance condition if the end of the transmission line has an open-circuit
termination?
d) Give the resonant frequency of a shorted polyethylene-filled line (ǫr = 2.7) of length
L = 5.0 m?

13.8. We want to define a resistive layer to absorb pulses propagating in a uniform medium
with ǫ = ǫ0 and µ = 5µ0.

a) If the temporal width of pulse is 2.0 ns, find the spatial width.
b) Suppose the absorber thickness equals 1/20 of spatial pulse width. Find the layer con-
ductivity for an ideal absorber.

13.9 Using the Fourier transform, a temporal Gaussian pulse with form f(t) = exp(−t2/2∆t2)
can be written as an integral of frequency components,

f(t) =
∫ ∞

0
exp

[

−(ω∆t)2

2

]

cos(ωt).

a) Assuming propagation in a vacuum, convert the above equation to an expression for
the spatial variation of fields f(x) written in terms of the wavenumber k of the Fourier
component.
b) Find a value of the wavenumber k0 such that the integral of Fourier component amplitudes
in the range k0 ≤ k ≤ ∞ is 1 per cent of the integral from 0 to ∞. (Use tabulations of the
error function).

13.10. Use results of Exercise 13.9 to investigate factors affecting the performance of an ab-
sorbing layer.

a) Find the value of layer thickness in Figure 13.2 that gives a reflected pulse amplitude of
0.01, equivalent to a reflected energy fraction of 10−4.
b) Find the wavenumber k0 for the baseline Gaussian pulse of Eq. 13.47, and compare 1/k0
to the layer thickness of Part a). What is the physical interpretation of this result?

13.11. We make two measurements of electric field amplitude and phase for a wave with
frequency 200 MHZ in a transmission line at positions z = 0.0 and z = 0.59 m. The line has a
polyethylene dielectric with ǫr = 2.7. The results are as follows. Position 1: E0 = 17.748 V/m,
φ = 8.184o. Position 2: E0 = 10.127 V/m, φ = -3.142o.

a) Calculate the real and imaginary parts of the electric field at the two positions.
b) Resolve the wave into positive and negative-going traveling waves by calculating the field
amplitude E+ and E− following discussion of Section 13.3.

13.12. A pillbox resonant cavity has radius R = 0.30 m and length d = 0.06 m. The cavity is
filled with purified water.

a) Neglecting conductivity and dielectric losses, find the resonant frequency using the di-
electric properties in Figure 13.10. b) If E0 is the electric field amplitude on axis, show that
total electromagnetic field energy in the cavity at any time is U = (πR2d)(ǫ′E2

0/2)J
2
1 (2.405).

The quantity ǫ′ is the real part of the dielectric constant at the frequency of Part a. The
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first order Bessel function has the value J1(2.405) = 0.52.
c) Find the power deposited in the water through dielectric losses.
d) At what value of σ are conductive losses equal to dielectric losses?
e) Under the condition of Part d , what is the Q factor of the resonator?

13.13. For the data set given below, find the value of x corresponding to f(x) = 0.0 using the two
methods described in Section 13.6. Carry out the search step-by-step using a spreadsheet. The
values are derived from the function f(x) = sin(3x/2)+x/2+1, with a root at x = −0.54373094.

x −2.0000 −1.5000 −1.0000 −0.5000 0.0000 0.5000 1.0000 1.5000 2.0000
f(x) −0.1411 −0.5281 −0.4975 0.0684 1.0000 1.9316 2.4975 2.5281 2.1411



Chapter 14

Two and Three-dimensional
Electromagnetic Simulations

Section 14.1 extends the time-domain methods of Section 13.2 to two-dimensional solutions on a
triangular mesh. In planar geometry, pulses propagate in the x-y plane. We can divide solutions
into two classes: E orH. E type solutions involve finite-element equations for Ez, which we shall
call the primary field component . Gradients of the primary field give the subsidiary quantities
Hx and Hy. The E type solution is also called a TE (transverse electric) pulse because the
electric field is always normal to the direction of propagation. The other class is the H type
solution or TM (transverse magnetic) pulse. Here, Hz is the primary field component and the
subsidiary fields are Ex and Ey. Section 14.2 covers extensions of methods from the previous
chapter to handle two-dimensional solutions. We must consider how to apply the Courant
condition on a triangular mesh and how the performance of absorbing boundaries changes
for pulses that are not normally incident. We shall also review equations to cover cylindrical
systems. A useful application of H type cylindrical solutions is propagation of TEM pulses in
coaxial transmission lines with properties that vary along z.

Section 14.3 addresses two dimensional equations for scattering type solutions. Most of
the relevant physics was discussed in Section 13.4. The main challenge here is organizing the
different types of propagation modes and finding expressions for the subsidiary field quanti-
ties. Section 14.4 covers solution techniques and several examples. Section 14.5 extends the
frequency-domain theory to planar and cylindrical resonators. The resonance search techniques
of Section 13.5 are directly applicable. Section 14.6 covers methods to calculate RF power dis-
sipation in finite-element simulations. One application is the determination of the Q factor of
resonators.

To conclude, Sections 14.7 and 14.8 and cover electromagnetic pulse propagation in three
dimensions on regular meshes. For reference, Section 14.7 covers finite-difference time-domain
calculations. This popular approach has been intensively applied. It is based on time and
space-centered difference equations referenced to field components defined at six locations on a
unit box cell. Section 14.8 introduces an element-based alternative. In addition to the material
properties, the electric or magnetic field components are viewed as element properties. The
solutions are easier to interpret and give a better representation of material discontinuities. In
particular, the termination layer method can be used to simulate free-space boundaries. The
section reviews practical considerations for implementing three-dimensional electromagnetic
simulations on personal computers.

271
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14.1 Time-domain equations on a conformal mesh

Extending the theories of Section 13.2 to two-dimensional time-domain solutions is straight-
forward. For illustration, consider the planar geometry where quantities vary in x and y but
not in z. Electromagnetic disturbances propagate in the x-y plane. It is convenient to divide
solutions into two classes.

• E pulse or transverse electric (TE) solutions where the electric field is transverse to the
plane of propagation. The primary field component is Ez with subsidiary fields Hx and
Hy.

• H pulse or transverse magnetic (TM) solutions where the magnetic field is transverse to
the plane of propagation. The primary field component is Hz with subsidiary fields Ex

and Ey.

Following Section 13.2, the governing equation for E pulse solutions is

−
∮ ∇× Ez

µ
· dl =

∫ ∫

dS

[

ǫ
∂2Ez

∂t2
+
∂J0z
∂t

+ σ
∂Ez

∂t

]

. (14.1)

In time domain calculations the quantities Ez, ǫ and µ are real. The only modification for a
two-dimensional treatment is to take the circuit integral of Equation 14.1 over the twelve-sided
path of Figure 2.12 and to evaluate the surface integrals over the enclosed area. The result is

− Ez0

∑

i

Wi +
∑

i

WiEzi =
∂2Ez0

∂t2
∑

i

ǫiai
3

+
∑

i

ai
3

∂J0i
∂t

+
∂Ez0

∂t

∑

i

σiai
3
. (14.2)

The subscript 0 denotes the electric field at the test vertex and i refers to neighboring vertices
or surrounding elements. The quantities ai are element areas in the x-y plane. In Equation 14.2
the average of the field time derivative over the surrounding elements is approximately equal to
the value at the test vertex. Following the notation of Section 2.7, the coupling constants are

Wi =
1

2

[

cot θb,i+1

µi+1

+
cot θa,i
µi

]

. (14.3)

Substituting time-centered derivatives as in Section 13.2, we find an equation to advance the
axial electric field

En+1
z0 =

[

En
z0(2A0 −

∑

iWi)− En−1
z0 (A0 − C0) +

∑

iWiE
n
zi − Sn

0

]

[A0 + C0]
. (14.4)

The quantities in Equation 14.4 are

A0 =
1

3∆t2
∑

i

ǫiai, (14.5)

C0 =
1

6∆t

∑

i

aiσi, (14.6)
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and

Sn
0 =

∑

i

ai
3

∂Jn
0i

∂t
. (14.7)

The quantity of Equation 14.7 is the time derivative of the drive current density, a specified
function of time and position.

The treatment H pulses in planar geometry is similar to the E pulse development. The
governing equation is

−
∮ ∇×Hz

ǫ
· dl =

∫ ∫

dS

[

µ
∂2Hz

∂t2
+
σµ

ǫ

∂Hz

∂t

]

−
∮ Jo

ǫ
· dl. (14.8)

The main difference is that the source current lies in the x-y plane. By continuity of current,
the source generates displacement current and therefore creates field components Ex and Ey.
To evaluate the curl term in Equation 14.8, suppose that source elements have a current density
with amplitude J0i inclined at an angle βi relative to the x axis. Following the discussion of
Section 9.6, the curl can be expressed as a sum over elements surrounding a vertex,

S0 =
∑

i

J0i
2ǫi

[cos βi(xi − xi−1) + sin βi(yi − yi−1)] . (14.9)

The finite-element equation for H pulses is

Hn+1
z0 =

[

Hn
z0(2A0 −

∑

iWi)−Hn−1
z0 (A0 − C0) +

∑

iWiH
n
zi − Sn

0

]

[A0 + C0]
. (14.10)

The terms in Equation 14.10 are given by Equation 14.9 and the following expressions:

A0 =
1

3∆t2
∑

i

µiai, (14.11)

Wi =
1

2

[

cot θb,i+1

ǫi+1

+
cot θa,i
ǫi

]

, (14.12)

and

C0 =
1

6∆t

∑

i

ai
σiµi

ǫi
, (14.13)

The source terms for E and H pulses are analogous to the input devices used to excite waveg-
uides and resonators with power from transmission lines. For E pulses the source acts like
the coupling loop illustrated in Figure 14.1a. The loop generates magnetic fields parallel to
its surface. In turn, the changing magnetic flux creates electric fields. These fields are locally
parallel to the exciting current with magnitude proportional to the time-derivative of current.
The source term for H pulses acts like the capacitive probe of Figure 14.1b. The probe current
equals the local displacement current and is therefore proportional to the time derivative of
electri c field. The displacement current produces magnetic fields that are proportional to the
current and perpendicular to the probe.

Extension of the model to cylindrical geometries follows a procedure similar to that of Section
9.4. We shall consider H type solutions which include the familiar case of pulse propagation in
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Figure 14.1: Connection between the source terms for E and H pulses and the physical devices
used to coupled power from a transmission line to a waveguide or cavity. a) Coupling loop
drives E pulses. b) Capacitive probe drives H pulses.

coaxial transmission lines. Taking H normal to the direction of propagation, the allowed field
components are Hθ, Ez and Er. We can write the curl of magnetic field intensity in terms of
the stream function η = rHθ,

∇×H =
1

r

[

−r
∂η

∂z
+ z

∂η

∂r

]

. (14.14)

The circuit integral of ∇×H/ǫ around the path of Figure 2.12 has the form

∑

i

Wiηi − ηo
∑

i

Wi, (14.15)

The coupling constants are

Wi =
1

2

[

cot θb,i+1

ǫi+1 Ri+1

+
cot θa,i
ǫi Ri

]

. (14.16)

In Equation 14.16 Ri and Ri+1 are the average element radii discussed in Section 9.4. Equation
14.10 holds with η replacing Hz if the coefficients have the form

Ao =
1

3∆t2
∑

i

µiai
Ri

, (14.17)

Co =
1

6∆t

∑

i

ai
σiµi

ǫiRi

, (14.18)

The condition η = 0 always holds at r = 0.
By convention, in planar solutions we assign a uniform current density over a region rep-

resenting a source. We shall modify the form of the source term for convenience in cylindrical
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Figure 14.2: Absorbing boundary for two-dimensional solutions. a) Normal incidence. b)
Increase in effective layer thickness for θ < 90o.

solutions. It is best to pick a source function that conserves current in radial flow. For H pulses
we assign constant values of the radially weighted flux, Γ = rJ, to source regions. With this
choice, regions of constant Γ generate TEM-type pulses where Eθ or Hθ follow a 1/r variation
in radius. The cylindrical source has the form

So =
∑

i

Γoi

2ǫiRi

[cos βi(zi − zi−1) + sin βi(ri − ri−1)] , (14.19)

where βi is angle of current density relative to the z axis.

14.2 Electromagnetic pulse solutions

Time-domain solutions of Equation 14.4 are relatively easy. Initially Ez equals zero everywhere.
Electromagnetic disturbances are initiated with a source current density or with a specified
time variation of Ez on a fixed boundary. To determine a time step that satisfies the Courant
condition, we must check the entire mesh. A reliable procedure is to calculate the minimum
value of the distance between adjacent vertices divided by the local speed of light. There are
three types of boundaries. As in previous finite-element treatments, the normal derivative of
Ez automatically equals zero on unspecified external boundaries. This condition is equivalent
to mirror symmetry or an open-circuit condition. E pulses reflect with positive polarity from
an open boundary. The second possibility is fixed field boundary with Ez = 0.0, equivalent to
a short circuit termination. Here, reflected E pulses have inverted polarity. The third option
is drive boundary with a fixed field that follows a specified function of time, Ez(t). A drive
boundary can revert to an open or short circuit condition after initiation of the pulse.
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The option to locate termination layers adjacent to open boundaries expands the range of
boundary properties. Figure 14.2a illustrates how to implement a matched absorbing boundary.
Following the discussion of Section 13.2, we define a thin element layer of thickness ∆. This
element has the ǫ and µ values of the adjacent material and a conductivity,

σ =
1

∆
√

µ/ǫ
. (14.20)

The layer performance closely follows the one-dimensional results (Figure 13.8) for pulses inci-
dent at 90o. In two-dimensional solutions we must deal with pulses entering from other angles,
reducing the effectiveness of the absorber. Figure 14.2b shows a pulse striking an absorbing
layer at an angle θ < π/2. For this pulse the effective layer thickness is ∆/ sin θ, reducing the
surface resistance by a factor of sin θ. In this case the termination is under-matched. Applying
Equation 13.18, the predicted reflection coefficient is

Er

Eo

= −1− sin θ

1 + sin θ
. (14.21)

The degradation in performance is not severe. A matched layer absorbs more than 90 per cent
of the incident wave energy over the range 30o≤ θ ≤ 90o.

Figure 14.3 shows tests of Equation 14.21 for a Gaussian pulse (0.067 m width) incident
from vacuum. Figure 14.3a shows results for a 45o corner reflector. The lines are contours of
Ez. An application of Equation 13.5 shows that these lines are parallel to the magnetic field in
the x-y plane and are separated by equal intervals of magnetic flux derivative. The absorbing
layer on the bottom has thickness ∆ = 0.005 m and conductivity σ = 0.5301 S/m. The top-
left drive boundary creates the pulse, while the top-right edge is an open symmetry boundary.
The incident pulse with peak amplitude 1 V/cm is at the bottom-right. The reflected pulse
traveling at a right angle has an amplitude of -0.17 V/m, consistent with the prediction of
Equation 14.21. Figure 14.3b shows an example with θ = 30o. The amplitude of the specularly
reflected pulse is -0.37 V/m, close to the predicted value of -0.33 V/m.

One advantage of the termination layer approach is that we can improve absorption if we
know the approximate direction of pulses. For example, for pulses that strike the surface at
angle θ we can approach ideal absorption by setting the layer conductivity equal to

σ =
sin θ

∆
√

µ/ǫ
. (14.22)

Figure 14.3c shows improvement of the solution of Figure 14.3b by changing the layer conduc-
tivity to σ = 0.2650 mhos /m. In this case, the reflection coefficient is only -0.025.

Figure 14.4 shows applications of Equation 14.4. In Figure 14.4a, the left-hand drive bound-
ary creates a Gaussian E pulse which moves through a vacuum region and strikes a dielectric
block (ǫr = 3.0). The top and bottom boundaries are open; therefore the results simulate scat-
tered radiation from an array of blocks. Note the retardation and narrowing of the pulse in the
block. Because the impedance of the block is lower than that of free space, the reflected wave
has negative polarity. Figure 14.4b is a scan of electric field values along the vertical midplane
that shows reflected and transmitted pulse amplitudes of -0.268 and 0.732, in agreement with
Equation 13.18. Figures 14.4c and d show the propagation of a cylindrical wave on a finite-
element mesh. A drive boundary condition on the central rod produces the expanding pulse of
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Figure 14.3: Performance of matched termination boundary as a function of incidence angle.
Gaussian E pulse in vacuum with 0.067 m full-width at half-maximum. a) Contours of Ez

showing incident and reflected pulses at a 45o corner reflector. Absorbing layer (∆ = 0.005
m, σ = 0.5301 S/m) at bottom and symmetry boundary at top-right. b) Pulse reflection at
θ = 30o. c) Improvement of 30o absorption by adjusting the layer conductivity to σ = 0.2650
S/m.
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Figure 14.4: Examples of time-domain pulse propagation, Gaussian E pulses. a) Contours of
Ez for a pulse striking a dielectric block with ǫr = 3.0. b) Scan of Ez along the midplane of part
a. c) Contours of Ez for a cylindrically-symmetric expanding pulse. d) Electric field contours
for the pulse of part c after reflection from open boundaries at the left and right and sorted
boundaries at the bottom and top.
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Figure 14.4c. The left and right boundaries are shorted and the top and bottom boundaries
are open. The Ez contours of Figure 14.4d show the state after reflection. There is interference
of positive polarity pulses from the top and bottom with negative pulses from the sides. The
negative polarity pulse fronts in the corners result from double reflections from short and open
boundaries.

To illustrate cylindrical H solutions we shall consider TEM pulse propagation in a coaxial
transmission line. In a uniform line we can make a connection between the field quantity η and
the macroscopic quantities of voltage and current used in transmission line theory. The current
I at a point in the line equals the total current flow along the central conductor. Equation 9.12
implies that

I =
2πrBθ

µ
= 2πrHθ = 2πη. (14.23)

Equation 13.13 implies that the radial electric field is related to the magnetic intensity by the
characteristic impedance of the medium,

Er = Hθ

√

µ

ǫ
=
η

r

√

µ

ǫ
. (14.24)

The voltage of the center conductor equals the integral of −Er from ro to ri,

V =
[

1

2π

√

µ

ǫ
ln
(

ro
ri

)]

I =
[

1

2π

√

µ

ǫ
ln
(

ro
ri

)]

2πη. (14.25)

The bracketed quantity in Equation 14.25 is the characteristic impedance of the coaxial line,

Zo =
1

2π

√

µ

ǫ
ln
(

ro
ri

)

. (14.26)

Because the fields of TEM pulses vary as 1/r, the constant value of η uniquely identifies V and
I.

Figure 14.5a shows the geometry for a benchmark test of an ideal impedance transition.
The line of length 1.0 m has uniform radii ri = 0.05 m and ro = 0.15 m. There is a transition
from µr = 1.0 to µr = 2.5 at the midpoint, giving an impedance change from 65.97 Ω to 104.31
Ω. The metal walls at the inner and outer radii correspond to an open circuit condition for H
pulses. A TEM pulse is initiated by setting a variation of η on the left-hand boundary. Figure
14.5a shows the incident pulse – the contours of Hθ lie along electric field lines. Figure 14.5b
shows reflected and transmitted pulses after striking the interface. The relative amplitudes of
-0.225 and 0.775 are consistent with Equation 13.19. Figure 14.5c shows a more interesting
example, a non-ideal impedance change arising from a sharp transition of the inner radius. The
downstream and upstream impedances are 65.97 Ω and 23.25 Ω. A one-dimensional model
predicts transmitted and reflected Hθ amplitudes of 1.46 and 0.46. The contour and wireframe
plots of Figs. 14.5d and e show pulses that are only roughly in agreement. Two dimensional
effects at the transition cause a complex local radiation pattern.
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Figure 14.5: Benchmark calculations, cylindrical H pulses in coaxial transmission lines. a)
Propagation of a TEM pulses and reflection from an ideal impedance change. L = 1.0 m,
ri = 0.05 m, ro = 0.15 m. Transition from µr = 1.0 to µr = 2.5 at z = 0.5 m. Z1 = 65.97 Ω,
Z2 = 104.31 Ω. Contours of rHθ for the incident pulse. b) Pulse of part a after striking
boundary. c) Non-ideal impedance change associated with a change in line geometry. Z1 =
65.97 Ω, Z2 = 23.25 Ω. Contours of rHθ after reflection. d) Wireframe plot of the data of part
d .
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14.3 Frequency-domain equations

We shall next extend the material of Section 13.4 to two dimensional frequency-domain solu-
tions. As in the previous section we divide waves into two classes: E and H waves. E waves are
polarized with electric field along z and magnetic intensity components Hx and Hy. Here, we
solve finite element equations for Ez with appropriate boundary conditions and then calculate
the magnetic intensity components from Equation 13.5. The field components for H waves
are Hz, Ex and Ey. Solutions in cylindrical coordinates give azimuthally symmetric waves
that propagate in the r and z directions. The primary field component of E waves is Eθ with
subsidiary fields Hr and Hz. The field components for cylindrical H waves are Hθ, Er and Ez.

To begin consider frequency-domain E wave solutions in planar geometry. The governing
equation is,

−∇×
(

1

µ
∇× E

)

= −ǫω2E+ jωJ0. (14.27)

In Equation 14.27, µ and ǫ may be complex quantities to represent resistive losses or non-
ideal material response. The complex number current source J0 contains information on the
amplitude and phase of drives. To derive finite-element equations, we take integrals of Equation
14.27 over the standard area surrounding a vertex that encloses one third of the surrounding
elements. The result is

− Ez0

∑

i

Wi +
∑

i

Ezi = −Ez0 ω
2
∑

i

ǫiai
3

+
∑

i

Jiai
3
. (14.28)

Equation 14.28 may be written as

∑

i

EziWi − Ez0

[

∑

i

Wi − Ai

]

= S0. (14.29)

The coefficients in Equation 14.29 are

Wi =
cot θbi+1/µi+1 + cot θbi/µi

2
, (14.30)

Ai = ω2
∑

i

ǫiai
3
, (14.31)

and

So = jω
∑

i

Jiai
3
. (14.32)

The set of relationships represented by Equation 14.29 can be solved with adaptations of the
matrix inversion methods of Chapter 6. Conversion of the routines simply requires replacing
real number variables with complex variables. In the search for a pivot element in Gauss-Jordan
reduction, the absolute magnitude operation is replaced by the complex magnitude.

The components of magnetic intensity are equal to
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Hx =
j

µω

∂Ez

∂y
,

Hy = − j

µω

∂Ez

∂x
. (14.33)

As discussed in Section 11.4, we determine spatial derivatives of the real and imaginary parts
of Ez. Note that µ may complex if there are losses in ferrites or other magnetic materials.
Equation 14.33 implies that lines of H lie along contours of Ez.

The equation for H wave propagation in a planar system is

∑

i

HziWi −Hz0

[

∑

i

Wi − Ai

]

= −S0. (14.34)

Expressions for the coefficients Wi and S0 are the same as those of Eqs. 14.12 and 14.9. The
quantity Ai is

Ai = ω2
∑

i

µiai
3
, (14.35)

The electric field components in the x-y plane are equal to

Ex =
j

ωǫ

[

−∂Hz

∂y
+ J0x

]

,

Ey =
j

ωǫ

[

∂Hz

∂x
+ J0y

]

. (14.36)

Note that electric field lines follow contours of constant Hz except within source regions.
Modifications for cylindrical geometry follow the discussion of Section 14.1. Solutions for

H waves are expressed in terms of η = rHθ. The expressions for Wi and Ai contain factors of
1/Ri (where Ri is an average element radius). The source term follows from Equation 14.19.
The electric field components are

Er =
j

ωǫr

[

∂η

∂z
+ Γ0r

]

,

Ez =
j

ωǫr

[

−∂η
∂r

+ Γ0z

]

. (14.37)
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Figure 14.6: Dual slit diffraction pattern. Distance between slits: 1 µm. Wavelength of radia-
tion: λ = 0.472 µm.

14.4 Methods for scattering solutions

Figure 14.6 shows an application of Equation 14.29, simulation of a dual slit diffraction pattern.
A metal boundary on the left-hand side has two small openings that admit a plane electromag-
netic wave. We model the surface by taking Ez = [0, 0] on the boundary and Ez = [1, 0] over
the slits. The other three sides of the solution region are surrounded by matched termination
layers to simulate open space. The distance between slits is 1 µm and the radiation wavelength
is λ = 0.472 µm. The contour plot of Figure 14.6 shows diffraction and interference of the
emerging waves. The red line is the theoretical prediction of the first interference null.

One important application for frequency-domain solutions is the scattering of electromag-
netic radiation from objects in free space. There are two requirements to effect such solutions
with a numerical method that uses a bounded computational volume.

• A perfectly absorbing boundary around the volume.

• A source inside the volume that creates pure plane waves but does not interfere with the
propagation of scattered waves.

The first requirement is easy. We construct an anechoic chamber by surrounding the solution
volume with a matched termination layer. The second is more challenging. Fixed field drive
boundaries inside the solution region can not be used because they reflect scattered waves.
Therefore, internal current sources are necessary. We can determine the spatial distribution
of current with the distributed source method . To appreciate the method. it is information to
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Figure 14.7: Approach to the generation of plane waves in an anechoic chamber. Vacuum
region surrounded by matched termination layer with a planar drive current layer at the left.
Contours of the real part of Ez – waves travel from left to right.

examine first an unsuccessful approach. Figure 14.7a shows the geometry. The intention is to
use a planar current layer to generate E waves traveling to the right. Waves moving to the left
are immediately absorbed in the adjacent termination layer. Figure 14.7b shows the resulting
solution for a radiation wavelength equal to half the box width. The waves approximate trav-
eling plane waves but are clearly far from ideal. The upper and lower boundaries cause the
problem. The discontinuities of the current sheet at the top and bottom give small transverse
field components that reflect at low incidence angle from the termination layers. The pattern
of Figure 14.7b results from the interference of these components with the propagating plane
waves.

To achieve perfect plane waves in the presence of an absorbing boundary we must throw
some thought at the problem. Rather than try to guess the correct current density distribution,
we will work backward starting from the desired waveform. To begin, consider an anechoic
chamber with a termination layer but no scattering objects. The desired field variation of an
E wave is

Ez(x, y) = ξ exp[−j(kxx+ kyy)]. (14.38)

If kx > 0.0 and ky = 0.0, the expression of Equation 14.38 represents a traveling wave with
amplitude ξ and wavelength λ = 2π/kx moving in the +x direction. Suppose we seek an E
wave solution with no sources and a field of the form Ez − ξ exp[−j(kxx + kyy)]. Substitution
into Equation 14.29 gives
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∑

i

Ezi Wi − ξ
∑

i

exp[−j(kxxi + kyyi)] Wi −

Ez0

(

∑

i

Wi − A0

)

+ ξ exp[−j(kxx0 + kyy0)

(

∑

i

Wi − A0

)

= 0. (14.39)

Moving the known terms in Equation 14.39 to the right-hand side gives

∑

i

Ezi Wi − Ez0

(

∑

i

Wi − A0

)

=

ξ

[

∑

i

exp[−j(kxxi + kyyi)Wi − exp[−j(kxx0 + kyy0)(
∑

i

Wi − A0)

]

. (14.40)

Equation 14.40 has the same form as Equation 14.29 if we view the right-hand side as a source
function. Noting that the total field must be zero, a numerical solution of Equation 14.40
gives the desired plane wave. The important feature is that solutions inside the chamber follow
Equation 14.38 with absorbing wall effects included .

The above discussion suggests the following steps for an ideal scattering solution:

• Set up an anechoic chamber with no scattering objects and calculate the source terms on
the right-hand side of Equation 14.40 using the standard subroutines to evaluate Wi and
A0.

• Introduce the scattering objects and include their contributions to ǫ and µ when calcu-
lating values of W0 and A0 for the left-hand side of Equation 14.40.

• Apply standard matrix inversion to find the field solution with the sources and scattering
objects. To isolate the contribution of the scattering objects, subtract the right-hand side
of Equation 14.40 from the total field.

The procedure is easy to implement in a finite-element code if we make a list of regions
corresponding to scattering objects. In the initial calculation of Wi and A0 to find the source
terms, the region numbers of the scattering objects are replaced by that of the uniform back-
ground medium. Note that the method is not limited to incident plane waves. We could also
construct attenuated, cylindrical or spherical drive waves by changing the form of Equation
14.38.

Figure 14.8 illustrates the procedure for E wave scattering from dielectric and metal bodies
in vacuum. To optimize the performance of the termination layer, we construct a cylindrical
anechoic chamber with an axis centered on the object (Figure 14.8a). Figure 14.8b shows the
ideal plane wave solution with no object (ǫr = 1.0). Figures 14.8c and d show Ez contours of
the total solution for a metal body (ǫr = 105) and a dielectric (ǫ = 1.5ǫo). Finally, Figure 14.8e
plots scattering fields isolated from the solution of Figure 14.8d .
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Figure 14.8: Scattering solutions using the distributed source method. a) Anechoic chamber
with matched termination layer centered on the scattering object. b) Ideal plane E waves
created by a distributed source. c) Total field in the presence of a conducting body (ǫr = 105).
d) Total field in the presence of a dielectric body (ǫr = 1.5). d) Isolated scattering fields from
the dielectric body of part c.
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14.5 Waveguides and resonant cavities

This section covers resonance calculations in two-dimensional structures. The theory applies
to the cutoff modes of uniform waveguides or axisymmetric modes of cylindrical resonators.
The procedure is similar to that of Section 13.5. We excite a cavity at a set of frequencies
with a drive current and sense the response with a probe at the expected position of maximum
primary field. Depending on the mode and the phase of the drive, we search for a zero crossing
of the real or imaginary part of the probe signal with the correct polarity change.

To test the method we shall solve for the pillbox cavity of Figure 14.9, the simplest cylindrical
resonator. The resonant modes are field solutions consistent with the wall conditions that
E‖ = 0.0 and H⊥ = 0.0. We divide the modes into two classes, depending on the disposition
of field components relative to the z axis. E wave solutions for rEθ with subsidiary field
components Br and Bz are called TE modes. H wave solutions for rHθ yielding Er and Ez

are called TM modes. The modes have names of the form TMmnp, where the indices denote
the field characteristics. The index m designates an azimuthal variation of the form exp(jmθ).
We assume azimuthal symmetry so that m = 0. The indices n and p indicate the complexity
of field variations in the r and z directions respectively. Low numbers correspond to simple
variations and generally have low frequencies. The predicted primary field variations for TM0np

modes in a pillbox cavity of radius R and length D are given by

Hθ = H0 J1(χnr/R) cos(pπz/D), (14.41)

with frequencies

fmp =
1

2π
√
µǫ

[

χ2
n

R2
+
p2π2

D2

]

. (14.42)

In Equation 14.41, the quantity J1 is a Bessel function and χi represents zeros of the J0 Bessel
function: χ1 = 2.4048, χ2 = 5.5201, χ3 = 8.6537, ....

The benchmark geometry of Figure 14.9 has R = 0.70 m and D = 0.25 m with an element
size of about 0.01 m. As in the one-dimensional solutions, the accuracy increases with smaller
elements and decreases for higher mode numbers. For H wave solutions the metal walls are
represented by open-circuit boundaries on the left, right and top. The Dirichlet condition
η = 0.0 holds on the axis (bottom boundary). For modes of type TM0n0, we expect an electric
field Ez concentrated near the axis. These modes are excited by a small drive region with
an axial current (β = 0.0). The probe is located near the outer radius where we expect the
maximum value of η according to Equation 14.41. The numerical result for the TM010 mode is
163.919 MHz (accurate to 0.002 per cent). The values are 589.366 MHz for the TM030 mode
(0.08 per cent accuracy) and 621.329 MHz for the TM011 mode (0.04 per cent accuracy). Figure
14.9b shows contours of rHθ for the TM011 mode which lie along electric field lines.

Figure 14.10 illustrates a practical calculation for a superconducting proton accelerator.
The accelerating structure consists of five coupled cavities – the simulation of Figure 14.10a
represents half of the structure with a symmetry boundary on the right-hand side. The cavities
are excited by an axial current at 0.0o phase in the small disk-shaped region at the bottom-right.
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Figure 14.9: Resonant modes in cylindrical cavities. a) Pillbox geometry. For H wave solutions
metal walls are open circuit boundaries and η = 0.0 on axis. Location of drive current and
sensing probe shown. Cavity radius: 0.70 m. Cavity length: 0.25 m. b) Contours of η (electric
field lines) for the TM011 mode at 621.329 MHz. c) Contours of η for the TM010 mode in a
klystron cavity.
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In the lossless structure, the drive creates purely real values of the quantity rHθ. A probe at
the position marked with a circle senses the reciprocal of the real part of the primary field,
Vp = 1/ℜ(rHθ). The resonance search involves location of the zero crossings of Vp from positive
to negative polarity. The theory of coupled cavity arrays (see, for instance, S. Humphries,
Principles of Charged Particle Acceleration (Wiley, New York, 1986), Section 14.3) shows
that a five-cavity system has five resonant modes with TM010 type fields at different frequencies.
The one with the highest frequency is called the π mode because the phase of the axial electrical
field reverses by 180o between adjacent cavities. The other modes have different values of phase
shift: 0, π/4, π/2 and 3π/4. In the simulation of Figure 14.10 we expect to detect only three
resonances because the π/4 and 3π/4 modes are excluded by the symmetry boundary. Figure
14.10b shows a scan of probe output as a function of frequency. Arrows show the locations of
the 0, π/2 and π modes. The calculation gives values of 682.60 MHz for the 0 mode, 694.09
MHz for the π/2 mode and 701.62 MHz for the π mode. Figure 14.10c shows the corresponding
distributions of Ez(0, z). Finally, Figure 14.10d shows electric field lines for the π-mode, the
desired field pattern for particle acceleration. Here, a synchronized proton travels the length
of one cavity in one-half an RF period. At a frequency of 701.62 MHz and a cavity length of
0.1374 m, the assembly is matched to protons traveling at velocity 0.643c.

14.6 Power losses and Q factors

In this section we shall discuss how to apply Equation 13.63 to calculate RF power deposition
and the Q factors of resonant structures. The procedures to calculate stored electromagnetic
energy and volume power dissipation on a triangular mesh are similar to those for static field
energy (Section 10.2). They involve scans through elements of the solution volume. As an
illustration, consider an E wave solution in a planar geometry. For each element, the first step
is to find the field components. The amplitude of the primary field component is the average of
values at the corners of the triangle. If i1, i2 and i3 designate the element vertices, the average
values of the real and imaginary parts of the primary field are

Ezr =
Ezr(i1) + Ezr(i2) + Ezr(i3)

3
,

Ezi =
Ezi(i1) + Ezi(i2) + Ezi(i3)

3
. (14.43)

The subsidiary field components are given by derivatives of the primary components. For
example, the three point formula of Section 7.3 gives the following approximation for the real
part of Hx,

Hxr =
[Ezr(i2)− Ezr(i1)](x3 − x1)− [Ezr(i3)− Ezr(i1)](x2 − x1)

(y2 − y1)(x3 − x1)− (y3 − y1)(x2 − x1)
. (14.44)

Following Equation 13.63, the total field energy in the element per unit length in z is
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Figure 14.10: Resonant modes in a proton accelerator structure, coupled superconducting cav-
ities. a) Simulation geometry for half of a 5-cavity assembly. Symmetry boundary on the
right-hand side, drive current region at the bottom-right. Electric field lines for the π-mode. b)
Scan of probe output as a function of frequency – arrows show the locations of the 0, π/2 and
π modes. c) Distributions of Ez(0, z) for the 0 mode (682.60 MHz), π/2 mode (694.09 MHz)
and the π mode (701.62 MHz).



Two and Three-dimensional Electromagnetic Simulations 291

Figure 14.11: RF power loss by currents driven in a metal wall.

dU =

[

ǫr(E
2
zr + E2

zi) + µr(H
2
xr +H2

xi +H2
yr +H2

yi)

4

]

a. (14.45)

In Equation 14.45, a is the element area in the x-y plane and ǫr and µr are the real parts of
the dielectric constant and magnetic permeability. The quantity in brackets is the field energy
density. The additional factor of 2 in the denominator follows from time averaging of the
harmonic functions. Similarly, the power dissipated in the element per unit length in z is

dP =

[

ǫi(E
2
zr + E2

zi) + µi(H
2
xr +H2

xi +H2
yr +H2

yi)

2

]

a ω. (14.46)

The quantities ǫi and µi are the imaginary parts of the element materials properties and ω is
the angular frequency of the electromagnetic fields. The quantities in Eqs. 14.45 and 14.46 can
be summed over elements to give total energy deposition in regions or used to generate plots
of energy and power distributions.

In vacuum cavities for charged-particle acceleration power losses result mainly from resistive
dissipation from currents driven in the metal walls. At the field levels required in accelerators
power losses may be high even for good conductors. Currents driven by high-frequency elec-
tromagnetic fields are confined to a layer on the surface of metals with thickness equal to the
skin depth (Equation 11.57). For copper lined cavities in the range 250 to 1000 MHz the skin
depth is only a few µm. Therefore it is impractical to apply the volume methods of Equation
14.46. Surface integrals give more accurate results.

Consider a small segment of a metal surface shown in Figure 14.11. The boundary condition
on the surface of a good conductor is that the magnetic intensity is parallel to the surface. We
denote the field amplitude as H‖. Exclusion of the field from the volume of the material implies
that the surface carries a linear current density of amplitude Js = H‖. The surface segment has
dimensions ∆1 along the direction of magnetic intensity and ∆2 along the direction of current.
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If the metal has volume resistivity ρ, the total resistance of the segment is R = ρ∆2/∆1δ.
The time-averaged power deposited in the segment is R(Js∆1)

2/2. Dividing by ∆1∆2 gives the
time-average power per unit area of the surface,

p =
ρH2

‖

2δ
=
RsH

2
‖

2
. (14.47)

The quantity Rs in Equation 14.47 with units of Ω is called the surface resistivity . It is given
by the expression

Rs =
√

πfµ0ρ, (14.48)

where f is the RF frequency.
The following procedure is used to find wall losses. Consider first H type solutions where

walls are represented as open-circuit boundaries. During the mesh generation process we define
one or more line regions with unspecified boundary conditions where we want to evaluate power
deposition. After completing the solution, we identify all line segments of the mesh where both
vertices have the target region number. In a planar geometry, suppose the vertex coordinates
of one such segment are (x1, y1) and (x2, y2). The power loss on the segment (per unit length
in z) is

dp =
1

2

[

(H1 +H2

2

]2
√

(x2 − x1)2 + (y2 − y1)2. (14.49)

The expression for a segment with coordinates (z1,r1) and (z2,r2) in a cylindrical system is

dp =
1

2

[

H1 +H2

2

]2 2π(r1 + r2)

2

√

(z2 − z1)2 + (r2 − r1)2. (14.50)

The multiple factors of 2 are written out to clarify the physical content of Equation 14.50. In
a program redundant calculations should be eliminated to reduce floating point operations.

The procedure is more involved for E wave solutions. After finding vectors that lie on lines
of Ez = 0.0 or rEθ = 0.0, we identify the two elements adjacent to each vector. Because the
vector lies on a metal boundary, the routine to calculate magnetic intensity returns valid values
only for the material element that lies inside the solution volume. It is sufficient to take the
magnitude of H in this element because we know that the magnetic intensity must lie parallel
to the conducting surface. This value is used in place of the averages in Eqs. 14.49 or 14.50.

To illustrate the method, we shall calculateQ factors for TM010 modes in accelerator cavities.
Figure 14.12 shows two 303 MHz cavities. The first is a standard pillbox of length d = 0.2 m
and radius R = 0.3789 m. The second has the same axial length and a rounded outer boundary.
We shall find that this cavity has a higher Q factor; therefore, it consumes less power to achieve
the same accelerating gradient. In the solution, both cavities are driven by a small current
source near the axis. Resonant calculations in lossless structures give relative field levels – we
can adjust the solution to represent any excitation by scaling all values of the primary field. For
the pillbox cavity the value of electric field on axis is Ez(0, z) = E0 = 3.6103× 104 V/m. The
predicted stored energy [see, for instance, J.D. Jackson, Classical Electrodynamics (Wiley,
New York, 1975), Section 8.8] is

U = πR2d

[

ǫE2
o

2

]

J2
1 (2.405). (14.51)
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Figure 14.12: Comparison of the Q factors for two 303 MHz accelerators cavities with the same
axial length cavities. Contours of rHθ, lower boundary is the z axis. a) Pillbox cavity, outer
radius 0.3789 m. b) Cavity with contoured outer wall, outer radius 0.4000 m.

Equation 14.51 predicts a value U = 1.410 × 10−4 J, close to the numerical prediction of
U = 1.369 × 10−4 J from Equation 14.45. The integral of H2

‖/2 over the metal surface of the

cavity using Equation 14.50 equals 1684 A2. Suppose the inside of the cavity is lined with
high-purity, polished copper with ρ = 1.712× 10−8 Ω-m. At 303 MHz, the surface resistance is
Rs = 4.531× 10−3 Ω and the skin depth is δ = 3.778 µm. The product of the surface resistivity
and surface current integral gives a total power loss of P = 7.630 W. The quality factor is
therefore Q = 2πfU/P = 34, 165. The analytic formula for the TM010 mode in a cylindrical
cavity is

Q =
d

δ

1

1 + d/R
. (14.52)

Inserting values in Equation 14.52 gives Q = 35, 290, close to the numerical value. Similar
calculations for the smooth cavity give U = 1.080 × 10−4 J,

∫ ∫

dAH2
‖/2 = 1211 A2 and P =

3.750 W. These figures imply an improved quality factor of Q = 37497.

14.7 Finite-difference time-domain method in three

dimensions

The following sections discuss three-dimensional solutions for electromagnetic wave propa-
gation. We shall concentrate on time-domain methods. Boundary value methods for frequency-
domain solutions are beyond the present capabilities of personal computers. Models of three-
dimensional systems may require more than 106 elements. The inversion of matrices for such a
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large set of equations is a challenge. This section covers finite-difference representations of the
Maxwell equations, usually referred to as the FDTD (finite-difference time-domain) method.
This approach has been widely used and is informative to review. The difference representa-
tion has a close correspondence to the differential form of the Maxwell equations. In the next
section, we shall study alternate methods based on an element viewpoint.

The differential Maxwell equations for a Cartesian coordinate system are

∂Hx

∂t
=

1

µ

(

∂Ey

∂z
− ∂Ez

∂y

)

,

∂HY

∂t
=

1

µ

(

∂Ez

∂x
− ∂Ex

∂z

)

,

∂Hz

∂t
=

1

µ

(

∂Ex

∂y
− ∂Ey

∂x

)

,

∂Ex

∂t
=

1

ǫ

(

∂Hz

∂y
− ∂Hy

∂z
− σEx

)

,

∂Ey

∂t
=

1

ǫ

(

∂Hx

∂z
− ∂Hz

∂x
− σEy

)

,

∂Ez

∂t
=

1

ǫ

(

∂Hy

∂x
− ∂Hx

∂y
− σEz

)

. (14.53)

To simplify the discussion, internal current sources have been omitted from Equation 14.53.
Other limiting conditions are similar to the treatment of 14.1: 1) there is no free space charge,
2) the quantities ǫ and µ are real numbers, and 3) an isotropic conductivity represent losses in
materials.

The most widely-used differencing scheme for Equation 14.53 (A. Taflove and M.E. Brodwin,
IEEE Trans. Microwave Theory and Techniques MTT-23, 623 (1975)) follows from the work
of Yee (K.S. Yee, IEEE Trans Antennas and Propagation AP-14, 302 (1966)). The goal is to
determine time and space-centered approximations for derivatives of Equation 14.53 to achieve
second-order accuracy. The method applies to a regular mesh with uniform spacing along each
axis: ∆x, ∆y and ∆z. We shall concentrate on the special case where ∆x = ∆y = ∆z = δ and
take a uniform time step ∆t. Values of E and H are assumed to be offset by ∆t/2 to center
the equations in time. For space-centering field components are defined at the offset positions
shown in Figure 14.13. The Yee cell illustrated leads to an symmetric difference form for the
Maxwell equations.

The differencing procedure is involved to write out but conceptually simple. The equations
to advance values of magnetic intensity from time (n-1

2
)∆t to (n+1

2
)∆t are 1

2
:
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Figure 14.13: Mesh for three-dimensional finite-difference time-domain electromagnetic simu-
lations. Definitions of field components on a Yee cell.
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. (14.54)

A comparison of Equation 14.54 with Figure 14.13 shows that the spatial derivations at a point
depend on field components with symmetric displacements. The following equations advance
the electric fields.
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En+1
y [i, j+1

2, k] =

[

1 +
σ[i, j+1

2
, k]∆t

2ǫ[i, j+1
2
, k]

]

×
[

En
y [i, j+

1
2, k]

(

1− σ[i, j+1
2
, k]∆t

2ǫ[i, j+1
2
, k]

)

+
∆t

ǫ[i, j+1
2
, k]δ

× (14.55)
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The solution procedure for Eqs. 14.54 and 14.55 is straightforward. We need storage for six
field quantities in each unit cell. Ideally, we would also store values of ǫ, µ, and σ on three edges
of each cell. Values on the remaining edges can be determined from neighboring cells. This
implies a total of fifteen real numbers per cell. An alternative is to store material properties
at vertices and take averages to find edge values during the solution. This reduces the storage
requirement to nine real numbers per cell at the expense of a longer run time. Field quantities
are initially zero. Pulses are created by current sources or specified time-dependent boundary
fields. The procedure at each time step is to loop through all cells advancing E components
from (n − 1)∆t to n∆t and then to advance H components from (n−1

2
)∆t to (n+1

2
)∆t. The

time step is governed by the following form of the Courant stability condition:

∆t ≤
√

ǫ[i, j, k]µ[i, j, k]
√

1/∆x2 + 1/∆y2 + 1/∆z2
=

√

ǫ[i, j, k]µ[i, j, k]

4
δ. (14.56)

The second form of Equation 14.56 holds for a cubic mesh.
The Yee formulation is simple to program and runs quickly on meshes with uniform values

of ∆x, ∆y and ∆z. Equations that preserve second-order accuracy on a non-uniform mesh are
much more complex (Section 4.1). Like other finite difference approaches we have discussed the
formulation represents material properties as a continuum of values. The method is therefore
best suited to problems like plasma simulations where dielectric properties vary smoothly in
space. As we saw in Section 4.3, the method gives a poor representation of boundaries between
materials with different ǫ or µ. The spatial offsets of field quantities exacerbate the prob-
lem. Furthermore, it would be extremely challenging to include materials with field-dependent
properties.

The definition of planar conducting or open circuit boundaries is easily accomplished with
the Yee formulation. Consider a conducting surface in the plane j of Figure 14.13. We set quan-
tities in the plane equal to zero: Ez[i, j, k+

1
2
] = 0.0, Ex[i+

1
2
, j, k] = 0.0 andHy[i+

1
2
, j, k+1

2
] = 0.0.

These relations imply that the parallel component of electric field and normal component
of magnetic intensity are zero in the plane, equivalent to the condition on the surface of a
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perfect conductor. Conversely, we could field quantities equal to zero in the plane (j+1
2
):

Ey[i, j+
1
2
, k] = 0.0, Hx[i, j+

1
2
, k+1

2
] = 0.0, and Hz[i, j+

1
2
, k] = 0.0. Here, the normal component

of E and the parallel component of H are zero, equivalent to the open circuit condition.
Ideal absorbing boundaries are more of a problem. Termination layers generally give poor

results in FDTD calculations because of the ambiguity in the spatial distributions of material
properties. An alternative approach developed by Mur (G. Mur, IEEE Trans. Electromagnetic
Compatibility 23, 377 (1981)) is to code special relationships for points on the boundaries of
the solution volume. These relationships simulate the propagation of waves to infinity. To
understand the lookback technique, consider setting up a free-space boundary on plane j in
Figure 14.13. Let points with y > yj be inside the solution volume. We make the following
provisions.

• The mesh has uniform spacing δ and cells adjacent to the boundary have uniform values
of ǫ and µ with σ = 0.0.

• The time step has the value ∆t = δ
√
ǫµ/2 (consistent the Courant condition).

• The values of field components at the position j+1
2
adjacent to the boundary are stored

at two previous time steps.

To advance fields at the boundary, we must know quantities at locations j−1
2
and j+1

2
. The

essence of the Mur technique is to substitute values of quantities at the position j+1
2
and the

retarded time t − 2∆t for the corresponding quantities at j−1
2
outside the solution volume.

These values would have applied at the points if pulses propagated unimpeded through the
boundary.

The Mur prescription simulates an ideal absorbing boundary for normally incident pulses
under the conditions listed. In practice, there are several difficulties in applying the lookback
technique. The necessity of storing past field values at adjacent points leads to complex codes
for boundaries other than simple planes parallel to the axes. A major disadvantage is that the
time step is locked to the properties of a particular surface. It is impossible to apply the method
when different materials abut free-space boundaries. Furthermore, optimization of absorbing
properties for pulses incident at different angles is largely an empirical process. In contrast, the
behavior of termination layers discussed in Section 14.9 has a strong theoretical foundation. We
can predict the performance of boundary layers for oblique incidence and maximize absorption
for known pulse properties.

14.8 Three-dimensional element-based time-domain

equations

This section describes an alternative to the Yee formulation based on finite-element methods
applied on a regular mesh. The solutions are easier to interpret and the method correctly
represents material discontinuities. The main advantage is that we can use termination layers to
represent free-space boundaries. Therefore, techniques for one and two-dimensional simulations
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Figure 14.14: Regular mesh for three-dimensional finite-element electromagnetic simulations
on a regular mesh. Projections in a Cartesian coordinate systems show circuit integral paths
around elements and H cells (dashed line). a) y-z plane. b) z-x plane. c) x-y plane.
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from previous sections can be utilized. In particular, Section 14.9 discusses an adaptation of
the distributed source method to solve scattering problems with the time-domain approach.

We shall use the regular meshes that we developed for electrostatics (Section 4.6). The
mesh has box elements with arbitrary variations of ∆xi, ∆yj and ∆zk along the axes. Figure
14.14 shows projections of the mesh along the three coordinate planes. The material properties
ǫ[i, j, k], µ[i, j, k] and σ[i, j, k] are uniform over an element volume. In contrast to previous
treatments, we shall associate the primary field quantities with elements rather than vertices.
Because the electric field plays a important role in many applications, we shall use E as the
primary quantity and treat H as a subsidiary field quantity. The electrical field components
Ex[i, j, k], Ey[i, j, k] and Ez[i, j, k] are constant over an element volume. To develop space-
centered difference equations, we assume that magnetic field components are shifted in space
to occupy volumes between the elements. Figure 14.14 shows that Hx[i, j, k], Hy[i, j, k] and
Hz[i, j, k] are centered near vertex [i, j, k] and extend over a region that includes one-eighth
of the volumes of elements [i, j, k], [i+1, j, k], [i, j+1, k], [i+1, j+1, k], [i, j, k+1], [i+1, j, k+1],
[i, j+1, k+1] and [i+1, j+1, k+1]. For time-centering, we adopt the Yee method. Electric fields
are defined at times t = n∆t and magnetic field at t = (n+1

2
)∆t.

As in previous treatments, we shall work from integral forms of the Maxwell curl equations,

∮

E · dl = −
∫ ∫

dA µ
∂

∂t
(H · n), (14.57)

and

∮

H · dl =
∫ ∫

dA

[

ǫ
∂
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(E · n) + J0 · n+ σE · n

]

. (14.58)

To begin, we can apply Equation 14.58 to derive linear equations for Ex, Ey and Ez in each
element. The following discussion concentrates on the equation for Ex. The circuit integral of
magnetic field on the left-hand side of the equation is applied with positive rotation about the
path shown in Figure 14.14a. Components of H that overlap the element are averaged in the x
direction. Adding all components gives the following expression for the circuit integral around
element [i, j, k]:
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The x component of the area integral on right hand side of Equation 14.58 is
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∆y[j]∆z[k]. (14.60)



300 Finite-element Methods for Electromagnetics

In Equation 14.60, note that terms involving the electric field are written as expressions centered
at time t = (n+1

2
)∆t. Combining Eqs. 14.59 and 14.60 gives an equation to advance the x

component of electric field,
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 (14.61)

We can derive an equation to advanceH from Equation 14.57. For the componentHx[i, j, k],
we take a circuit integral of electric field around dashed line in Figure 14.14a, again averaging
in x. The left-hand side of Equation 14.57 has the form
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The area integral on right-hand side involves a weighted average of magnetic permeability over
eight cells. Using time-centered derivatives, the expression becomes,
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Combining Eqs. 14.62 and 14.63 gives an equation to advance Hx,
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where

MuAx[i, j, k] =

(µ[i, j, k] + µ[i+1, j, k]) ∆y[j]∆z[k] +

(µ[i, j+1, k] + µ[i+1, j+1, k]) ∆y[j+1]∆z[k] +

(µ[i, j, k+1] + µ[i+1, j, k+1]) ∆y[j]∆z[k+1] +

(µ[i, j+1, k+1] + µ[i+1, j+1, k+1]) ∆y[j+1]∆y[k+1]. (14.65)
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Table 14.1: Properties of boundary layers of thickness ∆

Vacuum adjacent material Non-vacuum adjacent material
Condition ǫ µ σ ǫ µ σ
Conductive wall ∞ µ0 0.0 ∞ µ 0.0
Open circuit ǫ0 ∞ 0.0 ǫ ∞ 0.0

Perfect absorber ǫ0 µ0 1/∆
√

µ0/ǫ0 ǫ µ 1/∆
√

µ/ǫ

A similar procedure leads to difference equations for the y and z components of E and H.
The solution process for internal elements is straightforward. The first operation in a time step
is to advance electric field components for all elements, replacing variables in situ because they
do not depend on neighboring values of E. The second operation is to advance components of
H. The stability condition is less stringent than that for FDTD calculations (Equation 14.56).
The time step must be shorter than the minimum propagation time for radiation across an
element. If vi is the speed of light in an element, then we can write the Courant condition as

∆t ≤ min

[

∆x[i]

v[i]
,
∆y[j]

v[i]
,
∆z[k]

v[i]

]

. (14.66)

To specify conditions on solution boundaries, we shall set properties of boundary layers rather
than apply conditions at vertices. To avoid index errors implementing the technique, we assume
that there is a peripheral layer of H cells with value zero,

Hx[0, j, k] = Hx[i, 0, k] = Hx[i, j, 0] = Hx[I, j, k] = Hx[i, J, k] = Hx[i, j,K] = 0,

Hy[0, j, k] = Hy[i, 0, k] = Hy[i, j, 0] = Hy[I, j, k] = Hy[i, J, k] = Hy[i, j,K] = 0,

Hz[0, j, k] = Hz[i, 0, k] = Hz[i, j, 0] = Hz[I, j, k] = Hz[i, J, k] = Hz[i, j,K] = 0. (14.67)

A boundary consists of a single layer of elements on a side of the solution volume. Table 14.1
shows material properties in the layers to implement common boundary conditions.

We can illustrate the validity of the method with benchmark calculation comparing results
to those generated with the two-dimensional method of Section 14.1. The solution region is
an axially extended box with dimensions (in meters) of 0.0 m ≤ x ≤ 1.0 m, 0.0 m ≤ y ≤ 1.0
m and 0.0 m ≤ z ≤ 10.0 m. Elements in the half volume from x = 0.0 m to x = 0.5 m have
ǫr = 1.0 while those in the other half have the dielectric constant of polyethylene (ǫr = 2.7). The
solution box is surrounded by absorbing layers of thickness ∆ = 0.01 m. In locations adjacent
to the air region the layer has the properties ǫr = 1.0, µr = 1.0 and σ = 0.2650 S/m. The layer
adjacent to polyethylene has ǫr = 2.7, µr = 1.0 and σ = 0.4354 S/m. A pulse is initiated by
a field boundary condition on a plate at x = 0. The plate extends over an area 0.25 m ≤ y ≤
0.75 m and 2.5 m ≤ z ≤ 7.5 m. The field conditions are that Ex = 0.0 V/m, Ey = 0.0 V/m and
that Ez follows the Gaussian variation of Equation 13.47 with an amplitude of 1 V/m. During
the initial pulse transit time across the x dimension, the fields on the center plane (z = 5.0)
of the three-dimensional solution should agree exactly with those of a two-dimensional solution
for a system with infinite length in z.

Figure 14.15a shows results from a two-dimensional calculation using a conformal triangular
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Figure 14.15: Pulse propagation in a box-shaped anechoic chamber. a) Two-dimensional cal-
culation using a conformal triangular mesh. Left hand region: ǫr = 1.0, right-hand region:
ǫr = 2.7. Boundary condition on line region at the left is a 0.22 ns Gaussian pulse of uniform
Ez. Contours of Ez at t = 3.0 ns. Boundaries: xmin = −0.01 m, xmax = 1.01 m, ymin = −0.01
m and ymax = 1.01 m. b) Slice of a three dimensional calculation at z = 5.0 m with the same
conditions as Part a. Boundaries: xmin = −0.01 m, xmax = 1.01 m, ymin = −0.01 m and
ymax = 1.01 m. c) Slice of a three dimensional calculation at y = 0.5 with the same conditions
as Part a. Boundaries: xmin = −0.01 m, xmax = 1.01 m, zmin = −0.10 m, zmax = 10.1 m.
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mesh. There are approximately 100 elements on a side. For the planar geometry, the primary
field component Ez is defined at vertices. The plot shows contours of Ez at 3.0 ns. The drive
condition applies along the vertices marked with a dahsed line in the figure. The solution
exhibits some features of one-dimensional pulse propagation. A transmitted pulse of reduced
amplitude and spatial width moves forward in the dielectric, and there is a negative reflected
pulse. Fields propagating inward from the edges of the drive plate increase the complexity
of the field pattern. There is a region of negative Ez behind the pulse front. Figure 14.16a
shows Ez(t) detected by probes located in the air region (x = 0.25 m, y = 0.50 m) and in
the polyethylene (x = 0.75 m, y = 0.50 m). The front of the transmitted pulse has reduced
amplitude consistent with Equation 13.18 and the same temporal width as the incident pulse.
Figures 14.15b and 14.16b show corresponding results from a three dimensional calculation.
The uniform mesh has 1,061,208 elements with ∆x = ∆y = 0.01 m and ∆z = 0.1 m. The
absorbing layer extends around the periphery and the drive field condition applies over the thin
rectangular region on the left-hand side. Figure 14.15b is a contour plot of Ez in a solution slice
at z = 5.0 m. The results are almost identical to those of the two-dimensional calculation using
an entirely different finite-element approach. The plot is more coarse because there are half
as many rectangular elements in a cross-section of the three-dimensional solution. The probe
results of Figure 14.16b are also consistent. Finally, Figure 14.15c is a contour plot of a slice
of the three-dimensional solution at y = 0.5 m. The figure has been expanded by a factor of
10 along the x direction to display the fields more clearly. There is a well-defined transmitted
pulse with finite axial extent. Fields propagating from the axial edges create an interesting
interference pattern along z in the reflected pulse.

As a final note, an open-circuit layer gives a good representation of a boundary with mirror
symmetry when drive surfaces or current densities are well removed. On the other hand,
interference effects give an imperfect solution when sources are adjacent to the layer. In the
example of Figure 14.17 a pulsed plate contacts the upper open-circuit layer. The resulting
solution does not exhibit ideal reflection symmetry. In this case, it is better to enforce symmetry
along the boundary explicitly. In the example, the values of magnetic intensity on the boundary
should be given by

Hx[i, J, k] = 0,

Hy[i, J, k] = Hy[i, J − 1, k],

Hz[i, J, k] = 0. (14.68)
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Figure 14.16: Probe signals of Ez(t) for calculations of Figure 14.15. Probe A at x = 0.25,
y = 0.50 and Probe B at x = 0.75 and y = 0.50. a) Two-dimensional calculation. b) Three-
dimensional calculation.
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Figure 14.17: Imperfect implementation of a mirror reflection boundary when a drive field or
current density region abuts an open circuit layer. Absorbing layers on bottom, left and right
boundaries. Top boundary is an open-circuit layer. Drive plate on top left-hand side. Contours
of Ez.

Exercises

14.1. Develop time-domain equations for E type waves on a two-dimensional square mesh with
spacing ∆. The values Ez(i, j) are defined at vertices. Consider a homogeneous medium with
no losses or sources.

a) Find the finite-difference form of Equation 13.7.
b) Apply Equation 14.1 around the square elements. Take the average value of Ez along a
side as the average of values at the connected vertices.

14.2. The figure shows a cross-section of a parallel plate transmission line with a uniform fill
medium with ǫ and µ.

a) In the limit that d≪ D, derive expressions for the capacitance per unit length, inductance
per unit length and characteristic impedance.
b) Derive expressions that relate the field quantities Ex and Hy to V and I following the
discussion of Section 14.2.

14.3. Write expressions for the subsidiary field components Hr and Hz for a cylindrical solution
with primary field component Eθ.



306 Finite-element Methods for Electromagnetics

14.4. Consider scattering solutions where we place dielectric objects in a rectangular solution
space with dimensions xmin = 10.0 m, xmax = 20.0 m, ymin = −5.0 m and ymax = 5.0 m. A
cylindrical source of radius r0 centered at (0,0) produces an electric field of the form

E(r, t) =
E0r0
r

exp[−jkr + jωt],

where r =
√
x2 + y2. Applying the distributed source method of Sect, 14.4, give an expression

for the source current density as a function of position that would generate the wave.
14.5. A pillbox cavity has radius R = 0.15 m and length D = 0.05 m.

a) What is the resonant frequency for TM021 mode?
b) Sketch field variations for the mode.

14.6. A half-wave transmission line resonator shorted at each end is excited at the center. The
coaxial vacuum line has inner radius Ri = 0.01 m, outer radius Ro = 0.05 m and length L =
2.0 m.

a) What is the resonant frequency?
b) If the voltage amplitude at the center is V0, give expressions for the variation of voltage
and current over the length of the line.
c) What is the total stored electromagnetic energy of the mode?
d) Assuming copper electrodes with volume resistivity ρ = 1.7 × 10−8 Ω-m, find the total
resistive power loss. (Use results of Exercise 11.12).
e) What is the Q factor of the resonator?

14.7. Write one-dimensional time-domain coupled electromagnetic equations for Ex and Hy

using the element approach of Section 14.6.
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Ampere’s force law, 144
Ampere’s law

differential, 148
estimating magnet drive current, 162
finite-element form, 158
integral, 147
with anisotropic materials, 167
with displacement current, 208

Amplification factor, diffusion solutions, 227
Anechoic chamber, 284
Arbitrary mesh, 45
Attenuation, electromagnetic wave, 248

Back-substitution method, 63, 259
Biot and Savart law, 144
Bisection method, 108, 266
Block tridiagonal form, 103
Boundary conditions

absorbing, lookback technique, 297
Dirichlet, 30
electric field on a dielectric surface, 20
electric field on a metal surface, 18
electrostatic finite-element, 30
electrostatic potential, 16
finite-difference time-domain on Yee cells,

297
finite-element (3D), 301
ideal absorbing boundaries, electromagnet-

ics, 247, 276
magnetostatic solutions, 151, 162
Neumann, 31, 124
on magnetic material, 157
potential on a metal surface, 18, 30
reactive boundaries, electromagnetic solu-

tions, 257
short-circuit and open-circuit, electromag-

netic, 247
symmetry, electrostatics, 32

symmetry, finite-element electromagnetics
(3D), 301

time-domain electromagnetics (2D), 275
vector potential, diffusion, 238, 239

Boundary plot, 116
Boundary value solutions

definition, 2
iterative for non-linear materials, 130

C Magnet, 161
Calculus of variations, 40

Euler equation, 42
functionals, 41

Capacitance
definition, 178
mutual, 179

Capacitive probe, source term in electromag-
netic solution, 273

Capacitor
boundary in electromagnetic solutions, 257
current through, 179
displacement current in, 207
energy, parallel plate, 40

Centered difference operators, 55, 58
Charge density

as element property, 26
definition, 13
dielectric, 18
distributions, 20
in divergence equation, 20
relation to electrostatic work, 38
surface, 17, 179

Charged particle
electric force, 10, 186
equation of motion, 187
Lorentz force, 186
magnetic force, 146, 186
numerical orbit solution, 187
space-charge density, triangular mesh, 190
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space-charge-limited flow, 191
Chebyshev acceleration, 90
Child’s law, 192
Coercive flux density, 155
Complex number

amplitude and phase, 210
frequency-domain equations, 258
harmonic functions, 209
potential and electric field, amplitude and

phase, 215
potential for AC electric fields, 215
representing standing and traveling elec-

tromagnetic waves, 259
Computer procedures

area of triangle, 108
bisection method, 266
checking mesh integrity, 85
contour plot, 119
cubic-spline interpolation, 134
electromagnetic power loss on metal wall,

291
electrostatic finite-element, 30
elevation plot, 122
false position method, 266
finding points inside a polygon, 84
Gauss-Jordan elimination, 95
least-squares fit, 110
linear interpolation, triangular mesh, 113
logical meshes, 80
LU decomposition, 96
mesh plot, 116
method of backsubstitution, 63
ordinary differential equations, 58
relaxation with Chebyshev acceleration, 90
relaxing meshes, 85
representing data with tables, 132
Runge-Kutta integration, 60
search, 107
space-charge-limited flow, 191
tridiagonal block matrix, 103
tridiagonal matrix inversion, 99
two-dimensional diffusion, 229
two-dimensional interpolation, 115
vector sorting, 119
volume/surface integrals, triangular mesh,

176

Conductivity
complex part of dielectric constant, 215
electromagnetic termination layer, 247
termination, match to pulses incident at an

angle, 276
Conformal mesh, definition, 22
Contour plot, 119
Coulomb’s law, 10
Coupled linear equations

for cubic spline, 134
for least-squares fit, 111
matrix form, 94
relaxation solutions, 89
solution by backsubstitution, 63

Coupled-cavity arrays, 289
Coupling coefficients

complex values for AC field solutions, 213
diffusion (2D), 230
electromagnetic pulses (1D), 250
electrostatic, regular mesh, finite-element

(2D), 67
evaluation on triangular mesh, 79
finite-element electromagnetic (2D), 281
finite-element electrostatic, 29, 33
finite-element electrostatics (2D), 33
finite-element, in matrices, 101
finite-element, permanent magnets (2D),

167
H type pulse in cylindrical coordinates, 274
influence on instabilities in diffusion, 233
magnetic diffusion (2D), 236, 239
magnetostatics, cylindrical (2D), 160
magnetostatics, planar (2D), 159
minimizing recalculations, 162
Poisson equation (1D), 62
regular mesh, finite-difference (2D), 63
regular mesh, finite-element (3D), 69
time-domain electromagnetics (2D), 272
triangular mesh with anisotropic material,

140
Coupling loop, equivalence to electromagnetic

source, 273
Courant condition, 251

finite-difference on Yee cells, 296
finite-element (3D), 301
triangular mesh, 275
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Cubic-spline interpolation
natural, 134
procedure, 134

Curl equation
Cartesian and cylindrical operators, 148
electrostatics, 15
magnetostatics, 148

Current
atomic, in magnetic materials, 153
conservation equation, 88, 144

Current density
definition, 144
electric field in resistive medium, 235
maximum value in injector, 192
relation to current in a wire, 144

Delta function, 54
Demagnetization curve

curve, 163
curve, operating point, 166
use in magnet design, 166

Dielectric constant
as element property, 26
complex number value, 260
complex part relation to conductivity, 213,

215, 261
complex values, frequency-domain, 215
non-linear materials, 129
relative, 19
tensor form for anisotropic materials, 138
water, 260

Dielectrics
anisotropic, 138
charge density in, 19
contribution to energy density, 39
electric fields in, 19
electromagnetic power losses, 291
isotropic, definition, 19
linear, definition, 19
non-linear, 49, 129
non-linear, table of values, 132
properties, 19

Difference equations
accuracy, 60
Euler method, 59
initial value, 58

leapfrog method, 58
Poisson equation, 62
Runge-Kutta procedure, 60
two-step method, 59, 187

Difference operators,
derivative, 55
derivative on non-uniform mesh, 57
second derivative, 57
space-centered, 55

Diffraction, dual slit, 283
Diffusion

Dufort-Frankiel solution method, 227, 230
finite-difference equation, 226
finite-element in two dimensions, planar,

229
magnetic field, 235
magnetic field, two-dimensional, 235, 238
modes, 225
numerical solutions, amplification factor,

227
stability of finite-element calculations, 232
stability of numerical solutions, 226
thermal, 224

Dirichlet boundaries
definition, 30
magnetostatic solutions, 151
one-dimensional Poisson equation, 63

Displacement current density, 208
Displacement current, electromagnetic source,

273
Distance, point to line, 84
Distributed source method, 284
Divergence

definition, 15
equation, 15, 20, 149

Domains, magnetic, 155, 163
Dufort-Frankiel method, diffusion, 227

Eddy currents, 216
Electric field

anisotropic dielectric, 138
at a dielectric interface, 20
at Neumann boundary, 31
beam-generated, 189
between coaxial cylinders, 33
between parallel plates, 18
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curl of, 15
current density in resistive medium, 235
definition, 11
divergence of, 15
energy density, 253
finding complex value (AC), 215
in metal, 17
in tetrahedronal element, 47
in triangular element, 28
line integral of, 16
linear expression on triangular mesh, 113
lines, 11, 13
plotting, 16, 124
point charge, 12
relation to field energy, 39
relation to magnetic field intensity, plane

wave, 245
relation to magnetic intensity, electromag-

netics (2D), 281
relation to surface charge, 18, 179
relation to vector potential, 216
resistive media (AC), 211

Electrode
boundary condition, 30
charge on, 179

Electromagnetic solution
Courant condition, 251
driving waves and pulses, 252, 255
E-type equations, 248, 272
E-type, frequency-domain, 258
effect of numerical dispersion, 254
finite-difference procedure (3D), 294
finite-element procedure (3D), 299
free-space boundaries, 283
frequency-domain, 281
H-type equation, 251, 273
H-type pulse in cylindrical coordinates, 274
pulses, 251
resonator wall losses, 291
sources (2D), 273
sources for H-type pulses, 273, 275
termination layers, waves incident at an

angle, 276
volumetric power loss, 289

Electromagnetic wave
absorption by termination layer, 247

attenuation in resistive medium, 248
complex number notation, 259
difference equation, 259
field components, 245
finite-element solutions, 281
in free space, 245
reflection at a boundary, 246
velocity, 245

Electron, charge, 10
Electrostatic potential

between parallel plates, 18
boundary conditions, 16
contour plot, 16
definition, 16
harmonic potential polynomials, 115
in tetrahedronal element, 45, 46
in triangular element, 26
on metal surface, 17
relation to work on test charge, 16
second-order expressions, 115
second-order finite-element, 48

Electrostatics
boundary conditions, 30
charge density, 13
contour plot, 119
Coulomb’s law, 10
coupling coefficients, cylindrical, 33
coupling coefficients, planar, 29
curl equation, 15
cylindrical solutions, 32, 116
divergence equation, 15, 20
electrode condition, 17
equations, with Hall effect, 195
field energy, 38, 176
field energy density, 39
finite-element (1D), 98
finite-element equation, 29
Gauss’ law, 12, 26
general Laplace equation solutions, 124
minimum energy, 42
Poisson equation, 20
potential, 16
regular mesh (2D), 64
regular mesh (3D), 68
resistive media, 87
solutions (2D), 21, 30, 43, 115
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solutions (3D), 48
surface charge from field solution, 179
with beam contributions, 190

Element
centered electromagnetic quantities, 299
color plot, 121
cylindrical geometry, 32
effect of size on resonator calculations, 287
electromagnetic energy, 253
electrostatic energy of, 176
elevation plot, 122
field energy in electromagnetic mode, 289
in electrostatics, 22, 26
in magnetostatics, 158
locating, 107
magnetic forces on, 183
nodes, 48
test for enclosed point, 84
triangular, 23
triangular, fitting to boundaries, 83

Elevation plot, 122
Energy

electromagnetic field, 289
electromagnetic flow, 260
electrostatic, adjustable, 43
electrostatic, condition for minimum, 44,

47
electrostatic, contribution of dielectrics, 39
electrostatic, density, 38, 176
electrostatic, expressions, 37
electrostatic, on triangular mesh, 176
kinetic, 186
magnetostatic, density, 177
magnetostatic, of a solenoid, 177
magnetostatic, on triangular mesh, 177

Equipotential plot, 16, 119
Euler equation, 42
Euler formula, 54, 209
Euler method, 59

Faraday’s law, 177
differential form, 207
integral form, 206

Field lines
electric, definition, 11
electric, plotting, 17, 124

electric, properties, 13
magnetic, properties, 149, 151

Field, vector, definition, 11
Finite-difference method

comparison to finite-element method, 51,
61, 67

definition, 2
Poisson equation (1D), 61
Poisson equation (2D), 66
time-domain (3D), 294

Finite-element method
application of distributed sources, 284
charged-particle field contributions, 190
Courant condition on triangular mesh, 275
Dirichlet boundaries, 30
Dufort-Frankiel form (2D), 230
E type electromagnetic equations, 248, 272
E type frequency-domain, 281
electromagnetics, 272
electrostatics (1D), 98
electrostatics (2D), 43
electrostatics (2D), 33, 67
electrostatics (3D), 45
electrostatics with Hall effect, 196
element based solution, 299
equations for magnetic fields, 217
frequency-domain E type electromagnetic,

258
H type electromagnetic equations, 251, 273
H type frequency-domain, 282
high order formulation, 48
magnetic field diffusion, 236, 238
magnetostatic, conformal mesh (2D), 158
Neumann boundaries, 31, 87, 99
shape functions, 48
solution by matrix inversion, 98
space-charge-limited flow, 191
strategy, 30
time-domain electromagnetics, 248, 299
volume and surface integrals, 176
with anisotropic materials, 138

Flux
electromagnetic energy, 260
inductance calculation, 180
magnetic, cylindrical (2D), 152
magnetic, definition, 150
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magnetic, planar (2D), 150
thermal, 224

Force
electric, 10
electric, on dielectrics, 185
magnetic, 144
magnetic, on materials, 184
magnetic, tensor, 185

Force, density, magnetic, 145
Fourier modes, thermal solutions, 225
Fourier series

complex number notation, 53
continuous, 52
discrete, 54
Nyquist wave number, 55

Frequency-domain solutions
definition, 5
electromagnetics, 258, 281
use of complex numbers, 209

Fringing fields, 162
Functional, 41

for electrostatic energy, 42
Functions

delta, 54
discrete, 53
orthogonal, 54

Gauss’ law
charge distribution, 12
differential form, 15
electrostatic finite-element, 29
electrostatics in cylindrical geometry, 32
on two-dimensional regular mesh, 64
point charges, 12
regular mesh (3D), 68
triangular elements, 26
with anisotropic dielectrics, 139
with isotropic dielectrics, 20

Gauss-Jordan elimination, 94
multiple equations, 95
pivoting, 95

Guns, electron and ion, 189

Hall angle, 197
Hall coefficient, 195
Hall effect, 195

Harmonic potentials, 115
Hysteresis curve, 155, 163

Identity matrix, 94
Impedance

matched to termination layer, 247
of a medium, 246
of free space, 246

Indices
conformal triangular mesh (2D), 79, 101
regular mesh (3D), 74, 75

Induced surface charge, 179
Inductance

definition, 181
expressions on triangular mesh, 181
mutual, 181
self, 181

Initial value solution
definition, 2
ordinary differential equation, 58

Interpolation
cubic spline, 134
generalized least-squares fit, 110
in two dimensions, 115
linear, 133
polynomial, 133

Intrinsic demagnetization curve, 164
Iron, soft, magnetic permeability, 157

Laplace equation, 47
complex number solution, 124
resistive media, 88
solutions in harmonic potentials, 115

Leapfrog method, 58
stability criterion, 58

Logical mesh, 80
Look-back method, 255, 297
Lorentz force, 186
LU decomposition, 96, 103

Magnetic field
around current-carrying wires, 146
at low-frequency, 216
cylindrical, expressions near axis, 162
definition, 244
diffusion equations, 235, 238
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power dissipation in resistive medium, low-
frequency, 218

relation to applied magnetic field, 244
relation to electric field, plane wave, 245

Magnetic flux density
conditions on material surface, 157
curl of, 148
definition, 145
divergence equation, 149
flux, 150
in triangular element, planar geometry, 159
low frequency finite-element, 216
relation to element forces, 183
relation to stream function, 160
relation to vector potential, 149, 152
relations to current density, 145, 147

Magnetic materials
atomic currents, 153
behavior, 153
boundary conditions on, 157
coercive flux density, 155
demagnetization curve, 164
domains, 155, 163
electromagnetic power losses, 291
energy density, 177
frequency response, 216
hard and soft, 155
hysteresis curve, 155, 163
iron, 157
paramagnetism, 155
permanent magnet properties, 163
relative permeability, 155
remanence flux density, 155, 164
saturation, 155

Magnetic permeability
anisotropic materials, 167
complex number, 260
in permanent magnets, 163
non-linear materials, 155, 162
relation to magnetic energy density, 178

Magnetostatic equations
cylindrical (2D), 152
planar (2D), 150
with ideal permanent magnets, 167
with non-linear materials, 157
with non-linear permanent magnets, 169

Magnetostatics
Ampere’s force law, 144
Ampere’s law, 147, 158
cylindrical, field expressions near axis, 162
energy density, 177
equations (2D), 150
finite-element equation, cylindrical, 160
finite-element equation, planar (2D), 158
force density, 145
forces on elements, 183
inductance calculations, 180
solution with non-linear materials, 161
stream function, cylindrical, 152
with permanent magnets, 167

Matrix
block tridiagonal, 103
block, computer method, 103
for coupled linear equations, 94
for finite-element solutions (2D), 102
Gauss-Jordan elimination, 94
identity, 94
in least-squares fit, 112
inversion, 96
LU decomposition, 96, 103
pivoting, 95
rotation, 76, 122
sparse, 96
tridiagonal, 96

Maxwell equations
difference form on Yee cells, 294
differential form, 294
electromagnetic, differential, 208
electrostatic, differential, 15
electrostatic, integral, 13
integral form, 299
limit of low-frequency electric fields, 211
limit of low-frequency magnetic fields, 216
magnetostatic, differential, 148
magnetostatic, integral, 148
waves in free space, 245

Mesh
conformal, 79
definition, 22
effects on instabilities in diffusion calcula-

tions, 232
elementary volumes, 75
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enclosed elements, 84
generation, triangular (2D), 22
integrity, 85
locating elements, 107
logical, 79
regions, 77, 81, 87
regular (2D), 64
regular (3D), 299
regular, definition, 51
resolution, 22, 77
smoothing, 85
tetrahedronal, 45, 48
volume and surface integrals on triangular,

176
Momentum, 186

Neumann boundary
definition, 31
finite-element method, 31, 74, 80, 103
general Laplace equation solutions, 126
in Hall-effect devices, 197
magnetic pinch solutions, 239
magnetostatic solutions, 151
meaning in resistive media, 87
Poisson equation (1D), 63, 99
specialized, 31

Numerical dispersion, 254
Nyquist wave number, 55

Ohm’s law, 88, 195, 235
Open-circuit condition, electromagnetic waves,

247
Operating point, permanent magnet, 166
Orthogonal functions, 54

Paramagnetism, 155
Particle-in-cell method, 189
Permanent magnet

demagnetization curve, 163
design procedure, 166
easy axis, 163
energy product, 166
intrinsic demagnetization curve, 163
properties, 163

Permeability, magnetic, 155
Pillbox cavity resonator, 287
Pinch, magnetic, 238

Pivoting, matrix operations, 95
Plot

contour, 119
element, color-coded, 121
elevation or wireframe, 122
hidden surface, 122
vector sorting in, 119

Poisson equation, 16
condition of minimum energy, 42
difference form (1D), 62
electric fields with complex dielectric con-

stant (AC), 215
finite-element (1D), 62
solution by back-substitution, 63
solution by tridiagonal matrix inversion, 98
with beam charge, 191
with isotropic dielectrics, 20

Polynomial interpolation, 133
Potential, complex number (AC), 215
Power density

electromagnetic, 260
magnetic field (AC), 218
resistive media, 216

Power loss, resonator wall, 291
Poynting’s theorem, 260
Pyramid functions, 46

Quality factor, 265
pillbox cavity, 292
resonators (2D), 293

Reflection coefficient, electromagnetic wave at
a boundary, 246

Relativistic dynamics, 186
Relaxation method, 89

boundary value solutions, 89
complex vector potential (AC), 217
residual, 89
spectral radius, 90
stability, 90
with Chebyshev acceleration, 90
with non-linear materials, 129, 162

Remanence flux density, 155
Remanence flux desity, 164
Residual

complex for magnetic field solutions (AC),
217
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in relaxation solutions, 89
Resistive medium

electric fields (AC), 211, 215
electrostatics, 87
power density, 216
with Hall effect, 195

Resolution, mesh, 22
Resonant solution, definition, 5
Resonator

lumped element, 263
mode frequencies, pillbox cavity, 287
mode search procedures, 263, 265, 287
one-dimensional, 263
quality factor, 265
RF accelerator, 289
two-dimensional, 287
wall power losses, 291

Rotation matrices, 122
Roundoff errors, 22
Runge-Kutta procedure, 60

Saturation, magnetic, 155
Scattering solutions

definition, 5
distributed source method for, 284
procedures, 260, 283

Self-consistent field solution procedure, 190
Shape functions, 48
Short-circuit condition, electromagnetic waves,

247
Skin depth, 218

in resonator, 291
Smoothing

conformal mesh, 85
magnetic permeability, 162
non-linear dielectric constant, 130

Space-charge
charged particles on triangular mesh, 190
definition, 17
role in energy minimization, 42

Space-charge-limited flow, 191
Sparse matrix, 96
Spectral radius, 90
Stability, numerical

Courant condition in electromagnetics, 251
finite-element diffusion calculations, 232

limits in relaxation solutions, 90
pivoting in Gauss-Jordan elimination, 95

Stream function, magnetic, 152
Superposition, principle of, 10, 145
Surface charge density, electrode, 18
Surface integral, triangular mesh, 176
Surface resistivity, 292

Taylor expansion
deriving curl, 15, 148
deriving divergence, 15
difference operators, 57

TE
modes in cylindrical resonator, 287
waves and pulses, 272

TEM pulses, 279
Termination layer

absorption coefficient versus thickness, 255
comparison to look-back method, 255
effective width, 276
electromagnetic, 247
in finite-element solutions (3D), 299
in time-domain solutions (2D), 276
matched conductivity, 247, 255
matching, frequency-domain solutions, 261
reactive, 257
reflection of pulses incident at an angle,

276
waves and pulses incident at angle, 276

Thermal transport
differential equations, 224
diffusion modes, 225
Dufort-Frankiel method, 227, 230
estimating time step, 226, 228
finite-difference equations, 226, 229
integral equation, 224
stability of difference solutions, 226
stability of finite-element calculations, 232
time scale, 225

Time-centered difference operators, 249, 294,
300

Time-domain solutions
definition, 5
electromagnetic, 248

TM modes
cylindrical resonator, 287
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waves and pulses, 272
Torque, relation to force, 184
Transformer equations, 181
Transmission coefficient, electromagnetic wave

at a boundary, 246
Transmission line

characteristic impedance, 279
coaxial, 279

Traveling waves, relation to complex number
notation, 259

Triangle
area, 23, 108
center-of-mass, 24
elements, 23
geometric properties, 22
internal points, 108
nodes, second-order finite-element, 48
shape, influence on diffusion instabilities,

233
vertex coordinates and angles, 24

Tridiagonal matrix, 96
inversion, 99

Two-step method, 59, 187

Units
charge, 10
charge density, 13
electric field, 11
electrostatic potential, 16
magnetic field, 244
on demagnetization curves, 166
specific heat, 224
thermal flux, 224

Vector potential
boundary conditions, 151
boundary conditions for diffusion, 238
relation to current density, 149
relation to electric field at low frequency,

216
relation to magnetic flux density, 149
relationship to magnetic flux, 150
triangular element in planar geometry, 159
two-dimensional equations, 150

Vectors
in expression for surface integral, 28

sorting, 119
Volume integral, triangular mesh, 176

Water, complex dielectric constan, 260
Waveguide solutions, 287
Wireframe plot, 122
Work, electrostatic, 37

Yee cells, 294
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