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1 Introduction

Field Precision finite-element programs cover a broad spectrum of physics and engineering
applications, including charged particle accelerators and X-ray imaging. The core underlying
most of our software packages is the calculation of electric and magnetic fields over three-
dimensional volumes. To use our electric and magnetic fields software effectively, researchers
should have a background in electromagnetism and should be able to make informed decisions
about solution strategies. First-time users of finite-element software may feel intimidated by
these requirements. My motivation in writing this book is to share my experience in field
calculations. I hope to build users’ knowledge and experience in steps so they can apply finite-
element programs confidently. In the end, readers will be able to solve real-world problems
with the following programs:

EStat (2D electrostatics)

HiPhi (3D electrostatics)

PerMag (2D magnetostatics)

Magnum (3D magnetostatics)

To begin, it’s important to recognize the difference between 2D and 3D programs. All finite-
element programs solve fields in three-dimensions, but often systems have geometric symmetries
that can be utilized to reduce the amount of work. The term 2D applies to the following cases:

Cylindrical systems with variations in r and z but no variation in θ (azimuth).

Planar systems with variations in x and y and a long length in z.

Which brings us to the first directive of finite-element calculations: never use a 3D code for
a calculation that could be handled by a 2D code. The 3D calculation would increase the
complexity and run time with no payback in accuracy.

We need to clarify the meaning of static in electrostatics and magnetostatics. The implica-
tion is that the fields are constant or vary slowly in time. The criterion of a slow variation is
that the systems do not emit electromagnetic radiation. Examples of electrostatic applications
are power lines, insulator design, paint coating, ink-jet printing and biological sorting. Magne-
tostatic applications include MRI magnets, particle separation and permanent magnet devices.
A following coarse will cover simulations of electromagnetic radiation (e.g., microwave devices).

Secondly, it’s important to have a clear understanding of the purpose of computer calcula-
tions of electric and magnetic fields. Numerical methods should be used when it is not possible
to generate accurate results with analytic methods. Numerical solutions are necessary in the
following circumstances:
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Figure 1: Screenshot of the MagView postprocessor for 3D magnetostatics.

The system has a complex asymmetric geometry.

The solution volume contains many objects with different material properties.

Materials have complex properties (e.g., saturation of iron in magnetic circuits)

In an ideal case, a user makes analytic estimates of field values and then applies numerical
methods to improve the accuracy. The initial analysis gives an understanding of the physics
involved and the anticipated scales of quantities – essential information for effective solution
setups. The worst case is when a user treats a program as an omniscient black box. No matter
what software manufacturers may claim, using a field program without understanding fields is
at best a gamble. Sometimes you may get lucky, but most of the time considerable effort is
wasted generating meaningless results.

In summary, I would like to help you become an informed software user. I suggest you
start by downloading a free textbook that will help you brush up on electric and magnetic field
theory. The book also gives a detailed description of the FEM techniques I will discuss:

S. Humphries, Finite-element Methods for Electromagnetics (CRC Press, Boca Raton,
1997) (available for free download at http://www.fieldp.com/femethods.html).
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2 First 2D electrostatic solution

In preparation, install either the professional or basic version of the Electrostatics Toolkit.
In this chapter, we’ll run through the steps of the solution and analysis of a 2D electrostatic
problem without going into detail. The goal is a quick demo of the capabilities of EStat.
Subsequent articles will cover details of program techniques.

A notable feature of our programs is dual input – there are two options for supplying
geometric and material data for solutions:

Interactive: the standard method for modern finite-element programs where you fill in
items in dialogs. This option is useful for new users and for a quick setup of a new system.

Text: the classic method using input scripts. This option allows experienced users to
make changes to setups easily and allows automatic program operation under the control
of external programs or batch files. Scripts also provide a permanent archive of setups.

In this demo calculation, we will check out prepared input scripts before running them using
the built-in text editors of Mesh and EStat. For more detailed work, it’s useful to have
a good text editor like ConText. Before starting, we’ll need to make some provisions for
data organization. A little effort in the beginning circumvents headaches later. Using a file
manager (like FreeCommander), navigate to a location where you would like to create a general
directory for your finite-element calculations and create the directory Simulations Create the
sub-directories Electrostatics and Electrostatics\Practice. In the right-hand window,
navigate to C:\fieldp basic\tricomp\Examples\EStatExamples. We will copy a prepared
example for our work. Highlight the files with prefix ElectronDiode and copy them to the
Practice directory. Figure 2 shows the resulting setup.

Click the desktop shortcut to run FPController (fpcontroller.exe, Fig. 3). The Mesh

and EStat buttons should be active as shown. If not, click the Program folder button and navi-
gate to C:\fieldp basic\tricomp. Click theData folder button and navigate to c:\Simulations\Electrostatic
Subsequently, all input/output operations will target this folder.

There are three steps in a finite-element solution:

Define the geometry of the solution space and divide objects into small volumes (ele-
ments). The process is called mesh generation.

Create and solve a large set of linear equations to approximate the governing partial
differential equation (such as the Poisson equation for electrostatics). The goal is to
determine the electrostatic potential on points of the mesh (nodes).

Analyze the results – use the potential values to find physical quantities of interest (e.g.,
electric field, field energy, capacitance,....).

The first function is performed by the Mesh program (mesh.exe) and the second and third
functions by the EStat program (estat.exe). Meshing is performed by a separate program
because the same mesh may be used for different types of solutions. Output from Mesh

is compatible with PerMag (magnetic fields), TDiff (thermal transport) and other solution
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Figure 2: Set up a data directory and copy the examples.

Figure 3: FPController program launcher.
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Figure 4: Internal Mesh editor display.

programs of the TriComp series. In other words, what we learn about Mesh for electrostatics
is also useful for the magnetic solutions we will discuss later.

Click the Mesh button to open the program. Initially, the screen is blank. Choose File/Edit
file from the menu at the top. The selection dialog shows the four files in the data folder. Pick
ElectronDiode.MIN, where MIN designates Mesh INput. The internal editor shows the file
contents (Fig. 4), a set of organized numbers. For now, note that there are Region sections
that represent the different physical objects in the solution space. Each region section contains
a set of line or arc vectors that gives the region shape. The numbers are the coordinates of the
vectors. There are two ways to create or to modify the content of MIN files:

Use the Mesh Drawing Editor, an interactive 2D CAD program.

Use a text editor to change numbers directly.

We will discuss both options in following chapters. For now, exit the editor with no changes.

8



Figure 5: View of the full mesh.

Choose File/Load script(MIN) in the menu or use the Open-file tool on the left hand side
of the toolbar to load the contents of the file ElectronDiode.MIN. Then pick Process or click
the tool with the green square. In response, Mesh analyzes the desired element sizes and the
region vectors to create a set of small elements. To view the result, choose Plot/Repair from
the menu or click the Plot/repair tool to show the display of Fig. 5. The solution volume has
been divided into the regions listed in the script to represent physical objects (electrodes and
dielectrics). The cross section has been divided into triangular areas. Note that the calculation
represents a cylindrical system, a figure of revolution about the bottom boundary (r = 0.0).
When first viewing a z-r plot, many users ask where’s the bottom? The answer is that there
is no bottom. Negative values of the radius r are undefined. On the other hand, a plot in a
Cartesian slice plane like y = 0.0 would have both upper and lower components. In cylindrical
solutions, elements are tori with triangular cross-sections that extend over the full range of
azimuth (θ = 0o to 360o).

Let’s take a closer look at the mesh. Choose View/Zoom window and specify the corners of
a box by moving and left-clicking the mouse. The magnified view of Figure 6 gives a better look
at the element cross-sections. The inset at lower-right shows the view limits. Note that the
triangles were flexed for a good match to region boundaries. The fitting allows high-accuracy
calculations of surface fields. A mesh with element shapes customized to the geometry is called a
conformal mesh. To conclude work with Mesh, return to the main menu and choose File/Save
mesh (MOU). Refresh the display in FP File Organizer (press F3). Two new files have been
added to the folder:

ElectronDiode.MLS: a text listing file of diagnostic information that may be useful if
there is a problem.
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Figure 6: Detailed view of a mesh section.

ElectronDiode.MOU: the main output file specifying element identity (region association)
and coordinates of nodes (boundaries between elements). This file may be ported to any
of the TriComp solution programs. The file is in text format, so you can inspect it with
an editor.

Next, run EStat from FPController. Choose File/Edit script (EIN) and pick the file
ElectronDiode.EIN. The editor shows the content

* File ElectronDiode.EIN

DUnit = 39.37

Geometry = Cylin

Epsi(1) = 1.0

Epsi(2) = 81.0

Epsi(3) = 2.7

Potential(4) = -500.0E3

Potential(5) = 0.0E3

Potential(6) = 0.0E3

ENDFILE

The two general commands at the top specify that the dimensions from the Mesh file should be
interpreted in inches and that the system has cylindrical symmetry. The other commands with
indices set the physical properties of regions of the solution volume. The first three regions are
dielectrics (vacuum, purified water and cast epoxy) and the other regions are fixed-potential
electrodes. Again, there are two options for creating EStat input scripts – supplying values in
an interactive dialog or direct input with a text editor.

The tools labeled 1, 2 and 3 invoke the three main functions of EStat:
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Figure 7: Equipotential line plot of the electrostatic solution.

Create the input script.

Perform the finite-element solution.

Analyze the results.

Step 1 has already been performed, so click the tool marked 2 and pick ElectronDiode.EIN.
EStat reads the geometry data in ElectronDiode.MOU, generates the set of finite-element
coupled linear equations and solves them, all within a second. FP File Organizer shows
that two new files have been created: ElectronDiode.ELS (a diagnostic text listing file) and
ElectronDiode.EOU (the main solution file containing potential values at nodes). Click the
3 tool in EStat and pick ElectronDiode.EOU. The program shifts to the Analysis menu
and displays the default equipotential-line plot of Fig. 7. This type of plot is useful for ex-
perienced users because it shows complete information. Section 7.5 of the companion text
Finite-element Methods for Electromagnetics describes how to interpret equipotential
plots.

There are many capabilities of the Analysis menu that you can explore. Let’s check out
two of them. A plot of the magnitude of the electric field |E| is useful to pinpoint areas
where breakdowns may occur in high-voltage systems. To create the plot, press Plots/Plot
settings/Plot type in the menu and choose Element. Then press Plots/Plot settings/Plot quantity
and pick |E|. The resulting plot (Fig. 8) shows that the peak field in the electron emission
region is about 442 kV/cm and that the maximum field on the insulator vacuum surface is
about 40 kV/cm. A second activity is to find the capacitance of the system downstream from
the insulator. We can determine this quantity from the volume integral of electrostatic field
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Figure 8: Variation of electric field magnitude in the solution volume.

energy density in the vacuum region. Press Analysis/Volume integral. EStat offers to open a
data record file with the default name ElectronDiode.DAT. Global information will appear on
the screen, but we need to check the file for a detailed breakdown by regions.

Press File/Close data record and then File/Edit files. Open ElectronDiode.DAT. Here is
the information of interest:

Quantity: Energy

Global integral: 6.358995E+01

RegNo Integral

==========================

1 5.534785E+00

2 5.602793E+01

3 2.027232E+00

4 4.472539E-29

The capacitance of the vacuum volume (Region 1) may be determined from the equation Ue =
CV 2/2 as (2)(5.5347/(5.0× 105)2 = 44.3 pF.

We have completed the first electrostatic solution. An inspection of the final state of the
data folder shows two features of Field Precision programs:

The compact input files ElectronDiode.MIN and ElectronDiode.EIN contain complete
information to reconstruct the solution.

All the data that we generated has been recorded in accessible files. For example, if you
archive the file ElectronDiode.EOU, you can always return for additional analyses.
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The purpose of this example was to give an overview of the program features. In following
chapters, we shall create solutions from scratch, learning about meshing and analysis techniques.
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3 Electrostatic application: building the mesh

Figure 9: Alternative ways to model coaxial cylinders with a 2D code.

In the previous chapter, we followed a prepared example without going into the details of
how the input files were generated and how the mesh parameters were chosen. Now, we’re
ready to build a complete solution and to learn about how the geometry of the mesh affects the
accuracy of the solution. The best approach to make comparisons is to model a system that
has an analytic solution. A good choice is a set of coaxial cylindrers with an applied voltage
where there are spatial variations of potential and electric field.

There are two ways to model coaxial cylinders with a 2D code (Fig. 9). The first is to use
cylindrical coordinates z-r and to model the infinite length in z with Neumann conditions1 at
the upper and lower z boundaries. This approach, where the electrode boundaries are simply
straight lines, would not exercise the conformal mesh capability. Instead, we will use planar
coordinates (Fig. 9, lower) where the cross section is in the x-y plane and the system extends
infinitely in z (out of the page). For specific parameters, take ri = 5.0 cm, ro = 15.0 cm and
Vi = 100.0 V. The space between the cylinders is filled with polyethylene (ǫr = 2.7) and the
outer electrode is grounded. Using formulas available in introductory electromagnetism texts,

1The Neumann condition specifies that the normal component of electric field, Ez, is zero at the boundaries.
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Figure 10: Dialog to start an interactive drawing session.

the radial variation of potential and electric field and the capacitance per unit length is given
by:

Er(r) =
91.024

r
,

φ(r) = 100.0

[

1− ln(r/5)

1.099

]

,

c = 1.3567× 10−10. (F/m) (1)

To start, we will define the geometry for the numerical calculation. Run the Mesh program
and choose File/Create script/Create script graphics. Fill out the dialog entries as shown in
Fig. 10. For the dimensions given, note that the solution volume covers only the first quadrant
of the space. We shall apply symmetry to reduce the amount of work – why calculate all four
quadrants when the solution is the same in each one?

When you click OK, the program enters the drawing editor of Fig. 11. The display includes
a menu at the top, a set of useful drawing tools beneath it, the main drawing area and a status
bar at the bottom. We will define the following physical regions:

Region 1: the polyethylene dielectric between the cylinders.

Region 2: the inner boundary at 100.0 V.

Region 3: the outer boundary at 0.0 V.

It is important to note that as we enter regions in sequence, the present region over-writes any
shared elements or nodes of previous ones.

By default, the drawing editor is ready to add outline vectors for Region 1. Click the Line
tool and move the mouse cursor into the drawing area. Note that the cursor changes to a cross
and that there is an orange box showing the current coordinates. Snap mode is in effect by
default, and the box moves in discrete steps to exact coordinate locations. Move the mouse
cursor to the origin (x = 0.0, y = 0.0) and then click the left mouse button to set to start
point of a line vector. Then move to the end of the x axis (x = 15.0, y = 0.0) and click the
button again to set the end point. A line in the color of Region 1 appears along the bottom.
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Figure 11: The Mesh drawing editor.
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Figure 12: Region properties dialog.

The program remains in line entry mode. Draw another vector along the y axis from [0.0, 0.0]
to [0.0, 15.0]. Right click the mouse to exit line entry mode. To add the circular edge of the
region, choose the Arc/Start-end-center tool. Move the mouse to the following locations in
sequence and click the left button at each one: [15.0, 0.0], [0.0, 15.0], [0.0, 0.0]. You should see
the arc vector of Fig. 11.

With the outline of Region 1 complete, we shall set the region properties. Choose the
command Settings/Region properties to bring up the dialog of Fig. 12. Region 0 is a special
place to store reference vectors that will not appear in the output script. Supply the name
Dielectric for Region 1 and check the Filled box. For a filled region, Mesh assigns not only
the nodes of the boundary to Region 1, but also the elements enclosed. The Filled property
applies to regions with non-zero volume. Exit the dialog.

Next, we are going to create the inner electrode by over-writing a portion of the dielectric
volume. Click the Start next region tool, Now, all vectors you enter will be associated with
Region 2. This region has the same shape as Region 1 except that the radius is 5.0 rather than
15.0. Use the same procedure except the first line should extend from [0.0, 0.0] to [5.0, 0.0] and
so forth. When complete, go to Settings/Region properties. Assign the name InnerElectrode to
Region 2 and set the Filled property. Exit the dialog.

To check the work so far, click the Toggle fill display tool to bring up the plot of Figure 13.
The fill display mode is both a diagnostic and a visual aid. It checks that the vectors of filled
regions define a closed surface and shows how the enclosed elements have been assigned. Click
the tool again to return to the normal vector display.

We’ll conclude by defining Region 3. This region is not a filled volume but rather a set
of nodes set to the fixed-potential condition on the outer boundary. We call such a region an
un-filled or line region. Click the Start next region tool and then the Arc/Start-End-Center
tool. Move to the following coordinates in sequence and click the left mouse button: [15.0,
0.0], [0.0, 15.0], [0.0, 0.0]. The nodes on the outer edge of Region 1 are re-assigned to Region
3 (color-coded violet). Set the region name to OuterBoundary and be sure that the Filled box
in unchecked. You may ask whether it’s necessary to set special conditions on the dielectric
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Figure 13: Checking the integrity of filled Regions 1 and 2.
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boundaries on the bottom and left sides. A useful feature of finite-element solutions is that
unspecified boundaries automatically assume the Neumann condition, exactly what we what.
We’ll simply leave the boundaries alone.

Click the Export MIN tool to save a copy of the work and then exit the drawing editor. To
see the result of the work, choose File/Edit file and pick CoaxialCylinders.MIN. Here is the
content:

* File: CoaxialCylinders.MIN

* -------------------------------------------------------

GLOBAL

XMESH

0.00000 15.00000 0.20000

END

YMESH

0.00000 15.00000 0.20000

END

END

* -------------------------------------------------------

REGION FILL DIELECTRIC

L 15.00000 0.00000 0.00000 0.00000

L 0.00000 0.00000 0.00000 15.00000

A 0.00000 15.00000 15.00000 0.00000 0.00000 0.00000

END

* -------------------------------------------------------

REGION FILL INNERELECTRODE

L 5.00000 0.00000 0.00000 0.00000

L 0.00000 0.00000 0.00000 5.00000

A 0.00000 5.00000 5.00000 0.00000 0.00000 0.00000

END

* -------------------------------------------------------

REGION OUTERBOUNDARY

A 15.00000 0.00000 0.00000 15.00000 0.00000 0.00000

END

* -------------------------------------------------------

ENDFILE

The region vectors and coordinates should look familiar. The commands at the top set the
target element sizes. For now, we’ll accept the defaults.

The final step is generate a mesh file (CoaxialCylinders.MOU) from the region bound-
ary specifications (CoaxialCylinders.MIN). In the main Mesh menu, choose File/Load/Load
script (MIN) and pick the file you just created. Choose Process and then Plot-repair to view
the result (Fig. 14). Is it a good mesh? Qualitatively, the answer is yes because the boundaries
are relatively smooth and all features are well resolved (i.e., spatial variations of potential will
be spread over many elements). We shall make this conclusion more quantitative in future
chapters.

In the next chapter, we will use the mesh for field calculations and comparisons.
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Figure 14: Completed mesh.
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4 Electrostatic application: calculating and analyzing fields

In this chapter, we will use the mesh file we created to find a field solution. To get started, run
EStat from the FPController. Click the 1 tool and choose theMesh file CoaxialCylinders.MOU.
The program determines the defined regions in the mesh and displays the dialog of Fig. 15.
The values shown are appropriate to the solution parameters discussed in the previous chapter.
Fill in the fields and click OK, accepting the output file name CoaxialCylinders.EIN (EStat
INput).

To understand the action of the dialog, choose File/Edit script (EIN) and load the file in
the editor. Here is the content:

* File: CoaxialCylinders.EIN

Mesh = CoaxialCylinders

Geometry = Rect

DUnit = 1.0000E+02

ResTarget = 5.0000E-08

MaxCycle = 5000

* Region 1: DIELECTRIC

Epsi(1) = 1.0000E+00

* Region 2: INNERELECTRODE

Potential(2) = 1.0000E+02

* Region 3: OUTERBOUNDARY

Potential(3) = 0.0000E+00

EndFile

You’ll recognize many of the entries. The ResTarget and MaxCycle parameters that control
the solution accuracy are described in the EStat manual. The default values are fine for this
calculation.

Exit the editor and click the 2 tool. After you choose CoaxialCylinders.EIN, EStat
generates and solves the finite-element equations in less than a second. Larger meshes will take
longer, but generally the run times of practical solutions are less than a minute. The program
creates the files CoaxialCylinders.ELS (a diagnostic listing file that you can inspect with an
editor) and CoaxialCylinders.EOU (a record of the mesh coordinates and potential values at
the nodes).

To see the results, press the 3 tool and choose CoaxialCylinders.EOU. You can generate
interesting plots in the Analysis menu (Fig. 16). For this discussion, let’s concentrate on hard
numbers. First, let’s check the absolute accuracy of the solution with a single point calculation.
At radius r = 10.0 cm, the formulas listed in the previous article give the values:

Er(r) = 910.23923 (V/m),

φ(r) = 36.90703 (V). (2)

Numerical interpolations in EStat involve the collection of potential values from surround-
ing nodes. On symmetry boundaries, there are only half the available nodes, so the accuracy
is not optimal. We should use an internal point for a good comparison. On a 45o line, the
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Figure 15: Dialog to create the EStat input script.

position r = 10.0 cm corresponds to x = y = 7.071068 cm. Click the Point calculation tool.
We can specify the location by moving the mouse inside the solution volume and clicking the
left button. This selection method is not accurate enough for the comparison. Instead, press
the F1 key after starting the Point calculation tool to enter coordinates manually. Fill in the
x-y values and click OK. Values of several calculated quantities are displayed at the bottom.
The calculated values of potential (36.90767 V) and electric field (910.23111 V/m) agree with
the theoretical value to within thousands of a percent.

Rather than copy numbers from the screen, why not let EStat write them for us? Click
the Open data record command and accept the default name CoaxialCylinders.DAT. Now,
every time we do an interactive calculation, the results are recorded in the text file. For
example, choose the menu command Analysis/Volume integrals. The results are displayed on
the screen and written in the file CoaxialCylinders.DAT. You can inspect the file with an
external editor. To use the internal EStat editor, click the Close data record command first
because two instances of a same file cannot be opened simultanously in a program. Open the
data file to see the result of the calculation, the volume integrals of the field-energy-density:

Quantity: Energy

Global integral: 1.708936E-07

RegNo Integral

==========================

1 1.708936E-07

2 9.881184E-37
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Figure 16: Filled-contour plot of potential with results of a point calculation displayed.
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The field inside the inner electrode (Region 2 ) is numerically zero. We can use the field energy
in the dielectric (Region 1 ) to find the capacitance per length. Because the calculation covers
only the first quadrant, we need to multiply by a factor of four to find the field energy per
length of coaxial cylinders at 100 V, Ue = 6.835744× 10−7 J/m. The equation c = (2Ue)/100

2

gives c = 1.367149 × 10−10 F/m, within 0.8% of the theoretical value listed in the previous
chapter.

To understand the effects of element size, we want to compare accuracy at several radii for
different choices of element dimensions. The procedure would be tedious if we had to run the
Point calculation tool and type coordinates for each datum. In the next chapter, we’ll automate
the analysis procedure.
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5 Electrostatic application: meshing and accuracy

In this chapter we’ll continue with the solution discussed in the previous chapters, making
several calculations to understand the effect of element size on solution accuracy. To expand
our toolbox of techniques, we’ll automate steps in the analysis procedure. The best way to
start a project is with a clear statement of the goal. In this case, we want to check the accuracy
of numerical estimates of the electric field Er(r) at locations in the dielectric as a function of
element size. Specifically, we’ll check field interpolations near the inner electrode (r = 5.0 cm),
near the outer electrode (r = 15.0 cm) and at the center of the gap (r = 10.0 cm) for the
following choices of approximate element size: 0.1 cm, 0.2 cm, 0.3 cm, 0.4 cm and 0.5 cm.

As mentioned in previous chapters, good supporting software (text editors, file managers,
image editors,...) is essential for effective technical work. In this case, we’ll use a spreadsheet
created with OpenOffice Calc. Figure 17 shows the upper section of the sheet. Parameters
at the top include the inner and outer radii, the applied voltage and the theoretical value
for the capacitance per length in z. The section beneath lists the radial positions for the
calculations. Note that the inner radius is slightly larger than ri and the outer radius smaller
than ro. Remember that the electrode boundaries are a set of straight lines that approximate
sections of circles. We have to include a little slack to make sure that the test points lie within
the dielectric region for all choices of element size. We may as well let the spreadsheet do the
mathematical work. The cells for the x-y coordinates of the measurement points on a 45o line
contain the formula r/

√
2. Similarly, the cells for the theoretical values contain the formulas

for Er(r) and φ(r) (Eq. 1).
The section below the theoretical values illustrates another use of spreadsheets. Why not

let the program prepare the input scripts? In this case, we’ll generate an analysis script – a set
of instructions to EStat for standard calculations to carry out for each of the solutions:

* Coaxial cylinders analysis script

INPUT COAXIALCYLINDERS.EOU

OUTPUT COAXIALCYLINDERS.DAT

POINT 3.53624 3.53624

POINT 7.07107 7.07107

POINT 10.60589 10.60589

VOLUMEINT 1

ENDFILE

The spreadsheet has supplied the coordinates. To use the information, simply copy it and paste
it into a text file CoaxialCylinders.SCR (SCRipt). The commands have the following actions:

Open the EStat output file CoaxialCylinders.EOU.

Write the results of calculations to CoaxialCylinders.DAT.

Perform three point interpolations at the desired locations.

Calculate volume-integral quantities over Region 1 to find the capacitance per length.
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Figure 17: Top section of a Calc spreadsheet: solution setup

We can quickly change the element size by editing the Mesh input script. Figure 18 shows
the file displayed in the Context editor. The red arrows show the quantities to be modified.
Given a modified Mesh input script, there are three steps to regenerate the solution and set
new values in the data file CoaxialCylinders.DAT:

Run Mesh, load CoaxialCylinders.MIN, process the mesh and save the result.

Run EStat, load CoaxialCylinders.EIN and run the solution.

Run the analysis script CoaxialCylinders.SCR.

With only five solutions, the procedure wouldn’t take long. On the other hand, it takes only a
few seconds to set up a Windows batch file that handles everything automatically.

In FPController (fpcontroller.exe), press the Create task button to bring up the dialog
of Fig. 19. Fill in the file prefix CoaxialCylinders and activate the Beep at completion box.
We need to define the three tasks of a solution. Clicking a cell in the first column raises a
popup menu (inset) that shows your installed Field Precision programs as well as useful batch
commands. For the first task, choose Mesh. Then, click in the second column and choose
the Select file button. The program displays a standard dialog to select appropriate input files
with suffix MIN. Pick CoaxialCylinders.MIN to fill in the first row. Similarly, define two more
tasks for an EStat solution and an analysis. When the display looks like Fig. 19, press OK. The
program creates the file CoaxialCylinders.BAT in the working directory. Here is the content:
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Figure 18: File CoaxialCylinders.MIN displayed in Context.
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Figure 19: Create task dialog in tc.exe.

REM TriComp batch file, Field Precision

START /B /WAIT C:\fieldp_basic\tricomp\mesh.exe COAXIALCYLINDERS

START /B /WAIT C:\fieldp_basic\tricomp\estat.exe COAXIALCYLINDERS.EIN

START /B /WAIT C:\fieldp_basic\tricomp\estat.exe COAXIALCYLINDERS.SCR

START /B /WAIT C:\fieldp_basic\tricomp\NOTIFY.EXE

IF EXIST COAXIALCYLINDERS.ACTIVE ERASE COAXIALCYLINDERS.ACTIVE

Note that most Field Precision programs can run from the command line with the input file
as a heading parameter. The /WAIT option ensures that a program does not start before the
previous program completes it action. Under batch file control, a full solution consists of the
following user operations:

Edit and save CoaxialCylinders.MIN with the desired element size.

Press Run task in FPController and choose CoaxialCylinders.BAT.

Edit the resulting file CoaxialCylinders.DAT and extract values of interest.

I performed the solutions and copied and pasted values to create the sections of the spread-
sheet shown in Fig. 20. I also set up formulas in the spreadsheet to determine the relative errors
in electric-field values. For a visual reference, Fig. 21 shows the mesh for element sizes of 0.2
and 0.5 cm. We can now consider some implications of the results:
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Figure 20: Bottom section of a Calc spreadsheet: solution analysis.
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For an element size of 0.1 cm, the mesh had 35336 elements. The mesh with size 0.5 cm
had only 1412 elements. Therefore, the solution with the fine mesh required about 25
times as much computational work.

The error in the electric field calculation at the center of the gap (r = 10.0 cm) was
infinitesimal for element size 0.1 cm (0.0009%) and acceptable for many applications at
0.5 cm (0.0289%).

The error in electrical field near the electrodes was higher, as we would expect when
representing a curved surface with a set of line segments. The relative error was higher
on the inner electrode because there were fewer segments. For the 0.5 cm elements, the
error of 2.7% on the inner electrode could be of concern for some applications.

Beginning users often employ far more elements than is necessary. For the determination of
electric field values in the dielectric volume (removed from electrodes), the accuracy with the
fine mesh of Fig. 21 may not justify the extra computational work. If you have concerns about
mesh resolution, the standard procedure is to do two calculations with different mesh sizes and
to check whether values in critical regions differ by more than the accuracy requirement. Note
that there are two techniques to increase accuracy while minimizing the number of element:

Variable mesh resolution.

The Boundary method to create a microscopic solution within a macroscopic solution.

Variable resolution is discussed in Chap. 7. The boundary method, an advanced technique to
resolve small features in a large solution space, is covered in the instruction manuals for EStat,
PerMag, HiPhi and Magnum.
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Figure 21: Mesh geometries for small and large elements.

31



We’ve covered a lot of ground in the last three chapters following a simple electrostatic
solution:

Organizing simulation data and using a file manager.

Defining region boundaries with the Mesh Drawing Editor.

Employing symmetry boundaries to reduce the size of a calculation.

Using a spreadsheet to plan and to analyze calculations.

Understanding the set of input and output files for an electrostatic solution.

Creating program input scripts in interactive dialogs and modifying them with a text
editor.

Generating and inspecting standard mesh definition files with Mesh.

Defining run-control and material parameters for EStat solutions.

Running Mesh and EStat interactively or from the Windows command prompt.

Automatically controlling EStat with analysis scripts.

Creating batch files for automatic run control with the task generator of FPController.

Gaining insights into the relationship between element size and interpolation accuracy.

In the next chapter, we’ll turn our attention to 2D magnet-field calculations.
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6 Magnetostatic solution: simple coil with boundaries

In this chapter, we’ll advance to 2D magnetostatic solutions using the programs Mesh and
PerMag. The previous chapters on electrostatics covered the basic concepts of finite-element
calculations and the operation sequences of the programs. Therefore, in this chapter and
following ones, we’ll concentrate on the special features of magnetic field calculations.

To review, finite-element solutions of the the previous chapters determined the electrostatic
potential φ (a scalar quantity) at the node points of the mesh that we created. Components of
the electric field vector at a location could then be determined by collecting local values of φ
and taking numerical derivatives:

E = −∇φ. (3)

The components are Ex and Ey for planar solutions and Ez and Er for cylindrical solutions.
Things get more involved for magnetic field calculations. The calculated node quantity is

the vector potential A. The magnetic flux density B is given by

B = ∇×A. (4)

Fortunately, there is only a single component of A in 2D calculations. The node quantity is Az

for planar solutions (with flux density components Bx and By) and rAθ for cylindrical solutions
(with components Bz and Br). The vector potential has useful properties for making plots:

In planar solutions, contours of Az separated by a uniform interval ∆Az lie along lines of
B separated by equal intervals of magnetic flux per length.

In cylindrical solutions, contours of rAθ separated by a uniform intervals ∆(rAθ) lie along
lines of B separated by equal intervals of magnetic flux.

Let’s get to work and generate some magnetic fields. We’ll start with a cylindrical coil in
free space. Because the geometry is simple, we’ll write the boundary specifications directly.
Run Mesh and click the New mesh (text) tool to bring up the dialog of Fig. 22. The values
define a solution volume that covers the range2 -10.0 cm ≤ z ≤ 10.0 cm, 0.0 cm ≤ r ≤ 15.0 cm.
When you click OK, the program opens the internal text editor with the default content shown
in Fig. 23. The Global section at the top sets the foundation mesh (the set of elements before
conformal shifting of boundary nodes). It covers the range we specified with a default element
size of 0.1 cm. Advanced commands (like TriType) are listed as comment lines. We won’t need
them for this calculation, so delete the comments.

A default region named SolVolume (Region 1 ) covers the solution volume, appropriate for
this calculation3. Mesh has also started a default second region. We’ll use it to define the
rectangular cross section of a cylindrical coil. The comment lines show the entries that could
appear within a region section. Erase the comments and rename the region Coil. The coil has
dimensions -3.0 cm ≤ z ≤ 3.0 cm and 4.0 cm ≤ r ≤ 6.0 cm. Copy and paste the line vectors of

2Mesh displays an error message if you try to open a cylindrical solution with r < 0.0.
3Although Region 1 often covers the full solution, it is not a necessary condition as we saw in the previous

electrostatic solution.
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Figure 22: Dialog to start a Mesh script in the text mode.

Region 1 and use Search/Replace to modify the dimensions. We’ll also add a third region by
copying and pasting Region 1 verbatim. Rename it Boundary and remove the word Fill in the
Region command. We’ll discuss the purpose of this extra region later. For now, the modified
script should look like Table 1. Save your work and exit the editor.

Click the Load script (MIN) tool to read the boundary specifications and then click Process.
When complete, click Save mesh (MOU) to create the file BareCoil.MOU for use by PerMag.
You can go to the Plot/Repair menu tool to view a cross-section of the resulting mesh, consisting
of 60,000 elements.

Run PerMag and click the 1 tool to bring up the dialog of Fig. 24. As in the previous
calculation, this dialog creates a script of run and material parameters to control the solution
program. We can ignore several of the fields because the values control advanced runs with
non-linear materials (e.g., saturable iron). For this run, we need only set the Geometry to
Cylindrical and fill in the magnetic properties of the regions. Air has relative permeability
µr = 1.0. The coil also has µr = 1.0. In addition, we need to set a total current that flows in
the θ direction for a cylindrical solution. If the coil has N = 1000 turns and the drive current
is I = 2.5 A, then the total A-turns over the cross section is 2500.0. Equivalently, the region
carries a uniform azimuthal current density4. Finally, we want to see what happens if we make
no special provisions for the Boundary region, so don’t set any property. Click OK and save
the data in the file BareCoil.PIN. You can check the file content with the internal PerMag

editor.
Click the 2 button and choose BareCoil.PIN to create a finite-element solution. Then click

3 and load BareCoil.POU to analyze the solution. To begin, let’s check the lines of B. Click the
Plot type tool and set the option Contour lines. Then click the Plot quantity tool and choose
rAThet to produce the plot of Fig. 25a. There are two interesting features:

4Regions in PerMag always have uniform average current density. To represent a coil with variations of
winding density, divide it into multiple regions.

34



Figure 23: Starting a Mesh script in text mode, display of the internal editor.
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Table 1: Mesh script BareCoil.MIN.

GLOBAL

XMesh

-10.00000 10.00000 0.10000

End

YMesh

0.00000 15.00000 0.10000

End

END

* -------------------------------------------------------

REGION FILL Air

L -10.00000 0.00000 10.00000 0.00000

L 10.00000 0.00000 10.00000 15.00000

L 10.00000 15.00000 -10.00000 15.00000

L -10.00000 15.00000 -10.00000 0.00000

END

* -------------------------------------------------------

REGION FILL Coil

L -3.00000 4.00000 3.00000 4.00000

L 3.00000 4.00000 3.00000 6.00000

L 3.00000 6.00000 -3.00000 6.00000

L -3.00000 6.00000 -3.00000 4.00000

END

* -------------------------------------------------------

REGION Boundary

L -10.00000 0.00000 10.00000 0.00000

L 10.00000 0.00000 10.00000 15.00000

L 10.00000 15.00000 -10.00000 15.00000

L -10.00000 15.00000 -10.00000 0.00000

END

* -------------------------------------------------------

ENDFILE
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Figure 24: PerMag dialog to define run parameters and material properties.

Even though the field inside the coil is fairly uniform, the space between lines is larger
near the axis. This is because the lines are separated by intervals of equal magnetic flux
and the area normal to z gets smaller as r approaches zero. In other words, the density
of lines is not proportional to |B| in cylindrical coordinates.

The lines of B are normal to the boundaries, the standard default Neumann condition
for a finite-element magnetic solution (i.e., the derivative of vector potential normal to
the boundary is zero). With regard to the axial boundaries, the condition would occur
if there were an infinite array of coils with alternating positive and negative currently.
Certainly, this is not what we intended. Furthermore, the boundary on the outer radius
is non-physical in the sense that we could find no set of real coils that would generate the
field pattern.

With regard to the second point, we must clearly do some thinking about the boundary
condition. The alternative is to set the vector potential equal to a constant on the boundary.
The Dirichlet condition is rAθ = 0.0. In this case, the component of B normal to boundary is
zero, so that lines of B are parallel. To do this, we change the specification of Region 3 to:

* Region 3: BOUNDARY

VecPot(3) = 0.0000E+00

The command states that the node quantity assumes a fixed value.
Figure 25b shows the modified solution. It is better in one respect. The field pattern could

be achieved in an actual physical system: a coil inside a superconducting can. At this point,
you may object that you wanted a coil in infinite space, not in an enclosure. This illustrates
a limitation of the finite-element method. Calculations must be performed in a finite volume.
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Figure 25: Lines of B for the solution. a) Default Neumann boundary condition. b) Dirichlet
condition, fixed vector potential.
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There will be boundaries, and conditions on the boundaries must be specified. The common
conditions are Neumann or Dirichlet.

But, is it a limitation? Sometimes, issues in a numerical solution mirror issues in the physical
world. When is the last time you operated a magnet in infinite space? In a real system, there
is usually an assortment of nearby objects in unpredictable locations. These objects would
strongly alter the far fields and may affect field components inside the working volume of the
magnet. In this sense, the magnet of Fig. 25, with its strong fringing fields, is a poor design.
Another drawback is that significant fraction of magnetic field energy is outside the working
volume (the interior of the coil). The wasted energy is reflected in higher power to drive the coil.
In Chap. 8, we will consider the use of ferromagnetic methods to improve the design. The next
chapter describes a numerical study to quantify how much the boundaries in a finite-element
magnetic-field solution affect the results.
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7 Magnetostatic solution: boundary effects and automatic

operation

The previous chapter emphasized that finite-element calculations are performed in a finite
volume and that conditions on the the boundaries must be specified. The Neumann condition
(field lines normal to the boundary) is usually used along a symmetry plane. An example is
one half of a magnetic mirror split at the midplane. Otherwise, the most common boundary
is a Dirichlet condition (i.e., fixed vector potential), equilvalent to a perfectly-conducting wall.
Although the boundary affects the fields of coils in infinite space, this does not represent a
practical limitation on the finite-element method because you would normally seek to design a
magnet to limit the extent of fringing fields.

This chapter has has three learning goals:

Quantify the effect of the Dirichlet boundaries in magnetostatics.

Introduce the use of a variable-resolution meshes.

Set up an automatic calculation to do a parameter search.

We’ll continue with the cylindrical coil from the previous chapter. It carries a total current of
2500 A-turn uniformly distributed over the cross section, -3.0 cm ≤ z ≤ 3.0 cm, 2.0 cm ≤ r ≤
4.0 cm. We’ll start with close boundaries (-5.0 cm ≤ z ≤ 5.0 cm, 0.0 cm ≤ r ≤ 7.5 cm) and then
expand them to see how the fields approach the infinite-space result. The element size should
be relatively small near the coil, but we can use larger elements in the expanding surrounding
volume to minimize computational work.

For the smallest solution, the foundation mesh definitions in the Mesh input script look
like this:

GLOBAL

ZMESH

-5.0 -3.5 0.2

-3.5 3.5 0.1

3.5 5.0 0.2

END

RMESH

0.0 4.5 0.1

4.5 7.5 0.2

END

END

The axial specification states that the initial triangular element base (before smoothing and
fitting) is 0.2 cm in the zones -5.0 cm ≤ z ≤ -3.5 cm and 3.5 cm ≤ z ≤ 5.0 and 0.1 cm near the
coil. Figure 26 shows the result. Note that Mesh has fitted the coil boundaries exactly and
made smooth transitions between regions of different element sizes.
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Figure 26: Variable resolution mesh for the magnet coil solution.

To make useful comparisons of the numerical results, we need a baseline. The theoretical
expression5 for the on-axis field at the midplane of a solenoid (z = 0.0 cm, r = 0.0 cm) with
finite length and radial thickness is:

B =
µ0Ni

2(r2 − r1)
ln





√

r22 + (l/2)2 + r2
√

r21 + (l/2)2 + r1



 . (5)

For the values Ni = 2500.0, r1 = 0.02 m, r2 = 0.04 m and l = 0.06 m, Eq. 5 yields the value
Bz(0, 0) = 0.037186 tesla.

For the study, we will expand the boundaries (keeping rmax = 1.5zmax) and compare the
value of Bz(0, 0) to the infinite-space result. We will use the following nine values for zmax: 5.0
cm, 6.0 cm, 7.0 cm, 8.0 cm, 9.0 cm, 10.0 cm, 12.50 cm, 15.0 cm and 20.0 cm. We could do each
calculation interactively: create nine mesh scripts, run and analyze nine PerMag solutions.
That’s the hard way. Field Precision programs offer a useful option for extended calculations.
Batch files and external programs (e.g. python scripts) can not only run the technical programs,
but they can also control how the program interprets variable quantities in the input script. In
the present application, the Mesh input script is modified to the following form:

5http://www.netdenizen.com/emagnet/solenoids/solenoidonaxis.htm.
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* -------------------------------------------------------

GLOBAL

ZMESH

%1 -3.5 0.2

-3.5 3.5 0.1

3.5 %2 0.2

END

RMESH

0.0 4.5 0.1

4.5 %3 0.2

END

END

* -------------------------------------------------------

REGION FILL AIR

L %1 0.00000 %2 0.00000

L %2 0.00000 %2 %3

L %2 %3 %1 %3

L %1 %3 %1 0.00000

END

* -------------------------------------------------------

REGION FILL COIL

L -3.00000 2.00000 3.00000 2.00000

L 3.00000 2.00000 3.00000 4.00000

L 3.00000 4.00000 -3.00000 4.00000

L -3.00000 4.00000 -3.00000 2.00000

END

* -------------------------------------------------------

REGION BOUNDARY

L %1 0.00000 %2 0.00000

L %2 0.00000 %2 %3

L %2 %3 %1 %3

L %1 %3 %1 0.00000

END

* -------------------------------------------------------

ENDFILE

Note the symbolic representation of the boundary limits, a convention familiar to users of
Windows batch files. The symbol %1 stands for zmin, %2 for zmax and %3 for rmax.
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Figure 27: Results of the solution set. Dashed line shows the theoretical free-space value.

We prepare a Windows batch file with the following content:

START /B /WAIT C:\fieldp_pro\tricomp\mesh.exe C:\BatchControl -5.00 5.00 7.50

START /B /WAIT C:\fieldp_pro\tricomp\permag.exe C:\BatchControl.PIN

START /B /WAIT C:\fieldp_pro\tricomp\permag.exe C:\BatchControl.SCR

START /B /WAIT C:\fieldp_pro\tricomp\mesh.exe C:\BatchControl -6.00 6.00 9.00

START /B /WAIT C:\fieldp_pro\tricomp\permag.exe C:\BatchControl.PIN

START /B /WAIT C:\fieldp_pro\tricomp\permag.exe C:\BatchControl.SCR

START /B /WAIT C:\fieldp_pro\tricomp\mesh.exe C:\BatchControl -7.00 7.00 10.50

START /B /WAIT C:\fieldp_pro\tricomp\permag.exe C:\BatchControl.PIN

START /B /WAIT C:\fieldp_pro\tricomp\permag.exe C:\BatchControl.SCR

START /B /WAIT C:\fieldp_pro\tricomp\mesh.exe C:\BatchControl -8.00 8.00 12.00

START /B /WAIT C:\fieldp_pro\tricomp\permag.exe C:\BatchControl.PIN

START /B /WAIT C:\fieldp_pro\tricomp\permag.exe C:\BatchControl.SCR

...

The file seems verbose, but it is mainly copy-and-paste from a template prepared with the
Create task button of FPController. The interesting lines are those that call Mesh. The
first pass parameter is the prefix of the input script listed above. The three additional string
parameters give numerical values for the variables %1, %2 and %3. There are multiple solutions
with expanding boundaries with the constraint rmax = 1.5zmax. The two commands that follow
run PerMag with the modified mesh and then execute the analysis script BatchControl.SCR.
This file has the following content:
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INPUT BatchControl.POU

OUTPUT BatchControl.DAT Append

POINT 0.0 0.0

ENDFILE

The Append specification in the second command ensures that all the data will be added in
sequence to a single output file.

The full data set is generated in about two seconds by executing the batch file. The data
are available as text entries in BatchControl.DAT. Figure 27 shows a plot of the results. The
dashed line is the theoretical result from Eq. 5. The difference from the infinite-space result is
about 10.4% for the close boundaries (zmax = 5.0 cm) and about 0.4% for the large boundaries
(zmax = 20.0 cm). The next chapter discusses the role of steel in magnet design. In particular,
we will improve the example solenoid, providing external shielding and minimizing the drive
power to achieve a given internal field.
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Figure 28: Set snap mode dialog of the Mesh drawing editor.

8 Magnetostatic solution: the role of steel

To complete our study of the solenoid coil, we’ll proceed to a practical design by adding a
magnet-steel shield. Here, the term magnet-steel designates a soft material with high relative
permeability. The term soft means that the steel has a narrow hysteresis curve and has negligible
permanent magnetization. Magnet-steel serves three functions in an electromagnet:

1. High-µ materials act as conductors of magnetic flux with little expenditure of energy. The
use of atomic currents of materials to carry the return flux of a magnet means that the
real currents in the drive coil can be reduced.

2. Ferromagnetic materials act as shields. Return flux prefers to flow through the steel,
reducing the fringing fields of the magnet.

3. The magnetic flux density B is constrained to point almost normal to the surface of a
material with µr ≫ 1.0. Some control may be exerted over field variations by shaping the
surfaces of the steel.

The example will demonstrate these effects. The underlying assumption is that the fields
generated by drive coils are low enough so that the ferromagnetic material is not driven into
saturation. The next article discusses the nature of saturation effects and how to model them.

We’ll start with the magnetic solution for a bare cylindrical coil discussed in the previous
chapter with boundaries zmin = −6.0 cm, zmax = 6.0 cm and rmax = 9.0 cm. We’ll add an
additional region to the input script BareCoil.MIN to represent the external iron shield using
the Mesh Drawing Editor. Run tc.exe, set the Data folder to the working location and launch
Mesh. Use the command File/Load/Load script (MIN) and choose BareCoil.MIN. Then, use
the command Edit script/Edit script (graphics) to open the drawing editor. The vectors for
the three regions are displayed and current region is set to 3. Click the Start next region tool.
We will add vectors to represent the outline of the shield to Region 4. Click the Set snap mode
tool to open the dialog of Fig. 28. For convenience, we specify that entered points will snap to
the drawing coordinate system with a resolution of 0.5 cm.
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Figure 29: Top: adding a region in the Mesh Drawing Editor. Bottom: checking the fill status.
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Figure 30: Region properties dialog in the Mesh Drawing Editor.

Click on the Line tool to enter a series of vectors that outline the shape shown in Fig. 29
(brown lines). In the line entry mode, move the cursor to snapped locations and left-click on
the start and end points of each of the ten vectors. Be sure that they all connect and define
a closed shape. Snap mode helps to ensure that the end point of one vector connects exactly
to the start point of the next. When you have finished the last vector, right-click the mouse to
exit the line entry mode.

Choose the command Settings/Region properties to open the dialog of Fig.30. Give the new
region the name Steel and check the Filled box (we want to assign a high value of µr to all the
enclosed elements). Exit the dialog. To confirm that the vectors of the new region constitute
a connected and closed set, click the Toggle fill display command. The lower display of Fig. 29
shows valid filled regions.

Finally, it is a good practice in electrostatic and magnetostatic solutions to group regions
with fixed boundary conditions (electrostatic potential or vector potential) at the end of the
Mesh script. Choose the command Settings/Region order. Check the box for Steel and then
click the Move UP button. Click OK to exit the dialog. To conclude. click the Export MIN
tool and save the revised data as the file SteelShield.MIN. Exit the drawing editor. Click
the Load script (MIN) tool and load the new script. Process the mesh and then click the Save
mesh (MOU) tool to create the file SteelShield.MOU.

Run PerMag, click the 1 tool and choose the new mesh file. The dialog is similar to the
previous example, except for the new region. Fill in the values as shown in Fig. 31. Save the
file as SteelShield.PIN and then run a solution. To make a comparison, we need a solution
without the steel. Here’s a quick way to create it. Choose the command File/Edit files and pick
SteelShield.PIN. Comment out the specification for high µr (put an asterisk at the beginning
of the line) and replace it with the value for air:

* Mu(3) = 5.0000E+02

Mu(3) = 1.00
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Figure 31: Dialog to set up the PerMag solution.

Save the result as NoShield.PIN and exit the editor. Then generate an additional PerMag

solution.
We can find out a lot about the effect of steel just by looking at a plot of lines of magnetic

flux density B (Fig. 32). With no steel shield, the lines spread out over the entire external region
and the solution is strongly influenced by the boundaries. With the shield, the return flux lines
are conducted through the steel. In this case, fringing fields are small and the boundaries have
almost no effect on the solution. As expected, lines of B entering and exiting the steel are
normal to the surface. The shield also compresses lines axially and |B| is more uniform within
the coil.

For a quantitative comparison, we can inspect scans of magnetic flux density along the axis,
Bz(z, 0). Prepare and run the following analysis script:

NScan = 100

Output Shield_Analysis.DAT

Input NoShield.POU

Scan -6.0 0.0 6.0 0.0

Input SteelShield.POU

Scan -6.0 0.0 6.0 0.0

EndFile

Fig. 33 shows plots of computed values. The shield does improve axial containment of magnetic
flux. A significant result is that field magnitude inside the coil (e.g., the working volume of a
magnetic lens) is 38% higher. Note that the two solutions have the same coil cross section and
NI product. Alternatively, suppose the goal is to achieve a given central value Bz(0, 0). The
result of Fig. 33 indicates that the required NI product with the shield is only 73% that for
the air coil, so the drive power would be cut almost in half. This effect arises because the coil
need not supply field energy to support the return flux.
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Figure 32: Lines of magnetic flux density B. Top: No shield. Bottom: With shield.
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Figure 33: Scans of Bz(z, 0) with and without the shield.

The condition of a fixed value of µr applies if the atomic currents in the iron are proportional
to the drive currents in the coil (i.e., the hysteresis curve approximates a straight line). Some-
times, the hysteresis curve may have a more complex variation. Even more important, there
is a maximum value of atomic current in the material equivalent to alignment of all magnetic
domains. At some value of coil current, the proportionality can no longer hold. The effect is
called saturation of the magnetic material. The next chapter discusses how the non-linear effect
of saturation is represented in PerMag.
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9 Magnetostatic solution: when steel gets complicated

Complex material behavior is the main reason why magnetostatic solutions are generally more
difficult than electrostatic solutions. Usually, dielectrics can be characterized by a single value
of the relative dielectric constant ǫr up to the point where they break down. On the other hand,
magnetic materials do unusual things even at normal values of flux density B:

Magnet steels may exhibit variations of µr, with a drop to µr = 1.0 at higher field levels
(saturation).

In permanent magnets, the domains are locked in place, almost independent of the applied
field.

We’ll talk about how to model permanent magnets in the next chapter. Here, we’ll concentrate
on non-linear magnetic materials.

First, some definitions. The quantity B0 is the magnetic flux density at a point in space
created by coils or permanent magnets. We’ll call it the applied flux density. In the absence of
steel, the total flux density is given by B = B0. In the PerMag program, the relative magnetic
permeability of isotropic materials is defined as µr = |B|/|B0|. Therefore, µr = 1.0 in air or
vacuum. In steel, the alignment of domains creates a material flux density that adds to the
applied flux density. Therefore, µr is greater than 1.0. As we saw in the previous article, the
utility of steel follows from that fact that µr ≫ 1.0.

Magnetic materials are characterized by curves of the form |B| versus |B0| (or |B| versus
|H|, where H = B0/µ0). If the variation is a straight line, then µr = constant and we say
that the material is linear. Magnetic materials may exhibit linear behavior at low fields, but
they always become non-linear at high fields (a few tesla). Equivalently, we can characterize
materials with a plot of |B| versus µr. Figure 34 shows such a plot for steel 1020, a common
material for magnet cores. At low |B|, the value of µr is much greater than unity and changes
considerably (i.e., the |B| versus |B0| curve is not a straight line). Physically, the curve implies
that it takes some pushing to start aligning domains but things get easier when they begin to
come around.

The notable feature of the curve is that µr approaches 1.0 when all the domains are aligned.
In this case, the material contribution to B does not get higher as B0 increases, so that B → B0.
The saturation flux density corresponds to the point where all domains become aligned. For
steel 1020, the value is Bs = 1.75 tesla. PerMag can perform self-consistent calculations for
non-linear materials using |B| versus µr data6. PerMag simultaneously adjusts the value of
µr in elements based on the present value of |B| as it performs the iterative matrix solution of
the finite-element equations.

Let’s work on some calculations. The first question is whether the variations of µr below
saturation will make a significant difference in the calculation. In other words, do we need to
worry about getting the |B| versus µr curve exactly right? To illustrate, we’ll use the example
of the H magnet illustrated in Fig. 35. It has a planar rather than cylindrical geometry. Here,
there are variations in x-y but the steel core and coils extend an infinite distance in z. Such a

6The values of Fig. 34 are used as PerMag input for the calculations of this chapter
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Figure 34: Plot of relative magnetic permeability versus |B| for Steel 1020.

calculation is often a good approximation to the central section of a long dipole magnet. Both
sets of coils produce a upward-directed flux that is conducted by the steel to the air gap, the
working volume.

To start, we’ll address the question: how does the value of µr in the core affect the field
distribution? We’ll use the command-line parameter method discussed in Chap. 7, assigning
fixed µr values over the range 5.0 to 10,000 and comparing values |B| in the air gap. Before
beginning, its useful to recognize that the solution of Fig. 35 involves more work than is nec-
essary. The fields in the four quadrants are mirror images. As an alternative, we could find
the solution only in the first quadrant by applying appropriate symmetry conditions along the
boundaries x = 0.0 and y = 0.0. Lines of B are normal to the boundary at y = 0.0. Here,
we could apply the Neumann condition (the natural condition for a finite-element solution).
Lines of B are parallel to the other three boundaries, implemented by the Dirichlet condition
Az = 0.0.

Figure 36 shows a plot of By in the magnet air gap at the midplane (0.0,0.0) and edge
(2.0,0.0) of the magnet gap as a function of µr. The relative magnetic permeability has a
strong influence at low values but little effect for large values. We can understand what’s
happening by inspecting Fig. 37, a plot of lines of B. The top illustration shows a solution with
high µr. In this case, the low-reluctance core carries most of the flux, which flows up between
the coils and returns across the air gap. A small fraction takes a short-cut around the outside
of the outer coil (leakage flux ). The reluctance of the air gap causes the flux to spread out to
increase the cross-section area (fringing flux ). Note that the lines of B entering and exiting the
core are almost normal to the surface. In contrast, the lower illustration shows the case with low
µr. In this case, the core has a high reluctance, increasing the leakage flux. A reduced fraction
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Figure 35: Geometry and calculated lines of B in the cross section of an H magnet.

of the flux is transported to the air gap, hence the reduced value of By. Finally, we’ll consider
why there is little change in the solution when µr changes by a factor of 10 between 1000 and
100000. The important quantity in a finite-element magnetic field calculations is not µr, but
actually γ = 1.0/µr. A value γ = 1.0 represents air, and a value γ → 0.0 is characteristic of
unsaturated steel or iron. Both 1/1000 and 1/10000 are close to zero, so the change in µr makes
little change in the solution.

We’ll conclude with a full non-linear calculation for the H magnet. Table 2 shows the script
HMagnet.PIN that controls the PerMag calculation. Region 2 is the steel core. Instead of
assigning a fixed value, the code reads the table of information plotted in Fig. 34. The coils are
set up for two calculations at high and low current. The values of drive current were chosen for
solutions such that the core steel is well below and well above saturation.

Because the two processes of the material adjustment and the iterative matrix solution are
performed simultaneously, program controls must be optimized to ensure convergence. Some
experimentation may be necessary. Consider the following commands:

MaxCycle = 8000

Avg = 0.05

Update = 20 500

The quantity MaxCycle is the maximum number of matrix iterations, set to a fairly high value.
The quantity Avg controls averaging of µr values between cycles. The low value is used to avoid
oscillations of µr. Finally, the Update command states that µr should be recalculated every
20 iteration cycles and that the program should wait 500 cycles before corrections to ensure a
good starting solution.

Figure 38 shows the variation of µr at low and high current. At low current (upper solution),
the relative permeability exceeds 1000 over most of the core volume. The low values at the
top reflect the fact that |B| is small and the elements are on the left-hand side of the curve of
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Table 2: File HMagnet.PIN

Mesh = HMagnet

Geometry = Rect

DUnit = 1.0000E+02

ResTarget = 1.0000E-09

MaxCycle = 8000

Avg = 0.05

Update = 20 500

* Region 1: AIR

Mu(1) = 1.0000E+00

* Region 2: COREUPRT

Mu(2,Table) = steel1020_permag.dat

* Region 3: COILUPRTIN

Mu(3) = 1.0000E+00

* Low current

* Current(3) = 1000.0

* High current

Current(3) = 10000.0

* Region 4: COILUPRTOUT

Mu(4) = 1.0000E+00

* Low current

* Current(4) = -1000.0

* High current

Current(4) = -10000.0

* Region 5: BOUNDARY

VecPot(5) = 0.0000E+00

EndFile
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Figure 36: Variation of By(0, 0) [blue] and By(2, 0) [red] in the H magnet as a function of
relative magnetic permeability in the steel core.

Fig. 34. An inspection of lines of B in Fig. 39 (top) shows that they are contained mainly in the
core. Lines outside the core are normal to the surface. The midplane field is By(0, 0) = 0.2459
tesla. At high current (Fig. 39 bottom), many regions of the core are driven into saturation,
particularly the vertical piece adjacent to the air gap. The figure shows enhanced fringing flux
near the air gap. The central field value is By(0.0) = 1.484, only 6.03 times the field at one
tenth the drive current. Note that the field lines near the air gap are not normal to the core
surfaces, affecting the profile of B across the gap.

In summary, we addressed the following issues in this chapter:

Typical variations of µr for soft magnetic materials.

Physical implications of the magnitude of µr, particularly as it affects the reluctance of
steel structures in magnets.

Procedures to set up and to interpret non-linear solutions in PerMag.

The next chapter will discuss how permanent magnets work and how to build solutions for 2D
permanent magnet devices.
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Figure 37: Lines of B at high and low values of relative magnetic permeability.

56



Figure 38: Spatial variation of relative magnetic permeability in the H magnet solution for low
(top) and high (bottom) drive currents.
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Figure 39: Lines of B in the H magnet solution for low (top) and high (bottom) drive currents.
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10 Magnetostatic solution: permanent magnets

As the final topic in two-dimensional magnetostatics, we’ll consider solutions with permanent
magnets. To start, it’s useful to review how permanent magnets work. Introductpry texts on
electromagnetism sometimes don’t treat the topic, and the explanations in many specialized
references are overly complex.

The electrons of many atoms carry a circulating current, like a small current loop. Such an
atom has a magnetic moment. The magnetic moment is a vector pointing from the center of
the loop normal to the current. It points in the direction of the magnetic flux density B created
by the loop. The distinguishing feature of ferromagnetic materials is that the atoms prefer to
orient the currents in the same direction (a quantum mechanical effect). A region where all
atoms are aligned is called a domain. The upper section of Fig. 40 shows the summation of
aligned atomic currents in a domain. Currents on the inside cancel – the net result is a surface
current in the direction normal to the magnetic moment.

In the natural state of a ferromagnetic material, the orientation of domains is randomized
so that there is no macroscopic field outside the material (Fig. 40 lower). To generate such a
field would require energy. Let’s say that we supplied the energy by placing the material inside
a strong magnet coil. In this case, the domains line up and the current of all domains sum
up as in the upper section of Fig. 40. The domain currents cancel inside, but there is a net
surface current on the object. If we turn off the coil, the domains of a soft magnetic material
return to a random distribution. On the other hand, suppose we could physically lock the
domains in position before we turned off the coil. In such a hard material, the object retains its
surface current and can generate external fields. The energy for the field was supplied by the
magnetizing coil and it was bound in the material. Such a object is called a permanent magnet.

The distinguishing feature of modern permanent magnet materials like neodymium-iron and
samarium-cobalt is that domain locking is extremely strong. The domains remain lined up,
independent of external processes. This property makes it simple to model the materials. Let’s
review some definitions and facts. The direction of the magnetic moments of the aligned atoms
(and domains) is called the magnetization direction. Suppose we have a permanent magnet
that is long along the direction of magnetization and self-connected (e.g. a large torus). In
this case, there is no external field and the flux density inside the material is generated entirely
by the surface currents. This intrinsic flux density is called the remanence flux, Br, the most
important quantity for characterizing a permanent magnet. A typical value for neodymium
iron is Br = 1.6 tesla.

We can express the surface current density in terms of the remanence flux. Take Br as
a vector pointing along the direction of magnetization and let ns be a vector normal to the
surface of the permanent magnet. The surface current density is given by

Js =

(

1

µ0

)

Br × ns (A/m). (6)

We can use PerMag to confirm this physical interpretation. The top section of Fig. 41 shows
a calculation in cylindrical geometry for an annular permanent magnet in space (i.e., no iron,
coils or other permanent magnets). The remanance field is Br = 1.5 tesla and the direction of
magnetization is along z. The plot shows lines of B. According to the interpretation of Fig. 40,
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Figure 40: Top: alignment of atomic currents in a domain. Bottom: alignment of domains in
unmagnetized material.

we would get the same results by replacing the permanent magnet with thin surface current
layers. Equation 6 implies that there should be no current on the ends and uniform current
density Js = 1.193 MA/m on the inner and outer radial surfaces. In the second model (bottom
section of Fig. 41), the permanent magnet is replaced by two thin solenoid coils (length = 0.08
m, thickness = 0.00125 m). The total current of the outer coil is (1.193× 106)(0.08) = 95470.0
A and the current on the inner coil is -95470.0 A. The lower section of Fig. 41 shows that
the calculated lines of B are indistinguishable from the permanent magnet calculation. For a
quantitative check, we can compare scans of Bz along the axis. Figure 42 shows the results.
There small difference is a result of the finite thickness of the surface current layer.

If permanent magnets are that simple, where could confusion arise? Unfortunately, things
are more challenging when we talk about older materials like Alnico. Such materials are char-
acterized by a demagnetization curve. Typically, the curve is a plot of |B| inside the permanent
magnet versus |H|. Here, |H| is the applied magnetic field that arises from coils and other
permanent magnets. It is easier to see the meaning of the curve if we make the plot in terms of
the applied magnetic flux density, B0 = µ0H. Applied fields have almost no effect on a modern
material. Therefore, the total flux density inside the material is simply

B = Br −B0. (7)

Figure 43a shows a plot. The value of applied magnetic field when B = 0.0 is called the coercive
force Hc. For modern materials, the coercive force is

Hc = −Br

µ0

. (8)
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Figure 41: Lines of magnetic flux density |B| for an annular permanent magnet (top) versus
equivalent surface current layers (bottom).
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Figure 42: Scans of By(x, 0) for an annular permanent magnet (line) versus equivalent surface
current layers (symbols).

Figure 43: Demagnetization curves for modern (a) and older (b) permanent magnet materials.
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It is clear that neither the demagnetization curve or the coercive force are particularly
meaningful for materials like NdFeB. On the other hand, the concepts are useful for older
materials. Here, the domains are not tightly locked. Putting such a magnet in a device with
an air gap could cause degradation of the alignment so that the total flux density falls below
the ideal curve (Fig. 43b). PerMag can solve such problems, but it is important to clarify
what the solutions mean. Suppose you bought an Alnico magnet magnetized at the factory
and shipped with an iron flux return clamp (i.e., B = Br). If you could move it instantaneously
to the application device, then the operating point calculated by PerMag would apply. On the
other hand, if you removed the clamp so the permanent magnet was exposed to a large air gap
and possibly dropped it on the floor, then the material would have undergone an irreversible
degradation and the fields generated will be lower than predicted. The best way to get the
predicted performance based on the demagnetization curve is to magnetize the material in situ.
One big advantage of modern materials (beside their strength) is that they achieve the predicted
performance, even if they are magnetized at the factory, shipped from China and moved to the
assembly.

We’ll conclude with an application calculation, a bending magnet for an ion spectrometer.
It is a long assembly, so we will do a preliminary 2D calculation in a cross section. The top
section of Fig. 44 shows half the geometry (there is a symmetry plane with Neumann boundaries
at y = 0.0 cm). The goal is to create a dipole field By in the air gap to bend ions in the x
direction. The arrow shows the magnetization direction of the permanent magnet (NdFeB with
Br = 1.6 tesla). Two features ensure the maximum air-gap field for the given magnet surface
currents:

A steel core carries the return flux.

The permanent magnet is placed close to the gap.

The figure shows the calculated lines of B. Figure 45 shows a scan of By along x across the air
gap. The field is strong but non-uniform, probably of little use in a spectrometer. To correct
things, we can take advantage of one of the properties of soft steel, field shaping. Consider the
effect of adding a steel layer adjacent to the gap. The lower section of Fig. 44 shows the change
in lines of B. The steel shifts flux away from the center to the edges of the gap. Figure 45
shows the effect on the field scan. With some sacrifice in the magnitude of the flux, the steel
shaper gives a working volume of approximately uniform field.
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Figure 44: Application example, permanent-magnet ion spectrometer. Top: bare magnet.
Bottom: magnet with steel insert for field shaping.

Figure 45: Spectrometer application, scan of By(x, 0) with and without the steel insert.
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11 3D electrostatic example: STL input

We’ll assume that HiPhi has been installed, adding new active buttons in FPController.
To introduce a 3D electrostatic calculation, we’ll step through a complete field solution for an
electron gun designed at the Lawrence Livermore National Laboratory to generate sheet beams.
We’ll use prepared input files – following chapters will help you prepare you own inputs.

To start, run FPController. If necessary, set the Data folder to point to a working direc-
tory. Copy the following files supplied in the example archive to the working directory:

sheetbeam.min

sheetbeam.hin

cathode.stl

focus.stl

output.stl

The text file sheetbeam.min is a set of instructions to MetaMesh defining the shapes and
assembly method of the gun parts. The instructions were built in the interactive environment of
Geometer. The file sheetbeam.hin gives HiPhi material data and other parameters needed
to generate a finite-element solution. The stereolithography files cathode.stl, focus.stl and
output.stl were supplied by a laboratory engineer who exported them from a Solidworks

model. They define shapes that are too complex to create from a summation of simple solids.
As we saw in Chap. 5, the procedure for 2D shapes is relatively simple. Objects are created

from a boundary outline of line and arc vectors. The outlines may be derived from or exported
to DXF files. In contrast, shapes encountered in the 3D world may be much more complex. A
flexible approach is essential to make the task manageable. The following principles underlie
the operation of Geometer and MetaMesh. Their implications will become clear as we move
through the example:

Objects (like electrodes and dielectrics) are constructed from one or more Parts.

Physical properties (like potential and relative dielectric constant) are assigned to Regions.
Each Part belongs to a Region.

An object may be constructed from several parts associated with the same region. For ex-
ample, a grounded electrode may be composed of two parts (a spherical tip and cylindrical
support rod) that belong to a region with fixed potential 0.0 V.

Parts are processed in the order in which they appear in the MetaMesh input file. The
currently-processed part overwrites any shared volumes with previously-processed parts.

Parts are defined at a standard position and orientation. They may be moved or rotated to a
final configuration in the solution space.
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Figure 46: Geometer STL viewer, showing solid and wireframe views of focus.stl.

It’s clear that the idea of a part is central to the mesh-building process. There are two
types:

Parametric models for simple shapes like cones or spheres. These models are built into
Geometer and MetaMesh and do not require external data.

Arbitrary shapes created with 3D CAD programs like SolidWorks and exported as files
in the STL format. The files must be loaded to be used in Geometer or MetaMesh.

A mesh may combine both types of parts.
Let’s get started with the calculation. First, it’s useful to understand the information in STL

files. RunGeometer and click the STL viewer command. The program becomes a full-featured
viewer that can display the shapes defined by individual STL files and their relationships in space.
Click File/Add model and choose focus.stl. Click View control/Orthogonal/perspective to
enter the 3D mode. This is an interactive environment based on OpenGL. Move the mouse
cursor to the sides and left click to change the view. You can also move the cursor toward the
center and then left or right-click to zoom in or out. The view looks like the right-hand side of
Fig. 46. The part is a dish-shaped focusing electrode with a hole for the cathode.

To see the inherent data of the STL file, click Plot control/Model display. Uncheck the Solid
box to create a view like the left-hand side of Fig.46. The view shows the set of contiguous
triangular facets that define the surface of the part. The STL file is simply a list of facets.
The facets shown are typical of those created by 3D CAD programs. Although all facets

66



Figure 47: Full set of STL shapes for the assembly.

are theoretically correct, they may vary considerably in scale. To determine if an element is
inside an STL shape, MetaMesh must analyze all facets, an intensive activity where parallel
processing is a big advantage.

Return to a solid view of the surface and load the other two parts to get a view like that
of Fig. 47. The engineer exported the parts from a SolidWorks assembly. In this case, the
coordinates of facets in the STL file are absolute with respect to the assembly space rather than
relative to the part. Therefore, the facets not only define the shape of parts, but also their
positions and orientations relative to each other7.

The parts as loaded define the full volumes of the cathode and focus electrode, but only
half of the output transport tube. This is not a problem because by symmetry it’s sufficient to
perform a calculation only in the first quadrant of the x-y plane. MetaMesh automatically
clips over-sized parts. There is one issue that you can see by shifting to the Orthogonal view and
clicking View control/Y normal axis. The Solidworks model corresponds to a beam moving
in the -z direction. For transport calculations, we want the beam to move in +z following the
standard convention. The modification will be made during MetaMesh processing.

Exit Geometer and run MetaMesh. Click File/Load MIN file and choose sheetgun.min.
Click the Process mesh command and wait for the program to complete it’s analysis. It takes
about 20 seconds on a multi-core computer to generate a mesh with 1.3 million elements.
Right-click to close the messages. Choose Plot3D to observe the display of Fig. 48. The plot

7Note that we could move the parts to different positions by adding shift operations in Geometer.
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Figure 48: Completed mesh, outline of the vacuum region.

of the surfaces of elements of the vacuum region) indicates a good representation of all the
electrodes. The parts defined by STL files are present, but much more has happened. The
mesh has been created in the first quadrant with fine resolution of the cathode surface, the
hexahedron elements conform closely to the theoretical shapes, the beam direction points in
+z, the assembly is inside a cylindrical vacuum chamber and there is a support rod for the
cathode. All will be explained in the next chapter where we take a close look at the MetaMesh

script.
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12 3D electrostatic example: mesh generation and solution

In this chapter, we’ll conclude the example 3D electrostatic solution. The previous chapter
introduced the concept of mesh Parts and Regions. The emphasis was on input from 3D CAD
programs via STL files. Here, we’ll consider how MetaMesh uses the STL data and processes
extra information to create the result of Fig. 48. We could go through all the interactive
operations in Geometer to define the parts, but there’s a quicker way to understand the
setup. The end result of Geometer activities is a MetaMesh input script that includes
all the information. We’ll study the script directly. A following chapter shows how to use
Geometer to create a solution from scratch.

Run FPController and launch MetaMesh. We’ll assume that the Data folder still
points to the working directory of the previous chapter. Click File/Load MIN file and choose
sheetgun.min. Then click File/Edit MIN file to view the contents of the script. The first part
of the Global section has detailed specifications for element sizes over multiple zones along the
axes. The feature was necessary for accuracy in subsequent beam-emission calculations – the
details are not of immediate concern. Instead, we’ll concentrate on the part definitions shown
in Fig. 498.

The parts named Anode, Focus and Cathode (marked in green) use the STL models that
we previously discussed. The Type command of each part section lists the associated STL file.
The Fab (fabrication) command defines fitting controls – default values are usually sufficient.
Although the intent is to build the mesh around the assembly positions of the STL parts, we
do want to reverse the emission direction to +z. This is accomplished with the commands:

Rotate 180.0 0.0 0.0 XYZ

Each command rotates the coordinates of all facet nodes 180o about the x axis relative to the
assembly origin. The commands

Surface Region VACUUM

instruct the code to adjust all element facets of the part adjacent to Vacuum elements to
conform closely to the defined surface of the STL model.

The assembly is located inside a cylindrical vacuum chamber of radius 1.23” that extends
from z = 0.0” to the boundary of the solution volume at z = -1.50”. For high speed, HiPhi

uses a structured conformal mesh, where structured means that the elements are arranged like
the units of an apartment building. The term conformal means that the apartments are not
necessarily right-angle boxes9. The solution volume of a structured mesh is always a box. To
create the vacuum chamber, we’ll fill the entire volume with elements assigned to the fixed-
potential region Ground (part VChamber) and then carve out a cylindrical volume of elements
associated with the Vacuum region. The part ExitPort is a slot to accommodate the beam exit
aperture. The final part (Support) is a cylindrical pipe attached to the cathode. Note that this

8The text display is from the ConText editor using syntax highlighting definitions that we supply with the
software.

9The general term for a six-sided solid where facets may not be at right angles is a hexahedron.
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Figure 49: Part sections of the MetaMesh input script sheetgun.min.
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Figure 50: HiPhi dialog to set program parameters and the physical properties of regions.

part belongs to the same region as the cathode and the focus electrode. The physical property
of the region in the HiPhi solution is the fixed potential (-74.0 kV).

Exit the text editor and click the Process mesh command. MetaMesh reports progress
of the mesh creation. When the program is finished, right-click to exit the report and use the
File/Save mesh command to create the file sheetgun.mdf (Mesh Definition File).

We can now proceed to the HiPhi solution. Run the program, click Setup and choose
sheetgun.mdf to open the dialog of Fig. 50. Fill in the values as shown. Click OK and save
the results as sheetgun.hin. The resulting file has the contents:

Mesh = sheetgun

DUnit = 3.9370E+01

ResTarget = 5.0000E-08

MaxCycle = 4000

Parallel = 4

* Region 1: GROUND

Potential(1) = 0.0000E+00

* Region 2: VACUUM

Epsi(2) = 1.0000E+00

* Region 3: CATHODE

Potential(3) = -7.4000E+04

EndFile
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Figure 51: 3D plot of the assembly showing levels of |E| on the surface of the focus electrode.

The clean format of the file makes it easy to identify the functions of the commands. If you
have the Pro version of HiPhi, the command

Parallel = 4

will reduce the run time.
Click the Run button and choose sheetgun.hin. The program generates a solution recorded

as the binary file sheetgun.hou. We can get some useful information by checking the text listing
files sheetgun.mls and sheetgun.hls created by MetaMesh and HiPhi. For example, the
MetaMesh listing shows that the mesh contains 1,295,952 active elements10. The 4000 matrix-
inversion cycles in HiPhi took 363 seconds to reach a relative residual11 of 8.6× 10−7.

To complete the exercise, run PhiView and load sheetgun.hou. You can experiment with
the options for 2D and 3D plots. Figure 4 shows an example, an overview of the levels of |E|
on the focus-electrode surface. The red areas correspond to |E| = 16.7 MV/m.

10The term active means that the elements are not part of a fixed-potential region.
11The relative residual, a measure of the accuracy of the iterative solution, should be much smaller than unity.
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13 3D electrostatic application: getting started

In this chapter we’ll advance to an application study, a concept for a capacitive position sensor.
Rather than using prepared input files, we’ll build the entire solution from scratch. This chapter
covers the initial steps in creating a 3D assembly withGeometer. Following chapters will cover
mesh generation, the finite-element solution and analysis techniques. The example emphasizes
the internal parametric models of Geometer and MetaMesh rather than the STL models
discussed in Chap. 11.

Figure 52 shows a view of the detector geometry. A dielectric object of known shape and
size drops through the assembly along the y direction. A shaped drive electrode with an applied
AC voltage creates a time-dependent electric field that varies in the x direction. Changes in the
mutual capacitance between the drive electrode and detector are sensed with a bridge network.
The function of the detector is to confirm the presence of the object and its approximate position
in x. The purpose of our calculation is find numerical values for the relative changes in mutual
capacitance with the size and position of the object to gauge the accuracy requirements for the
detector circuit.

Figure 53 gives an alternate 3D view of the assembly. For reference, we will use the following
dimensions:

The solution volume covers the region -2.50 cm ≤ x, y ≤ 2.50 cm and -0.25 cm ≤ z ≤
3.00 cm.

A metal case of thickness 0.25 cm encloses all sides of assembly except for a cut to house
the detector and the upper boundary in z. We’ll discuss the physical meaning of this
open boundary in a following article.

The test object is a sphere of radius 0.375 cm.

The detector is a rectangular plate with dimensions Wx = 1.75 cm, Wy = 3.25 cm and
Wz = 0.25 cm.

The cutout for the detector has dimensions Wx = 2.00 cm and Wy = 3.50 cm.

The drive electrode is an extrusion of length Wy = 4.0 cm with a cross-section in the z-x
plane defined by an outline of lines and arcs.

To start, decide on a working directory for the input/output files. Run the FPController

and point the Data folder to the directory. Run Geometer and click File/New script. In
the opening dialog, enter the values shown in Fig. 54 to define the dimensions of the solution
volume. When you click OK, Geometer automatically creates the first part12, a box that fills
the solution volume. By default, the part is named SolutionVolume and is assigned to Region
1. The program displays a default orthogonal view in the x-y plane. The program turns off the
visibility of the first part because it would obscure the view of additional ones.

12see Chap. 11 for the definitions of parts and regions in Geometer
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Figure 52: Detector geometry in the plane y = 0.0 cm.

Figure 53: 3D view of the detector assembly.
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Figure 54: Dialog to start a new assembly in Geometer.

At this point, we need to make a strategy decision. We could associate the first part with
air and add five parts to build up the metal case wall. On the other hand, it is easier to start
with a block of metal that fills the solution volume and then to carve out an internal air volume.
We’ll take this approach. To start, let’s define the physical regions that will be needed for the
electrostatic solution and give them names that suggest their functions. Click Edit/Edit region
names to bring up the dialog of Fig. 55. Replace the default region names with the ones shown
and click OK.

Click the command Edit/Edit part, select SolutionVolume (the only one available) and click
OK. The dialog on the left-hand side of Fig. 56 (left) shows the properties of the parametric
model. The part is a Box that fills the solution volume. The box length in z is Wz = 3.25 cm.
The part has been shifted a distance 1.375 cm so that it fills the region -0.25 cm ≤ z ≤ 3.00
cm. Note that the name of the associated region has been changed to MetalWall. Change the
default part name to MetalWall and then click OK to exit.

Next, we shall add a part that carves out the air volume. Choose Edit/Add part to open
the model parameter dialog. Under Part type, choose Box from the popup menu. Set the Part
name to Air and pick the Region Air. To leave metal walls of thickness 0.25 cm, the box should
have lengths Lx = Ly = 4.50 cm and Lz = 3.00 cm. We need to set Zshift = 1.50 cm to fill in
the region from 0.0 cm ≤ z ≤ 3.0 cm. The right-hand side of Fig. 56 shows the final state of
the dialog. When you exit, the boundary of the air region appears in the plot. Click View/Y
normal axis to check that the length and displacement of the box are correct. At this point, it’s
a good idea save the work. Click File/Save script and accept the name DetectorStudy.MIN.
The text file is in a format recognized as input to MetaMesh.

75



Figure 55: Dialog to define region names.

Figure 56: Edit part dialogs for the first (metal wall) and second (air volume) parts.
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We need to include a slot in the wall to house the detector. Click on Edit/Add part and fill
in the dialog with the following values

Type: Box

Part name: DetectorWell

Region: Air

Lx = 2.00

Ly = 3.50

Lz = 0.25

ZShift = -0.125

If everything is correct, the plot looks like Fig. 57. Go ahead and add the detector and the test
object using the following parameters

Type: Box

Part name: Detector

Region: Detector

Lx = 1.75

Ly = 3.25

Lz = 0.25

ZShift = -0.125

Type: Sphere

Part name: Object

Region: Object

Radius = 0.375

ZShift = 0.625

The spherical object is centered at x = y = 0.0 cm with center 0.625 cm from the surface of
the detector.

Viewing the state of the assembly requires some effort and experience. The surfaces of
selected parts are plotted using OpenGL. When an encompassing part (like the metal wall) is
included, it obscures internal parts. The following options are useful to display internal parts:

Turn off the visibility of encompassing parts.

Use a wireframe display for the encompassing part.

Assign clipping planes to the part display.

The Geometer instruction manual gives a complete description of plot controls. To illustrate
the current state of the setup, Fig. 58 shows a perspective view of the detector and object
regions with the air region shown as a wireframe.

We need only define the drive electrode to complete the assembly. This part is an extrusion,
a shape that extends a given distance along one direction with an arbitrary shape in the plane
normal to that direction. In comparison, a turning is an arbitrary shape rotated about an axis
of symmetry. In both cases, the shape is defined by a set of connected line and arc vectors.
Extrusions and turnings are highly useful and versatile models that merit their own discussion.
We’ll cover the topic in the next chapter.
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Figure 57: State of the assembly with the metal wall, air volume and detector slot.

Figure 58: Perspective view of the assembly by regions with the air region shown as a wireframe.
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14 3D electrostatic application: extrusions

In this chapter we’ll finish building the geometry of the capacitive detector and then generate
a mesh. The remaining part is the drive electrode, an extrusion. Extrusions are the type of
objects that you fabricate with a milling machine. They have arbitrary cross-section shapes
that extend a specified distance along one direction.

A set of connected line and arc vectors defines the cross section of an extrusion. We call
the set an outline. We already encountered outlines when discussing the 2D Mesh program
in Chap. 3. The outlines in Geometer and MetaMesh have formats identical to those in
Mesh – in fact, you can interchange them between the programs. One way to add an outline
in Geometer is to construct it in the Mesh Drawing Editor (a full-featured CAD program)
and then copy-and-paste the vectors. Geometer also has a built-in Outline Editor. It has
many of the features of the Drawing Editor, but is designed for work on one outline at a time.
In this article, we’ll concentrate on building outlines within Geometer.

First, a review of some concepts. Outlines are data sets available within Geometer that
may (or may not) be used to define the cross section of one or more extrusions or turnings. In
other words, outlines in the program exist independently of specific parts13. There are three
ways to enter outlines in Geometer to make them available for part definitions:

Copy-and-paste them from a Mesh script (New outline Text command).

Load a MetaMesh input script (Load script command). The outlines of extrusions and
turnings are stored and made available to construct additional parts.

Draw them in the Outline Editor (New outline Graphics command).

We’ll concentrate on the third method. For reference, Fig. 59 shows the dimensions of the drive-
electrode cross section. Although the following discussion refers to menu commands, there are
entries in the toolbar for most of them.

Run Geometer and click File/Load script. Choose CapDetector.MIN, the file that contains
the work from the previous chapter (the metal box and detector). Click Outline to open the
Outline Editor. Choose New outline (Graphics) to open the dialog of Fig. 60. Supply the name
DriveElectrode. The extrusion extends in the y direction in the assembly, so for convenience
we will create cross-section vectors in the z-x plane. Check the ExtY radio button. For the
View limits, enter the extreme dimensions of the outline as shown. Note that in a right-handed
coordinate system normal to y, the z axis corresponds to the horizontal direction and the x axis
to the vertical. When you click OK, Geometer opens the drawing editor with a view large
enough to encompass the outline (Fig. 61).

We’ll enter the shape of Fig. 59 as a set of lines and then add the two fillets. Outline vectors
must connect exactly, so it’s essential to use snap mode. By default, the program is set to
Grid snap. There is an invisible grid of snap points beneath the displayed grid. The status line
shows that the current snap grid distances are 0.1. We need to change the intervals so they
are appropriate to the dimensions of Fig. 59. Click Draw/Grid control. In the dialog, uncheck
Automatic intervals, set XGrid and YGrid equal to 0.25 and click OK.

13Geometer can store up to 80 outlines, each with up to 50 line and arc vectors.
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Figure 59: Geometry of the drive electrode cross section.

Figure 60: Dialog to start a new outline.

80



Figure 61: Initial appearance of the Outline Editor.

To make a line, pick Draw/Insert line. Move the cursor to the correct start position and
click the left button. Then move to the end position and click the left button again. You can
continue making lines by clicking start and end points. When you are finished, click the right
button to exit line entry mode. Figure 62 shows the rough outline. We’ll add fillets of radius
0.125 to finish the work. Click Draw/Fillet/chamfer width and enter the value 0.125 in the
dialog. Then choose Draw/Fillet. Move the mouse cursor over one of the lines and click the left
button to highlight the vector. Then move over the intersecting line and left-click. Geometer

completes the fillet, modifying old vectors, adding new ones and reordering the set.
The shape is now complete. Click Save/Exit, choose Save outline and exit. There is now

one outline available to define parts in Geometer. Currently, the outline exists only in the
program memory and will be lost unless you add it to a part in the MetaMesh script. It’s a
good idea to save the outline as a file that you can import into other Geometer sessions. In
the main Outline menu, click Save outline and choose an appropriate name and location. The
file is in text format and can be inspected or modified with an editor. Here is the content:

* ExtY

L 0.0000E+00 -1.7500E+00 0.0000E+00 1.7500E+00

L 0.0000E+00 1.7500E+00 -8.7500E-01 1.7500E+00

A -8.7500E-01 1.7500E+00 -1.0000E+00 1.6250E+00 -8.7500E-01 1.6250E+00

L -1.0000E+00 1.6250E+00 -1.0000E+00 1.5000E+00

L -1.0000E+00 1.5000E+00 -2.0000E+00 -1.5000E+00

L -2.0000E+00 -1.5000E+00 -2.0000E+00 -1.6250E+00

A -2.0000E+00 -1.6250E+00 -1.8750E+00 -1.7500E+00 -1.8750E+00 -1.6250E+00

L -1.8750E+00 -1.7500E+00 0.0000E+00 -1.7500E+00

END
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Figure 62: Rough outline before adding fillets.

Exit the Outline Editor. To conclude, we’ll add the final part incorporating the outline.
Pick Edit/Add part. In the dialog (Fig. 63), set the Type to Extrusion. Note that the Outline
popup menu at the upper-right becomes active. There is only one choice (DriveElectrode).
Highlight it and press Enter. The extrusion axis radio buttons beneath change to ExtY. For
the model, there is only one fabrication parameter, the Height. Set it to 4.0. Finally, the top
of the electrode that we drew at z = 0.00 cm for convenience should coincide with the top
boundary of the solution volume (z = 3.00 cm). Accordingly, set Zshift = 3.00 cm. When all
values have been set to correspond to those of Fig. 63, click OK. After inspecting plots to check
validity, save your work as the MetaMesh input file CapDetector.MIN.

Run MetaMesh and load the file you just created. To start, let’s take a look at it. Choose
File/Edit MIN file to display the contents. The top section lists the properties of the foundation
mesh, the basic elements to construct the geometry. Geometer has made default choices for the
element sizes. We’ll change them so that elements are matched to objects in the assembly. By
matched, I mean that the initial boundaries between elements are coincident with the boundaries
of many of the objects. Change the foundation-mesh specifications to:

XMesh

-2.500 2.500 0.0625

End

YMesh

-2.500 2.500 0.0625

End

ZMesh

-0.250 3.000 0.0625

End
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Figure 63: Dialog to define properties of the drive electrode part.

Figure 64: Comparison of meshes without and with region surface fitting.
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Save the file and exit the editor. Process the mesh, go to the 2D plot window and choose
a plot normal to the y axis. The result looks like the left-hand side of Fig. 64. The metal
wall and detector are well represented because of our judicious choice of element sizes. On
the other hand, the drive electrode and object have a stair-step shape. To get accurate field
interpolations near the surface, we need to tell MetaMesh to apply conformal fitting (i.e.,
shift elements near the surface from boxes to generalized hexahedrons with facets that lie on
the object boundaries).

Open the MIN file in the text editor again and add Surface commands for the Drive and
Object parts as shown in Table 3. The command

Surface Region Air

instructs the code to identify all elements of the part that share facets with the Air region and
to change their shape so that they conform to the model surface. Save the file, exit the editor,
reload the MIN file and process it. The right-hand side of Fig. 64 shows the improved result.
Click File/Save mesh to create CapDetector.MDF.

The task of geometry definition is complete. Modifications to an assembly are generally
much easier than the initial creation. You can reload the MIN file into Geometer and quickly
change the shape, position and orientation of parts. You could also edit the MIN file directly
to move parts around. We’ll make use of this feature to determine the variation of mutual
capacitance between the drive and detector electrodes as the position of the object changes. In
the next chapter, we’ll discuss the finite-element solution and useful analysis techniques.
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Table 3: Drive and Object part specifications in CapDetector.MIN

PART

Region: Drive

Name: Drive

Type: Extrusion Y

L 0.0000E+00 1.7500E+00 -8.7500E-01 1.7500E+00

A -8.7500E-01 1.7500E+00 -1.0000E+00 1.6250E+00 -8.7500E-01 1.6250E+00

L -1.0000E+00 1.6250E+00 -1.0000E+00 1.5000E+00

L -1.0000E+00 1.5000E+00 -2.0000E+00 -1.5000E+00

L -2.0000E+00 -1.5000E+00 -2.0000E+00 -1.6250E+00

A -2.0000E+00 -1.6250E+00 -1.8750E+00 -1.7500E+00 -1.8750E+00 -1.6250E+00

L -1.8750E+00 -1.7500E+00 0.0000E+00 -1.7500E+00

L 0.0000E+00 -1.7500E+00 0.0000E+00 1.7500E+00

End

Fab: 4.00000E+00

Shift: 0.00000E+00 0.00000E+00 3.00000E+00

Surface Region Air

END

PART

Region: Object

Name: Object

Type: Sphere

Fab: 3.75000E-01

Shift: 0.00000E+00 0.00000E+00 6.25000E-01

Surface Region Air

END
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15 3D electrostatic application: mutual capacitance

In this chapter, we’ll conclude the application example by calculating the electric field and
discussing two useful techniques:

Determining mutual capacitances in a system with multiple electrodes.

Setting up HiPhi solutions for automatic operation in the background.

RunHiPhi, click Setup and load CapDetector.MDF. We discussed the Setup dialog in Chap. 12.
Its function is to create the HiPhi input script, CapDetector.HIN, that controls the field
calculation. Here, we’ll concentrate on the contents of the file (Fig. 65). The values at the
top are control parameters (mostly defaults). The DUnit command states that the coordinates
in the MetaMesh file are given in cm. The remaining commands specify the identity and
physical properties of regions. The value of the drive voltage, 1.0 V, is a convenient choice
for capacitance calculations. Note that there are two entries for the detected Object (Region
5 ), one of which is commented out. To begin, we will calculate the field without the object,
equivalent to setting ǫr = 1.0. Click Run in HiPhi and pick CapDetector.HIN to generate the
solution file CapDetector.HOU.

Run PhiView and load the solution file. To begin, we’ll make a plot of |E| along x at
the position of the object (y = 0.000 cm, z = 0.625 cm) to identify the region of linear field
variation. Click Slice plots and choose Slice normal to y. Click Plot control/Plot style and set
the style to Element. Click Plot control/Plot quantity and choose |E|. The result is the top
plot of Fig. 66. Make sure Analysis/Scan plot quantity is set to Ez. Choose the command
Analysis/Line scan. Although you could specify the endpoints of the scan with the mouse, in
this case we want to be sure the line is at the horizontal position of the object center. Press
the F1 key to type values for the start position: z = 0.625 cm, x = −2.25 cm. Click OK and
press F1 again to type the end position: z = 0.625 cm, x = 2.25 cm. PhiView calculates
values and displays the graph shown at the bottom of Fig. 66. The region of approximately
linear variation covers the range -1.25 cm ≤ x ≤ 1.25 cm.

We will proceed with the calculation of mutual capacitance between the drive and detector
electrodes, advancing to a higher level of automatic analysis at each stage. For the discussions,
the three electrodes in the solution have been numbered in Fig. 66. We’ll start with single
operations that you control in the interactive environment of PhiView, appropriate for one or
a few calculations.

The mutual capacitance between electrodes 1 and 2 is given by C12 = Q2/(V1 − V2). The
charge induced on the detector is given by the surface integral:

Q2 =
∫ ∫

dS2 ǫrǫ0Enorm, (9)

where Enorm is the electric field normal to the surface and ǫr is the relative dielectric constant
of the medium surrounding the detector. (In this case, ǫr = 1.0.) The PhiView configuration
file phiview dielectric.cfg contains this definition:

SURFACE

Charge = &Ex $Epsi0 * &Q[2] *;&Ey $Epsi0 * &Q[2] *;&Ez $Epsi0 * &Q[2] *

END
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Figure 65: File CapDetector.HIN viewed in ConText.

Here, &Ex is a calculated component of electric field and &Q[2] is the relative dielectric constant.
PhiView takes automatic surface integrals over regions by evaluating the quantities of Eq. 9
just outside the facets of the region boundary. The result is the quantity Q2 in coulombs.
Because we picked an applied voltage of 1.0 V, the result can also be interpreted directly as the
mutual capacitance.

Return to the main PhiView menu and click Analysis/Surface integral to bring up the
dialog of Fig. 67. Because PhiView can take integrals over the combined surface of multiple
regions, we need to specify which regions are inside the surface and which ones are outside. In
this case, the detector is inside and all others are outside as shown. When you click OK, the
program prompts you to create a file CapDetector.DAT to record the results. This is a useful
feature of numerical work; otherwise, it would be necessary to copy the results from the screen.

To see the results, click File/Close data file and then File/Edit data file. Here is the entry:

Region status

RegNo Status Name

===================================0

1 External METALWALL

2 External AIR

3 External DRIVE

4 Internal DETECTOR

5 External OBJECT

Surface area of region set (m2): 8.187500E-04

Charge: -3.015445E-13
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Figure 66: Top: Variation of |E| in the plane y = 0.0 cm. Bottom: Scan of |E| along x at
y = 0.0 cm, z = 0.625 cm.
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Figure 67: Dialog to control the PhiView surface integral.

The mutual capacitance without the object is 0.30154 pF.
When possible, it’s a good idea to make an analytic estimate to make sure we haven’t made

a fundamental error in the numerical setup. The mutual capacitance is approximately

C12 =
ǫ0A2

D12

. (10)

The average distance between the drive and detector is D12 = 0.015 m. The area of the upper
detector surface is A2 = (0.0175)(0.0325) = 5.7×10−4 m2. Substituting in Eq. 10, the estimated
capacitance is C12 = 0.335 pF, close to the code result.

Open the file CapDetector.HIN with an editor and change the object properties to

* Region 5: OBJECT

* Epsi(5) = 1.0000E+00

Epsi(5) = 4.0000E+00

Recalculate the field with HiPhi and find the detector surface integral with PhiView. The
result with the object centered at x = 0.0 cm is C12 = 0.3162745 pF. The object raises the
mutual capacitance by about 4.9%.

To complete the calculation, we want to find C12 with the object at positions x = -0.50,
-0.25, 0.00, 0.25 and 0.50 cm. To analyze each solution, we must load CapDetector.HOU into
PhiView and call up the surface integral. Rather than perform the same operations every
time, we can define an automatic analysis sequence. In the PhiView main menu, click File
operations/Create script. Supply the file prefix CapDetector. The program opens the internal
editor with a template of available analysis script operations. Type in information so that the
script looks like this:

INPUT CapDetector.HOU

OUTPUT CapDetector.DAT Append

SURFACEINT 4 -1 -2 -3 -5

ENDFILE

Click Save to create the file Surface.SCR and exit the editor. The script specifies the following
operations
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Load the HiPhi solution CapDetector.HOU.

Write information to a data file CapDetector.DAT. The Append directive signals that
PhiView should add data to the file if it exists.

Perform a surface analysis. The numbers following the command indicate that that Region
4 (the detector) should be inside and all others outside.

To add a value of mutual capacitance to the output file, simply click File operations/Run script
in the main menu of PhiView and choose CapDetector.SCR.

A manual run to find C12 for an object position requires the following activities:

1. Edit CapDetector.MIN. To move the object to x = −0.5 cm, change the Shift command
in the object section to Shift: -0.500 0.000 0.0625.

2. Run MetaMesh, click File/Load MIN file and choose CapDetector.MIN. Then click
Process followed by File/Save mesh.

3. Run HiPhi, click Run/Start run and choose CapDetector.HIN.

4. Run PhiView and start the analysis script CapDetector.SCR.

There are many redundant operations. To start, let’s automate the second, third and fourth
activities with a Windows batch file. I’ll assume that you are running the programs from
FPController and that the Data folder is set to the working directory. In AMaze, click the
Create task button to bring up the dialog of Fig. 68. Fill in the Task prefix as CapDetector.
Under Action, click the arrow to activate the popup menu. In contains a list of the 3D programs
and common batch operations. PickMetaMesh. Then, click on the cell under File in and click
the Select file button to show a list of MetaMesh input files available in the working directory.
Choose CapDetector.MIN. The output file of the activity is always CapDetector.MDF, so we
do not need to specify a value. Go to the next Action cell and pick HiPhi. For File in, choose
CapDetector.HIN. Set PhiView for the next action with CapDetector.SCR as the input file.
When you click OK, AMaze saves the setup as CapDetector.BAT, a standard batch file. Here
is the content:

START /B /WAIT C:\fieldp_pro\amaze\metamesh.exe C:\...\CapDetector

START /B /WAIT C:\fieldp_pro\amaze\hiphi.exe C:\...\CapDetector

START /B /WAIT C:\fieldp_pro\amaze\phiview.exe C:\...\CapDetector

START /B /WAIT C:\fieldp_pro\amaze\NOTIFY.EXE

IF EXIST CapDetector.ACTIVE ERASE CapDetector.ACTIVE

The batch file runs each program in the background with the specified input file, waiting until
an operation is complete before moving to the next one. The fourth line calls for an audio
signal to mark the end of the sequence. The fifth line deletes a temporary file used to keep
track of which tasks are active.
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Figure 68: FPController dialog to create a task.

At this stage, we have reduced the work to two user operations for each position of the
object:

Edit the Shift operation in CapDetector.MDF to change the object position along x.

In FPController, click the Run task button and choose CapDetector.BAT from the list
of available tasks. In response, the mesh is regenerated, the field solution is updated and
the surface analysis result is added to the data file CapDetector.DAT.

The end result is a list of C12 values at the different positions.
To conclude, we can eliminate the first task to automate the entire process. Here. we will

specify the changing object position within the calling batch file. We need to make two changes.
First, the Part section for the object in the MetaMesh input file should be modified to:

PART

Region: Object

Name: Object

Type: Sphere

Fab: 3.75000E-01

Shift: %1 0.00000E+00 6.25000E-01

Surface Region Air

END

Note that the x position in the Shift operation is represented by a variable. The value to
be used is given as the first command line parameter when calling MetaMesh. The file
CapDetector.BAT should be edited to look like this:
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Figure 69: Variation of C12 with the displacement of the dielectric object. The dashed line
shows the value with no object.

START /B /WAIT C:\fieldp_pro\amaze\metamesh.exe C:\...\CapDetector -0.50

START /B /WAIT C:\fieldp_pro\amaze\hiphi.exe C:\...\CapDetector

START /B /WAIT C:\fieldp_pro\amaze\phiview.exe C:\...\CapDetector

START /B /WAIT C:\fieldp_pro\amaze\metamesh.exe C:\...\CapDetector -0.25

START /B /WAIT C:\fieldp_pro\amaze\hiphi.exe C:\...\CapDetector

START /B /WAIT C:\fieldp_pro\amaze\phiview.exe C:\...\CapDetector

...

START /B /WAIT C:\fieldp_pro\amaze\metamesh.exe C:\...\CapDetector 0.50

START /B /WAIT C:\fieldp_pro\amaze\hiphi.exe C:\...\CapDetector

START /B /WAIT C:\fieldp_pro\amaze\phiview.exe C:\...\CapDetector

START /B /WAIT C:\fieldp_pro\amaze\NOTIFY.EXE

IF EXIST CapDetector.ACTIVE ERASE CapDetector.ACTIVE

The task generates the entire data set. Figure 69 shows a plot of the results. The dashed line is
the mutual capacitance with no object. The relative variation of C12 with position of the object
is about ±1.1%. The conclusions are that the application would require a sensitive detector
and that small variations in the size or properties of the dielectric object could overwhelm the
measurement.

An alternate way to find mutual capacitance is the energy method described in the HiPhi

manual. In this case, it is necessary to make three solutions for each configuration with different
combinations of electrode voltages. The capacitance values C12, C10 and C20 are determined
by comparing values of the total field energy. The procedure requires 15 solutions – here, the
automation features of HiPhi provide a significant benefit. In the calculations, the electrode
voltages as well as the object position are set by command line parameters.
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16 3D magnetic fields: defining coil currents

In this chapter, we’ll start the final topic of the book: 3D magnetic field solutions. The previous
chapters on electrostatics covered many common techniques for 3D solutions, particularly mesh
generation. Here, we’ll focus on the differences between Magnum and HiPhi calculations that
arise from the unique characteristics of magnetic fields:

The vector driving terms for magnetic solutions require more intensive data input.

Two completely different solution techniques apply, depending on whether ferromagnetic
materials are present.

Magnetic materials have more complex properties.

The phrase driving terms refers to the information we supply to a finite-element program to
create fields. For example, the drivers of electrostatic solutions are differences in the electrostatic
potential between electrodes and space-charge. In other words, we apply a fixed potential to
the nodes of a region of the solution volume or define space-charge density ρ over elements
of a region. In both cases, the specified quantities are scalar. For either drive type, we must
employ the finite-element technique to determine the self-consistent charge density on electrode
surfaces.

There are two possible drives in magnetic-field solutions:

Currents in coils.

Material currents in permanent magnets.

Coil currents constitute a unique challenge in 3D solutions. To review, we saw in Chap. 6
that it was easy to define currents in 2D solutions. In cylindrical geometries, current flowed
only in θ and in planar solutions the current flow was along z. In other words, current was a
scalar quantity assigned to regions that represented the cross sections of coils. In 3D solutions,
the drive current is a vector quantity that can flow anywhere. If you think about devices like
electric motors, it’s clear that drive coils may be highly complex assemblies. The implication
is that the definition of drive coils is a significant task in 3D solutions, on a par with mesh
generation. In consequence, the Magnum package contains a utility MagWinder specifically
for coil windings.

Next, consider options for magnetic solution procedures. Suppose we have a set of drive coils
in a system with no ferromagnetic materials. (In other words, all objects in the solution space
have relative magnetic permeability µ0 = 1.0.) In this case, there are no unknown currents.
The field at any point can be determined by a Biot-Savart integral14 over the drive current
elements. It is not necessary to build a conformal mesh of regions or even to apply the finite-
element method. On the other hand, a mesh and a finite-element solution are essential when the
solution space contains permanent magnets or magnetic materials (µr 6= 1.0). Here, material
currents that are not known a priori have a significant effect on the fields. The implication is
that a 3D magnetic field program should be capable of two different types of calculations.

14Section 9.1 of the book Finite-element Methods for Electromagnetics reviews the Biot-Savart law.
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Figure 70: Demonstration coil assembly displayed in the MagWinder working environment.

Finally, let’s address the nature of materials. In electrostatic solutions, dielectrics have a
moderate influence on the total fields and preserve their properties over the practical range of
field intensity. An isotropic dielectric can be characterized by a single value of relative dielectric
constant ǫr (usually in the range < 100) that changes little all the way to breakdown. In
contrast, values of the relative magnetic permeability for iron and other ferromagnetic materials
may exceed 10,000 at low field levels. In other words, these materials sustain large surface
currents and have a strong effect on the total field. The challenge follows from the fact that
the materials may become saturated at field levels encountered in practical systems. Here, the
value of µr depends on the local level of magnetic flux density. A magnetic field program must
be capable of handling nonlinear solutions.

In the coming articles, we’ll work through two application examples. The first demonstrates
the free-space solution type (i.e, no magnetic materials). We’ll investigate the fields generated
by a heater coil at the emission surface of a thermionic cathode. The second application, the
holding force of a latching solenoid, demonstrates a full finite-element solution. It involves
drive coils, permanent magnets and high-permeability steel. Both applications require work
with MagWinder. In the remainder of this chapter, we’ll get familiar with the program.

Figure 70 shows the coil assembly we will construct, part of a transport system for a high-
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Figure 71: Dialog to start a new drive coil assembly.

current electron beam. The full assembly is an array of solenoid lenses with alternating polarity
to focus the beam through a 90o bend. The bend is centered at the origin of the y-z plane at
x = 0.0”. The bend radius from the origin to the solenoid centers is 20.0”. We will build three
of the coils with total amp-turns I = 20 kA, -20 kA and -20 kA. We’ll start with the middle
coil. Click the MagWinder button in FPController 15. Click File/New coil assembly. In the
dialog of Fig. 71, supply the name ReversingSolenoids and set the length units to inches.

Some explanation is required to understand the quantity Default element width. For the
Biot-Savart integral, wires are divided into a large number of short elements. In the present
setup, we will divide each current loop in the solenoid into 20 azimuthal pieces. Although
the elements are plotted as thin wire segments, they are not treated that way in Magnum.
Infinitely-thin wires would give rise to discontinuous, diverging values for the applied field.
Instead, each element is treated as a cylinder of uniform current density with a diameter equal
to its length. Therefore, the wires of Fig. 70 act more like current density layers than a set of
discrete filaments.

Next we need to add coils to the assembly. We’ll start with the middle coil. The central
field points along z. The center is displaced 20.0” along y. Click Build/New coil to display the
dialog of Fig. 72. Fill out the values as shown. Then click OK. A coil is data structure that
may contain one or more physical parts. In order to see a plot, we need to add a part. Click
Build/Add part to open the dialog of Fig. 73. MagWinder includes several predefined models
– the solenoid is one of the most useful. Note that the active fields and labels change when you
choose the model. The values shown in Fig. 73 designate that the solenoid has inner radius 2.5”,
outer radius 3.0” and a length 3.0”. The radial thickness is represented by two layers. There
are 20 sets of circular coils along the axial direction for a total of 40. Each circle is divided into
20 parts. Therefore, MagWinder will create 800 current elements to represent the solenoid.
Note that the positions and rotations of parts are taken relative to the encompassing coil. We’ll
leave the quantities at the bottom of the dialog at their default values. For the other solenoids,
we will apply shifts and rotations to the encompassing coils. Click OK when you are finished
entering values. Figure 74 shows the MagWinder display of the first coil16.

15The MagWinder button becomes active when Magnum is installed.
16The three coils of the assembly each contain one part (a solenoid). An example of a coil with multiple parts

is a solenoid with wire leads.
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Figure 72: Dialog to add a coil to the assembly.

Figure 73: Dialog to add a solenoid part to the present coil.
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Figure 74: MagWinder display with one coil added.
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Figure 75: Dialog to add a second coil to the assembly.

The second coil is identical to first except that it is rotated -15o about the x axis at the
origin of the y-z plane and has a current of -20 kA. Click File/New coil assembly. Fill in the
dialog with the values shown in Fig. 75. For reference, the displacement in z is 20.0 sin(−15o)
and in y is 20.0 cos(−15o). A rotation of +15o about the x axis aligns the solenoid with the
beam axis. Rather than redefine the solenoid part in an Add part dialog, we will copy and
paste the part from the first coil. Click Build/Set current coil and pick the first coil. Then click
Build/Copy part and pick the solenoid. Use Build/Set current coil to return to the second coil
and click Build/Paste part. When you click OK, the plot shows both coils. The total number
of elements is 1600. Use a similar procedure to create a third coil rotated +15o about the
y-zorigin.

Assuming the assembly looks like Fig. 1, we need to save the work. There are two types of
output files:

The coil-definition-file (CDF) is a symbolic representation of the coil geometry. This file
may be reloaded and modified.

The winding file (WND) is a list of current elements, input for Magnum. A WND file
can always be regenerated from the CDF file, but the CDF file cannot be inferred from
information in the WND file.

Both files are in text format. Click File/Save coil file to make the file ReversingSolenoids.CDF.
You can view it with the internal program editor. By now, the conventions of the script formats
should be familiar. It it easy to recognize the values you entered via the interactive dialogs.
Finally, click File/Save element file to generate ReversingSolenoids.WND. Again, this well-
formatted file can be inspected with an editor. Here is an excerpt:
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Magnum Current Element File (Field Precision, Albuquerque NM)

NCoil: 3

NElem: 2400

Coil I

No (A)

===============

1 2.0000E+04

2 -2.0000E+04

3 -2.0000E+04

Coil XStart YStart ZStart XEnd YEnd ZEnd I

No (m) (m) (m) (m) (m) (m) (A)

=======================================================================================

1 6.6675E-02 5.0800E-01 -3.6195E-02 6.3412E-02 5.2860E-01 -3.6195E-02 5.0000E+02

1 6.3412E-02 5.2860E-01 -3.6195E-02 5.3941E-02 5.4719E-01 -3.6195E-02 5.0000E+02

1 5.3941E-02 5.4719E-01 -3.6195E-02 3.9191E-02 5.6194E-01 -3.6195E-02 5.0000E+02

...

There are 2400 element data lines. Dimensions have been converted to meters for input to
Magnum. There are 40 current loops per solenoid, so each loop carries 20000/40 = 500 A.

In the next chapter, we’ll concentrate on the free-space mode of Magnum. We’ll calculate
the field for this assembly, and then follow the application example for the cathode heater.
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17 3D magnetic fields: free-space calculations

In this chapter we’ll continue the topic of 3D magnetic fields by discussing Magnum operation
in the FreeSpace mode. The mode applies to calculations in an infinite space without magnetic
materials. In other words, all objects in the solution space have µr = 1.0. To start, let’s
determine the field generated by the set of three solenoid coils that we built in the previous
chapter. The end result of that work was the file ReversingSolenoid.WND that contained a
set of current elements to approximate the coil set.

The first step in the field solution is to create a mesh. Wait a minute – why do we need a
mesh? The previous chapter emphasized that free space calculations used Biot-Savart integrals
and had nothing to do with finite-element methods. Here’s the reason. An integral over the
full set of current elements involves considerable computational work and gives the magnetic
flux density [Bx, By, Bz] at a single point in space. With this approach, it could take several
minutes to create a high-resolution plot of field quantities in a plane. Particle tracking, which
involves field calculations at thousands of points along the trajectory, would be impossible. It
is much more efficient to apply integrals to calculate field values at a given set of points in
space (i.e. a mesh), and then to use interpolations to find field values at intervening points.
In other words, we do the Biot-Savart integrals once to calculate B values at mesh points, and
then we can use the values to make any plots and trajectory calculations we want. Another
advantage of recording values on a mesh is that all the Magnum plotting and interpolation
routines developed for finite-element calculations can be applied directly.

Fortunately, it takes only a minute or two to make a mesh for a Magnum free-space
calculation. All we need is an appropriate set of interpolation points. It is not necessary to
make a detailed conformal mesh to represent physical objects17. Run Geometer and choose
File/New script. We’ll create an interpolation mesh that encompasses the three coils18. Supply
the name ReversingSolenoid and the following dimensions for the solution volume: -5.0 ≤ x ≤
5.0, 14.0 ≤ y ≤ 24.0, -10.0 ≤ z ≤ 10.0. When you click OK, Geometer sets up the mesh
with one default region and part that covers the full volume. Go to the Foundation menu and
change the element sizes along each axis to 0.10. Then, save the mesh. Run MetaMesh and
process ReversingSolenoid.MIN to create ReversingSolenoid.MDF.

Run Magnum, click Setup and choose ReversingSolenoid.MDF. Figure 76 shows the setup
dialog with appropriate settings. Note that the dialog fields associated with finite-element
solutions (including the material properties at the bottom) become inactive when you click the
Free space radio button. Save the information as ReversingSolenoid.GIN. We now have the
three files necessary for the calculation:

17There is considerable flexibility in creating meshes for free-space calculations. You could employ variable
resolution for high accuracy in a region. You could even use a conformal mesh if you wanted to represent object
boundaries in plots.

18It is important to realize that the size and location of the interpolation mesh has no effect on the field
values. You could create a small mesh if you wanted detailed field values within one of the coils.
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Figure 76: Magnum input dialog for a free-space calculation.

ReversingSolenoid.CDF: current elements for the Biot-Savart integral.

ReversingSolenoid.MDF: interpolation points to calculate [Bx, By, Bz].

ReversingSolenoid.GIN: a short control script to let Magnum know what it’s supposed
to do.

In the main Magnum menu, click Run to create the solution file ReversingSolenoid.GOU.
To analyze the results, run MagView, click File/Load solution file and choose the solution.

Go to Slice plots and click Slice normal to X. Zoom in to the create the plot of Fig. 77, showing
the distribution of |B| in the plane x = 0.0”. MagView has plot and analysis capabilities
similar to those of PhiView. For example, we can make a quick check of the magnitude and
direction of B with the vector probe. To activate it, click Vector tools/Vector probe and then
move the mouse cursor into the plot region. The probe, shown in Fig. 77, points along B.
Values of the cursor position and |B| are listed in the status bar at the bottom.

To conclude this chapter, we’ll run through an application example with prepared input
files (CathodeHeater.CDF, CathodeHeater.MIN and CathodeHeater.GIN). The goal is to find
the magnetic flux density on the surface of a thermionic cathode generated by its heater coil.
Figure 78 shows the heater geometry, counter-wound helices with connections and leads. Arrows
have been added to show the direction of current. The drive coils are defined in the file
CathodeHeater.CDF, listed in Table 4.
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Figure 77: Reversing solenoid example, plot of |B| in the plane x = 0.0”, showing the vector
probe.

Figure 78: Geometry of the heater coil, arrows added to show the direction of the current.
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Table 4: File CathodeHeater.CDF

GLOBAL

DUnit = 39.37

Ds = 0.010

END

COIL 1

Current = 1.0

* Outer helical coil, half turn extra

Part

Type = Helix

Fab = 0.095 0.060 0.310 0.020

End

* Connection near surface, inner to outer

Part

Type = Line

Fab = 0.070 0.000 0.060 0.095 0.000 0.060

End

* Input lead

Part

Type = Line

Fab = 0.070 0.000 0.650 0.070 0.000 0.300

End

* Output lead

Part

Type = Line

Fab = -0.095 0.000 0.310 -0.095 0.000 0.650

End

END

* Inner helical coil (input, current in -z direction)

COIL 2

Current = -1.0

Part

Type = Helix

Fab = 0.070 0.060 0.300 0.020

End

END

ENDFILE
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Figure 79: Heater coil, sperm plot option to show the direction of current flow in the elements.

The assembly contains two coils. The first coil, with current 1.0 A, consists of four parts.
Three of the parts are straight wires, defined by their start and end points in the assembly
space: the input and output leads and the connection between the helical coils. Current always
flows from start to end. The Helix model requires four fabrication parameters:

Radius (0.095")

ZStart (0.060")

ZEnd (0.310")

Pitch, or distance between the turns (0.020")

The number of turns equals |Zend − Zstart|/P itch. The cathode surface is at z = 0.00”, so the
distance to the closest part of the coil is 0.060”. Helices always have positive rotation proceeding
from Zstart to Zend. To make counter-wound coils, the return helix is contained in its own coil
structure with current -1.0 A. For physically-correct results, it’s important that different parts
connect to make a continuous coil, and that currents flow in the correct direction. To check
validity, you can use the Plot/Sperm plot option in either the 2D or 3D views. Figure 79 shows
the result. The elements swim in the direction of the current. In particular, the helix currents
are correct with respect to the leads and to each other. Move the example files to a working
directory, set the Data folder in Amaze and run MagWinder. Load the coil-definition file
and click File/Save element file to create CathodeHeater.WND.

The file CathodeHeater.MIN defines a network of points in space where values of B are
calculated from the current elements and recorded. It has the content:
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GLOBAL

RegName 1 Air

RegName 2 Assembly

XMesh

-0.150 0.150 0.005

End

YMesh

-0.150 0.150 0.005

End

ZMesh

-0.100 0.400 0.005

End

END

PART

Type Box

Name SolutionVolume

Region Air

Fab 0.3 0.3 0.800

END

PART

Type Cylinder

Name CathodeOutline

Region Assembly

Fab 0.125 0.400

Shift 0.000 0.000 0.200

Surface Region Air Edge 0.95

END

ENDFILE

The commands in the Global section create a solution volume that encloses the heater coil and
cathode surface. The solution volume part fills the entire solution space. Note that there is
an additional region that represents the cylindrical cathode volume. The conformal region has
no effect on the calculation of applied fields – it is added to include a reference outline of the
cathode in plots. Run MetaMesh, process the mesh and save the file CathodeHeater.MDF.

The file to control the Magnum calculation, CathodeHeater.GIN, is quite simple:

SOLTYPE Free

MESH CathodeHeater

SOURCE CathodeHeater

DUNIT 39.37

ENDFILE

The actions are to load CathodeHeater.WND and CathodeHeater.MDF and to interpret the
dimensions in inches. Run Magnum and generate the solution, then run MagView to analyze
the results. Figure 80 shows a filled-contour plot of |B| in the plane y = 0.0”. As expected,
the magnetic flux is concentrated between the helices. The plot illustrates two special features
of MagView slice plots:
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Figure 80: Heater coil, variation of |B| in the plane y = 0.0”. The slice plot shows the
intersection points of the helical coils and arrows to designate the direction of B.

Figure 81: Heater coil, variation of |B| at the cathode surface.
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The drive coils may be superimposed on field plots. The command File/Load coils was
used to load CathodeHeater.WND. The intersections of the coil with the plane y = 0.0”
are shown as cyan and violet rectangles in the plot.

Arrows showing the direction of B were added with the command Vector tools/Vector
arrow plot.

The cathode boundary is marked by yellow lines. The field at the surface approximates a dipole
variation. Finally, Fig. 81 shows a plot of |B| at the cathode surface. The field from the heater
configuration approaches 2 Gauss, about 8 times higher than the earth’s field. It would be
worthwhile to check alternate heater geometries.
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Figure 82: Latching solenoid assembly – drawing and three-dimensional mesh. The parts are
displayed in the space y ≥ 0.0 mm and the coil in y ≤ 0.0 mm.

18 3D magnetic fields: iron and permanent magnets

For the final calculation of the course, we’ll characterize the forces in a latching solenoid.
This solution exercises the full finite-element capabilities of Magnum and provides an op-
portunity to use the force-calculation capabilities of MagView. In preparation, copy the files
Latching.CDF, Latching.MIN and Latching.GIN to a working directory and set the Data folder
of FPController. The three input files have the same functions as the ones we encountered
in the previous chapter.

Figure 82 shows a drawing of the assembly along with the mesh created by MetaMesh.
The neodymium-iron permanent magnets have magnetization directions pointing toward the
plunger. They provide a resting holding force to keep the plunger in contact with the steel
bobbin. Depending on the polarity of solenoid current, the coil may work in opposition to the
permanent magnet to unlatch the plunger or it may assist the permanent magnet to pull in the
plunger.
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Figure 83: Outline editor showing the outline for the plunger turning.

Run Geometer and load the file Latching.MIN. Check out the script content with the
internal editor. A variable-resolution foundation mesh is employed for accurate field calculations
at the gap between the bobbin and plunger. The solution includes five physical regions: air,
the steel of the case, the steel plunger and the upper and lower magnets. Notice the use of
labels and comments to document features of the calculation. Construction of the mesh is
straightforward. The Box model is used to represent the steel plates and the magnets, while
the bobbin is a Cylinder. The plunger is a Turning, a model we have not yet discussed. A
turning is an outline rotated about the z axis of the workbench space. Note the outline vectors
in the script following the Type command of the Plunger section.

To see the outline, exit the editor and click Outline. Geometer opens the window of
Fig. 83. In contrast to the convention for extrusions, the outline of a turning is defined in
cylindrical coordinates, (z, r)19. In the editor, you can modify vectors of the outline using
the CAD operations. The changes appear in the Geometer display when you return to the
main menu. Modifications are recorded if you save the MIN file under the same or a different
name. To check the variable mesh definitions, exit the outline editor and click Foundation. The
foundation mesh window shows 2D plots of the assembly along with the initial mesh divisions
(before fitting). Figure 84 is a zoomed view in a plane normal to the y axis. Note the region
of very fine elements (0.025 mm) along z near the gap between the bobbin and plunger. To
investigate the holding force of the solenoid, we need to perform surface integrals with very
small gaps.

19Vector coordinates of outlines for turnings must satisfy the condition r ≥ 0.0.
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Figure 84: Detailed view of the foundation mesh showing the fine division in z at the bobbin-
plunger gap.

Let’s proceed to the solution. Run Magwinder and load Latching.CDF with the content:

GLOBAL

DUnit: 1.0000E+03

Ds: 2.0000E+00

END

COIL

Name: Solenoid

Current: -1.0000E+03

Part

Name: Solenoid

Type: Solenoid

Fab: 6.0 10.0 27.0 2 20 20

Shift: 0.00 0.00 -9.50

End

END

ENDFILE

The coil definition file uses the Solenoid model to create 800 applied current elements with a
coil current of -1000 A-turn. The negative value gives a coil field inside the bobbin in the same
direction as the permanent magnet field. Click File/Save element file to create Latching.WND.

Run MetaMesh and process the MIN file to create Latching.MDF. To check the controls for
the finite-element solution, run Magnum, click File/Edit input files and choose Latching.GIN.
The file has the following content:
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SolType = STANDARD

Mesh = Latching

Source = Latching

DUnit = 1000.0

ResTarget = 5.00E-08

MaxCycle = 2000

* Region 1: AIR

Mu(1) = 1.0

* Region 2: STEEL

Mu(2) = 1000.0

* Region 3: PLUNGER

Mu(3) = 1000.0

* Region 4: MAGNETUP

PerMag(4) = 1.25 ( -1.0 0.0 0.0)

* Region 5: MAGNETDN

PerMag(4) = 1.25 ( 1.0 0.0 0.0)

EndFile

In contrast to the free-space solutions we discussed previously, the solution type is set to
Standard and physical characteristics are assigned to the regions. The quantities ResTarget
and MaxCycle control the iterative solution of the finite-element equations – default values are
usually appropriate. For magnetic-field solutions, material quantities are the relative magnetic
permeability and the parameters of permanent magnets. Because we do not expect saturation
effects at the device field levels, we assign the fixed value µr = 1000.0 to the case, bobbin
and plunger. The specification of a permanent magnet material includes the remanence field
Br = 1.25 tesla and a vector pointing along the direction of magnetization. The magnetization
of the top magnet points in the -x direction and the bottom magnet in the +x direction.

Run Magnum to create the output file Latching.GOU. Figure 85 shows the distribution of
|B| in the plane y = 0.0 mm with the plunger in contact with the bobbin. The combination
of flux from the two magnets produces an approximately uniform field at the contact point of
B0 = 1.61 tesla. Note that it is not necessary to surround the assembly with a large external
volume because the flux is well-contained in the magnetic circuit.

The goal of the calculation is to find the force on the plunger as a function of the gap width.
The force calculation is easy when the plunger is well-separated from the bobbin. Because
the plunger is surrounded by air (µr = 1.0) elements, we can apply a surface integral of the
Maxwell stress tensor over the plunger facets. The definition of the Maxwell tensor is contained
in the configuration file Magview Standard.CFG20. It is useful to take a moment to look at the
configuration file (usually contained in the Program folder defined in FPController). Open
the file with an editor. It contains definitions for plot quantities and numerical calculations.
This section applies to automatic surface integrals:

20The MagView default configuration file is sufficient for most code users. On the other hand, the program
has the flexibility to meet the needs of power users. You can set up custom configuration files with user-defined
quantities.
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Figure 85: Field distribution in the latched state in the plane y = 0.0 mm. Color-coding shows
|B| in tesla.

SURFACE

...

* Force components

FxSurf = &Bx 2 ^ &BMag 2 ^ 2.0 / - $IMu0 *;&Bx &By * $IMu0 *;&Bx &Bz * $IMu0 *

FySurf = &By &Bx * $IMu0 *;&By 2 ^ &BMag 2 ^ 2.0 / - $IMu0 *;&By &Bz * $IMu0 *

FzSurf = &Bz &Bx * $IMu0 *;&Bz &By * $IMu0 *;&Bz 2 ^ &BMag 2 ^ 2.0 / - $IMu0 *

...

END

The expressions give the force components determined from the Maxwell integral at a point.
Quantities like &Bx are calculated field quantities at the point, while quantities like IMu0 are
defined constants.

Run MagView and load the file Latching.GOU. To find the total force on the plunger, click
Analysis/Surface integrals in the main menu to bring up the dialog of Fig. 86. The internal
region is the Plunger and the single external region is Air. Click OK and save the results to
the file Latching.DAT. Here is the result for a gap width of 0.20 mm with zero coil current:

---------- Surface Integrals ----------

Region status

RegNo Status Name

===================================

1 External AIR

3 Internal PLUNGER

Surface area of region set (m2): 1.076727E-03

FxSurf: 1.103232E-04

FySurf: -1.477638E-03

FzSurf: -2.413384E+02

As an indication of accuracy, the force components Fx and Fy (theoretically zero) are smaller
than Fz by a factor exceeding 1/100,000. With a gap of 3.0 mm, the axial force with no coil
current is Fz = −1.111 N. The force increases to -7.427 N with a coil current of -1000 A-turns.
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Figure 86: Surface integral dialog. In this case, the integral is taken over all external facets of
the plunger in contact with air elements.

A quantity of particular interest is the holding force in the latched state (i.e., plunger
touching the bobbin with no coil current). In this case, a Maxwell stress tensor integral around
the plunger does not apply because the plunger and bobbin are effectively the same piece of
material. One option is to perform a series of calculations with an air gap of decreasing width
dg. The goal would be to fit the force variation with an interpolation function extrapolated
to dg = 0.0. Figure 87 shows results of such a calculation. A simple plot of Fz versus dg
would not be informative because the force varies by orders of magnitude. The strong variation
reflects the familiar experience of two magnets snapping together when they are close. A helpful
observation is that force scales as 1/d2g for gaps greater than 0.5 mm. Therefore, it is useful

to construct a log-log plot of 1/
√
Fz versus dg. The data of Fig. 87 indicate that the force

approaches a constant value at zero spacing. This calculation strategy requires considerable
accuracy and effort. It is necessary to include results for very small gap widths (dg = 0.05 mm)
to observe the inflection toward a constant value.

Fortunately, there is a simple way to determine the exact holding force from a knowledge of
the flux distribution at dg = 0.0 mm. Suppose we displace the plunger an infinitesimal distance
δx from the bobbin. The field in the air gap would remain confined to the cross section area
A of the steel parts with a value approximately equal to the zero gap field, B0. The change in
field energy in the magnet circuit is

δU =
B2

0

2µ0

A δx. (11)

Using the principle of virtual work, the holding force is

Fz = −δU

δx
= − B2

0

2µ0

A. (12)

With a plunger diameter of 10.0 mm, the area is A = 7.854× 10−5 m2. With B0 = 1.61 tesla,
the total predicted force is Fz = −80.935 N (plotted as a dashed red line in Fig. 87). The mass
equivalent is 8.25 kg.
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Figure 87: Plot of 1/
√
Fz as function of the gap between the plunger and the bobbin, where Fz

is the force on the plunger in newtons. Blue circles indicate results determined by a MagView

surface integral. The dashed red line indicates the theoretical value for zero gap.
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We’ve covered a lot of territory in this book. We’ve had a chance to get familiar with the
operation sequences and data organization of 2D and 3D programs and discovered many useful
analysis techniques. Hopefully, the material will help you get started on your own electric
and magnetic field applications. There’s still a lot to discover – EStat, PerMag, HiPhi and
Magnum have a wealth of capabilities that couldn’t be covered in a short introduction.

To conclude, I’ll list additional resources. First, let’s review materials included with the soft-
ware packages. There are individual PDF manuals for Mesh, EStat, PerMag, MetaMesh,
HiPhi and Magnum. They serve as comprehensive references through the extensive use of hy-
perlinks. The active table of contents is displayed if you activate the bookmark view in your PDF
reader. Each manual also has a index with active page links. All software packages include an
example library containing ready-to-run, annotated input files for a variety of applications. Be
sure to look at text files in the example directories with names like HIPHI EXAMPLE INDEX.TXT.
They contain a list of the examples along with a brief description of interesting features.

The following free resources are available on our Internet site:

Use this link to download a zip archive of input files for the examples discussed in this
book: https://www.fieldp.com/document/femfield examples.zip.

Finite-element Methods for Electromagnetics. A full-length text published in 1997
by CRC Press. It reviews the physics of electrostatics and magnetostatics and gives a
detailed description of the mechanics of EStat and PerMag. The book is an essential
reference if you want to check under the hood to see how finite-element programs work.
https://www.fieldp.com/femethods.html

Field Precision Technical library. This Internet page has downloadable copies of the
latest manuals for all Field Precision programs. In addition, there are many tutorials in
PDF format that review solution techniques for electric and magnetic field applications.
http://www.fieldp.com/library.html

Field Precision software tips. This blog includes almost 300 articles on finite-element
modeling of electromagnetic fields as well as tips on using Windows computers. The
best place to start is the index where articles are organized by related software packages.
http://fieldp.com/myblog/index-computational-techniques-by-program/
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