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Preface

This book evolved from the first term of a two-term course on the physics of charged particle
acceleration that I taught at the University of New Mexico and at Los Alamos National
Laboratory. The first term covered conventional accelerators in the single particle limit. The
second term covered collective effects in charged particle beams, including high current
transport and instabilities. The material was selected to make the course accessible to graduate
students in physics and electrical engineering with no previous background in accelerator theory.
Nonetheless, I sought to make the course relevant to accelerator researchers by including
complete derivations and essential formulas.
   The organization of the book reflects my outlook as an experimentalist. I followed a building
block approach, starting with basic material and adding new techniques and insights in a
programmed sequence. I included extensive review material in areas that would not be familiar
to the average student and in areas where my own understanding needed reinforcement. I tried to
make the derivations as simple as possible by making physical approximations at the beginning
of the derivation rather than at the end. Because the text was intended as an introduction to the
field of accelerators, I felt that it was important to preserve a close connection with the physical
basis of the derivations; therefore, I avoided treatments that required advanced methods of
mathematical analysis. Most of the illustrations in the book were generated numerically from a
library of demonstration microcomputer programs that I developed for the courses. Accelerator
specialists will no doubt find many important areas that are not covered. I apologize in advance
for the inevitable consequence of writing a book of finite length.
   I want to express my appreciation to my students at Los Alamos and the University of New
Mexico for the effort they put into the course and for their help in resolving ambiguities in the
material. In particular, I would like to thank Alan Wadlinger, Grenville Boicourt, Steven Wipf,
and Jean Berlijn of Los Alamos National Laboratory for lively discussions on problem sets and
for many valuable suggestions.
   I am grateful to Francis Cole of Fermilab, Wemer Joho of the Swiss Nuclear Institute, William
Herrmannsfeldt of the Stanford Linear Accelerator Center, Andris Faltens of Lawrence Berkeley
Laboratory, Richard Cooper of Los Alamos National Laboratory, Daniel Prono of Lawrence
Livermore Laboratory, Helmut Milde of Ion Physics Corporation, and George Fraser of Physics
International Company for contributing material and commenting on the manuscript. I was aided
in the preparation of the manuscript by lecture notes developed by James Potter of LANL and by
Francis Cole. I would like to take this opportunity to thank David W. Woodall, L. K. Len, David
Straw, Robert Jameson, Francis Cole, James Benford, Carl Ekdahl, Brendan Godfrey, William
Rienstra, and McAllister Hull for their encouragement of and contnbutions towards the creation
of an accelerator research program at the University of New Mexico. I am grateful for support
that I received to attend the 1983 NATO Workshop on Fast Diagnostics.

STANLEY HUMPHRIES, JR.

University of New Mexico
December, 1985
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1
 Introduction

   This book is an introduction to the theory of charged particle acceleration. It has two primary
roles:

1.A unified, programmed summary of the principles underlying all charged particle
accelerators.

2.A reference collection of equations and material essential to accelerator development
and beam applications.

   The book contains straightforward expositions of basic principles rather than detailed theories
of specialized areas.
   Accelerator research is a vast and varied field. There is an amazingly broad  range of beam
parameters for different applications, and there is a correspondingly diverse set of technologies to
achieve the parameters. Beam currents range from nanoamperes (10-9 A) to megaamperes (106

A). Accelerator pulselengths range from less than a nanosecond to steady state. The species of
charged particles range from electrons to heavy ions, a mass difference factor approaching 106.
The energy of useful charged particle beams ranges from a few electron volts (eV) to almost 1
TeV (1012 eV).
   Organizing  material  from such a broad field is inevitably an imperfect process.  Before 
beginning  our  study of beam physics, it is useful to review  the  order  of  topics  and to define
clearly the objectives and limitations  of  the  book.  The  goal  is  to  present  the  theory  of
accelerators  on  a  level  that  facilitates  the design of accelerator components  and the operation
of accelerators for applications. In order to  accomplish  this effectively, a considerable amount of
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potentially interesting material must be omitted:

1. Accelerator theory is interpreted as a mature field. There is no attempt to review the
history of accelerators.

2. Although an effort has been made to include the most recent developments in
accelerator science, there is insufficient space to include a detailed review of past and
present literature.

3. Although the theoretical treatments are aimed toward an understanding of real devices,
it is not possible to describe in detail specific accelerators and associated technology over
the full range of the field.

These deficiencies are compensated by the books and papers tabulated in the bibliography.
   We begin with some basic definitions. A charged particle is an elementary particle or a
macroparticle which contains an excess of positive or negative charge. Its motion is determined
mainly by interaction with electromagnetic forces. Charged particle acceleration is the transfer of
kinetic energy to a particle by the application of an electric field. A charged particle beam is a
collection of particles distinguished by three characteristics: (1) beam particles have high kinetic
energy compared to thermal energies, (2) the particles have a small spread in kinetic energy, and
(3) beam particles move approximately in one direction. In most circumstances, a beam has a
limited extent in the direction transverse to the average motion. The antithesis of a beam is an
assortment of particles in thermodynamic equilibrium.
   Most applications of charged particle accelerators depend on the fact that beam particles have
high energy and good directionality. Directionality is usually referred to as coherence. Beam
coherence determines, among other things, (1) the applied force needed to maintain a certain
beam radius, (2) the maximum beam propagation distance, (3) the minimum focal spot size, and
(4) the properties of an electromagnetic wave required to trap particles and accelerate them to
high energy.
   The process for generating charged particle beams is outlined in Table 1.1.. Electromagnetic
forces result from mutual interactions between charged particles. In accelerator theory, particles
are separated into two groups: (1) particles in the beam and (2) charged particles that are
distributed on or in surrounding materials. The latter group is called the external charge. Energy is
required to set up distributions of external charge; this energy is transferred to the beam particles
via electromagnetic forces. For example, a power supply can generate a voltage difference
between metal plates by subtracting negative charge from one plate and moving it to the other. A
beam particle that moves between the plates is accelerated by attraction to the charge on one plate
and repulsion from the charge on the other.
   Electromagnetic forces are resolved into electric and magnetic components. Magnetic forces are
present only when charges are in relative motion. The ability of a group of external charged 
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particles to exert forces on beam particles is summarized in the applied electric and magnetic
fields. Applied forces are usually resolved into those aligned along the average direction of the
beam and those that act transversely. The axial forces are acceleration forces; they increase or
decrease the beam energy. The transverse forces are confinement forces. They keep the beam
contained to a specific cross-sectional area or bend the beam in a desired direction. Magnetic
forces are always perpendicular to the velocity of a particle; therefore, magnetic fields cannot
affect the particle's kinetic energy. Magnetic forces are confinement forces. Electric forces can
serve both functions. 
   The distribution and motion of external charge determines the fields, and the fields determine
the force on a particle via the Lorentz force law, discussed in Chapter 3. The expression for force
is included in an appropriate equation of motion to find the position and velocity of particles in the
beam as a function of time. A knowledge of representative particle orbits makes it possible to
estimate average parameters of the beam, such as radius, direction, energy, and current. It is also 
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possible to sum over the large number of particles in the beam to find charge density ?b and
current density jb. These quantities act as source terms for beam-generated electric and magnetic
fields. 
   This procedure is sufficient to describe low-current beams where the contribution to total
electric and magnetic fields from the beam is small compared to those of the external charges.
This is not the case at high currents. As shown in Table 1.1, calculation of beam parameters is no
longer a simple linear procedure. The calculation must be self-consistent. Particle trajectories are
determined by the total fields, which include contributions from other beam particles. In turn, the
total fields are unknown until the trajectories are calculated. The problem must be solved either by
successive iteration or application of the methods of collective physics.
   Single-particle processes are covered in this book. Although theoretical treatments for some
devices can be quite involved, the general form of all derivations follows the straight-line
sequence of Table 1.1. Beam particles are treated as test particles responding to specified fields. A
continuation of this book addressing collective phenomena in charged particle beams is available:
S. Humphries, Charged Particle Beams (Wiley, New York, 1990). A wide variety of useful
processes for both conventional and high-power pulsed accelerators are described by collective
physics, including (1) beam cooling, (2) propagation of beams injected into vacuum, gas, or
plasma, (3) neutralization of beams, (4) generation of microwaves, (5) limiting factors for
efficiency and flux, (6) high-power electron and ion guns, and (7) collective beam instabilities.
   An outline of the topics covered in this book is given in Table 1.2. Single-particle theory can be
subdivided into two categories: transport and acceleration. Transport is concerned with beam
confinement. The study centers on methods for generating components of electromagnetic force
that localize beams in space. For steady-state beams extending a long axial distance, it is sufficient
to consider only transverse forces. In contrast, particles in accelerators with time-varying fields
must be localized in the axial direction. Force components must be added to the accelerating fields
for longitudinal particle confinement (phase stability).
   Acceleration of charged particles is conveniently divided into two categories: electrostatic and
electromagnetic acceleration. The accelerating field in electrostatic accelerators is the gradient of
an electrostatic potential. The peak energy of the beam is limited by the voltage that can be
sustained without breakdown. Pulsed power accelerators are included in this category because
pulselengths are almost always long enough to guarantee simple electrostatic acceleration.
   In order to generate beams with kinetic energy above a few million electron volts, it is necessary
to utilize time-varying electromagnetic fields. Although particles in an electromagnetic accelerator
experience continual acceleration by an electric field, the field does not require 
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prohibitively large voltages in the laboratory. The accelerator geometry is such that inductively
generated electric fields cancel electrostatic fields except at the position of the beam.

Electromagnetic accelerators are divided into two subcategories: nonresonant and resonant
accelerators. Nonresonant accelerators are pulsed; the motion of particles need not be closely
synchronized with the pulse waveform. Nonresonant electromagnetic accelerators are essentially
step-up transformers, with the beam acting as a high-voltage secondary. The class is subdivided
into linear and circular accelerators. A linear accelerator is a straight-through machine. Generally,
injection into the accelerator and transport is not difficult; linear accelerators are
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 useful for initial acceleration of low-energy beams or the generation of high-flux beams. In
circular machines, the beam is recirculated many times through the acceleration region during the
pulse. Circular accelerators are well suited to the production of beams with high kinetic energy. 
   The applied voltage in a resonant accelerator varies harmonically at a specific frequency. The
word resonant characterizes two aspects of the accelerator: (1) electromagnetic oscillations in
resonant cavities or waveguides are used to transform input microwave power from low to high
voltage and (2) there is close coupling between properties of the particle orbits and time
variations of the accelerating field. Regarding the second property, particles must always be at the
proper place at the proper time to experience a field with accelerating polarity. Longitudinal
confinement is a critical issue in resonant accelerators. Resonant accelerators can also be
subdivided into linear and circular machines, each category with its relative virtues.
   In the early period of accelerator development, the quest for high kinetic energy, spurred by
nuclear and elementary particle research, was the overriding goal. Today, there is increased
emphasis on a diversity of accelerator applications. Much effort in modern accelerator theory is
devoted to questions of current limits, beam quality, and the evolution of more efficient and
cost-effective machines. The best introduction to modern accelerators is to review some of the
active areas of research, both at high and low kinetic energy. The list in Table 1.3 suggests the
diversity of applications and potential for future development.
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2
Particle Dynamics

Understanding and utilizing the response of charged particles to electromagnetic forces is the
basis of particle optics and accelerator theory. The goal is to find the time-dependent position
and velocity of particles, given specified electric and magnetic fields. Quantities calculated from
position and velocity, such as total energy, kinetic energy, and momentum, are also of interest.
The nature of electromagnetic forces is discussed in Chapter 3. In this chapter, the response of
particles to general forces will be reviewed. These are summarized in laws of motion. The
Newtonian laws, treated in the first sections, apply at low particle energy. At high energy,
particle trajectories must be described by relativistic equations. Although Newton's laws and
their implications can be understood intuitively, the laws of relativity cannot since they apply to
regimes beyond ordinary experience. Nonetheless, they must be accepted to predict particle
behavior in high-energy accelerators. In fact, accelerators have provided some of the most direct
verifications of relativity.

This chapter reviews particle mechanics. Section 2.1 summarizes the properties of electrons
and ions. Sections 2.2-2.4 are devoted to the equations of Newtonian mechanics. These are
applicable to electrons from electrostatic accelerators of in the energy range below 20 kV. This
range includes many useful devices such as cathode ray tubes, electron beam welders, and
microwave tubes. Newtonian mechanics also describes ions in medium energy accelerators used
for nuclear physics. The Newtonian equations are usually simpler to solve than relativistic
formulations. Sometimes it is possible to describe transverse motions of relativistic particles
using Newtonian equations with a relativistically corrected mass. This approximation is treated
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in Section 2.10. In the second part of the chapter, some of the principles of special
relativity are derived from two basic postulates, leading to a number of useful formulas
summarized in Section 2.9.

2.1 CHARGED PARTICLE PROPERTIES

In the theory of charged particle acceleration and transport, it is sufficient to treat particles as
dimensionless points with no internal structure. Only the influence of the electromagnetic force,
one of the four fundamental forces of nature, need be considered. Quantum theory is
unnecessary except to describe the emission of radiation at high energy.

This book will deal only with ions and electrons. They are simple, stable particles. Their
response to the fields applied in accelerators is characterized completely by two quantities: mass
and charge. Nonetheless, it is possible to apply much of the material presented to other particles.
For example, the motion of macroparticles with an electrostatic charge can be treated by the
methods developed in Chapters 6-9. Applications include the suspension of small objects in
oscillating electric quadrupole fields and the acceleration and guidance of inertial fusion targets.
At the other extreme are unstable elementary particles produced by the interaction of
high-energy ions or electrons with targets. Beamlines, acceleration gaps, and lenses are similar
to those used for stable particles with adjustments for different mass. The limited lifetime may
influence hardware design by setting a maximum length for a beamline or confinement time in a
storage ring.

An electron is an elementary particle with relatively low mass and negative charge. An ion is
an assemblage of protons, neutrons, and electrons. It is an atom with one or more electrons
removed. Atoms of the isotopes of hydrogen have only one electron. Therefore, the associated
ions (the proton, deuteron, and triton) have no electrons. These ions are bare nucleii consisting
of a proton with 0, 1, or 2 neutrons. Generally, the symbol Z denotes the atomic number of an
ion or the number of electrons in the neutral atom. The symbol Z* is often used to represent the
number of electrons removed from an atom to create an ion. Values of Z* greater than 30 may
occur when heavy ions traverse extremely hot material. If Z* = Z, the atom is fully stripped. The
atomic mass number A is the number of nucleons (protons or neutrons) in the nucleus. The mass
of the atom is concentrated in the nucleus and is given approximately as Amp, where mp is the
proton mass.

Properties of some common charged particles are summarized in Table 2.1. The meaning of
the rest energy in Table 2.1 will become clear after reviewing the theory of relativity. It is listed
in energy units of million electron volts (MeV). An electron volt is defined as the energy gained
by a particle having one fundamental unit of charge (q = ±e = ±1.6 × 10-19 coulombs) passing
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through a potential difference of one volt. In MKS units, the electron volt is

I eV = (1.6 × 10-19 C) (1 V) = 1.6 x 10-19 J.

Other commonly used metric units are keV (103 eV) and GeV (109 eV). Relativistic mechanics
must be used when the particle kinetic energy is comparable to or larger than the rest energy.
There is a factor of 1843 difference between the mass of the electron and the proton. Although
methods for transporting and accelerating various ions are similar, techniques for electrons are
quite different. Electrons are relativistic even at low energies. As a consequence, synchronization
of electron motion in linear accelerators is not difficult. Electrons are strongly influenced by
magnetic fields; thus they can be accelerated effectively in a circular induction accelerator (the
betatron). High-current electron beams (�10 kA) can be focused effectively by magnetic fields.
In contrast, magnetic fields are ineffective for high-current ion beams. On the other hand, it is
possible to neutralize the charge and current of a high-current ion beam easily with light
electrons, while the inverse is usually impossible.

2.2 NEWTON'S LAWS OF MOTION

The charge of a particle determines the strength of its interaction with the electromagnetic force.
The mass indicates the resistance to a change in velocity. In Newtonian mechanics, mass is
constant, independent of particle motion.
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x � (x,y,z). (2.1)

v � (vx,vy,vz) � (dx/dt,dy/dt,dz/dt) � dx/dt, (2.2)

p � mov � (px,py,pz). (2.3)

dp/dt � F. (2.4)

Figure 2.1.Position and velocity vectors of a
particle in Cartesian coordinates.

The Newtonian mass (orrest mass) is denoted by a subscript: me for electrons, mp for protons,
and mo for a general particle. A particle's behavior is described completely by its position in
three-dimensional space and its velocity as a function of time. Three quantities are necessary to
specify position; the positionx is a vector. In the Cartesian coordinates (Figure 2.1),x can be
written

The particle velocity is

Newton's first law states that a moving particle follows a straight-line path unless acted upon
by a force. The tendency to resist changes in straight-line motion is called the momentum,p.
Momentum is the product of a particle's mass and velocity,

Newton's second law defines force F through the equation
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dpx/dt � Fx, dpy/dt � Fy, dpz/dt � Fz. (2.5)

�T � � F�dx. (2.6)

�T � � Fzdz � � Fz (dz/dt) dt. (2.7)

T � � movz (dvz/dt) dt � mov
2
z /2. (2.8)

In Cartesian coordinates, Eq. (2.4) can be written

Motions in the three directions are decoupled in Eq. (2.5). With specified force components,
velocity components in the x, y, and z directions are determined by separate equations. It is
important to note that this decoupling occurs only when the equations of motion are written in
terms of Cartesian coordinates. The significance of straight-line motion is apparent in Newton's
first law, and the laws of motion have the simplest form in coordinate systems based on straight
lines. Caution must be exercised using coordinate systems based on curved lines. The analog of
Eq. (2.5) for cylindrical coordinates (r, 0, z) will be derived in Chapter 3. In curvilinear
coordinates, momentum components may change even with no force components along the
coordinate axes.

2.3 KINETIC ENERGY

Kinetic energy is the energy associated with a particle's motion. The purpose of particle
accelerators is to impart high kinetic energy. The kinetic energy of a particle, T, is changed by
applying a force. Force applied to a static particle cannot modify T; the particle must be moved.
The change in T (work) is related to the force by

The integrated quantity is the vector dot product;dx is an incremental change in particle
position.
In accelerators, applied force is predominantly in one direction. This corresponds to the
symmetry axis of a linear accelerator or the main circular orbit in a betatron. With acceleration
along the z axis, Eq. (2.6) can be rewritten

The chain rule of derivatives has been used in the last expression. The formula for T in
Newtonian mechanics can be derived by (1) rewriting F, using Eq. (2.4), (2) taking T = 0when
v, = 0, and (3) assuming that the particle mass is not a function of velocity:
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movz(dvz/dt) � �(�U/�z)(dz/dt). (2.9)

Fz � ��U/�z, F � ��U. (2.10)

� � ux�/�x � uy�/�y � uz�/�z. (2.11)

(x,v,m,p,T) � (x �,v �,m�,p �,T �)

The differential relationshipd(movz
2/2)/dt = movz dvz/dt leads to the last expression. The

differences of relativistic mechanics arise from the fact that assumption 3 is not true at high
energy.

When static forces act on a particle, the potential energy U can be defined. In this
circumstance, the sum of kinetic and potential energies, T + U, is aconstant called the total
energy. If the force is axial, kinetic and potential energy are interchanged as the particle moves
along the z axis, so that U = U(z). Setting the total time derivative of T + U equal to 0 and
assuming�U/�t = 0 gives

The expression on the left-hand side equals Fzvz. The static force and potential energy are related
by

where the last expression is the general three-dimensional form written in terms of the vector
gradient operator,

The quantitiesux, uy, anduz are unit vectors along the Cartesian axes.
Potential energy is useful for treating electrostatic accelerators. Stationary particles at the

source can be considered to have high U (potential for gaining energy). This is converted to
kinetic energy as particles move through the acceleration column. If the potential function, U(x,
y, z), is known, focusing and accelerating forces acting on particles can be calculated.

2.4 GALILEAN TRANSFORMATIONS

In describing physical processes, it is often useful to change the viewpoint to a frame of
reference that moves with respect to an original frame. Two common frames of reference in
accelerator theory are the stationary frame and the rest frame. The stationary frame is identified
with the laboratory or accelerating structure. An observer in the rest frame moves at the average
velocity of the beam particles; hence, the beam appears to be at rest. A coordinate transforma-
tion converts quantities measured in one frame to those that would be measured in another
moving with velocity u. The transformation of the properties of a particle can be written
symbolically as
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x �
� x, y �

� y, z�
� z � ut. (2.12)

v �

x � vx, v �

y � vy, v �

z � vx, � u. (2.13)

T �
� T � ½mo(�2uvz�u 2). (2.14)

Figure 2.2. Galilean transformation between coordinate
systems

where primed quantities are those measured in the moving frame. The operation that transforms
quantities depends onu. If the transformation is from the stationary to the rest frame,u is the
particle velocityv.

The transformations of Newtonian mechanics (Galilean transformations) are easily understood
by inspecting Figure 2.2. Cartesian coordinate systems are defined so that the z axes are colinear
with u and the coordinates are aligned at t = 0. This is consistent with the usual convention of
taking the average beam velocity along the z axis. The position of a particle transforms as

Newtonian mechanics assumes inherently that measurements of particle mass and time intervals
in frames with constant relative motion are equal: m' = m and dt' = dt. This is not true in a
relativistic description. Equations (2.12) combined with the assumption of invariant time
intervals imply thatdx' = dx anddx'/dt' = dx/dt. The velocity transformations are

Since m' = m, momenta obey similar equations. The last expression shows that velocities are
additive. The axial velocity in a third frame moving at velocity w with respect to the x' frame is
related to the original quantity by vz" = vz - u - w.

Equations (2.13) can be used to determine the transformation for kinetic energy,
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c � 2.998×108 m/s. (2.15)

Measured kinetic energy depends on the frame of reference. It can be either larger or smaller in a
moving frame, depending on the orientation of the velocities. This dependence is an important
factor in beam instabilities such as the two-stream instability.

2.5 POSTULATES OF RELATIVITV

The principles of special relativity proceed from two postulates:

1.The laws of mechanics and electromagnetism are identical in all inertial frames of
reference.

2.Measurements of the velocity of light give the same value in all inertial frames.

Only the theory of special relativity need be used for the material of this book. General relativity
incorporates the gravitational force, which is negligible in accelerator applications. The first
postulate is straightforward; it states that observers in anyinertial framewould derive the same
laws of physics. An inertial frame is one that moves with constant velocity. A corollary is that it
is impossible to determine an absolute velocity. Relative velocities can be measured, but there is
no preferred frame of reference. The second postulate follows from the first. If the velocity of
light were referenced to a universal stationary frame, tests could be devised to measure absolute
velocity. Furthermore, since photons are the entities that carry the electromagnetic force, the
laws of electromagnetism would depend on the absolute velocity of the frame in which they
were derived. This means that the forms of the Maxwell equations and the results of
electrodynamic experiments would differ in frames in relative motion. Relativistic mechanics,
through postulate 2, leaves Maxwell's equations invariant under a coordinate transformation.
Note that invariance does not mean that measurements of electric and magnetic fields will be the
same in all frames. Rather, such measurements will always lead to the same governing
equations.

The validity of the relativistic postulates is determined by their agreement with experimental
measurements. A major implication is that no object can be induced to gain a measured velocity
faster than that of light,

This result is verified by observations in electron accelerators. After electrons gain a kinetic
energy above a few million electron volts, subsequent acceleration causes no increase in electron
velocity, even into the multi-GeV range. The constant velocity of relativistic particles is
important in synchronous accelerators, where an accelerating electromagnetic wave must be
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�t � � 2D �/c. (2.16)

Figure 2.3 Effect of time dilation on the observed rates of a
photon clock. (a) Clock rest frame. (b) Stationary frame.

matched to the motion of the particle.

2.6 TIME DILATION

In Newtonian mechanics, observers in relative motion measure the same time interval for an
event (such as the decay of an unstable particle or the period of an atomic oscillation). This is
not consistent with the relativistic postulates. The variation of observed time intervals
(depending on the relative velocity) is calledtime dilation. The termdilation implies extending
or spreading out.

The relationship between time intervals can be demonstrated by the clock shown in Figure 2.3,
where double transits (back and forth) of a photon between mirrors with known spacing are
measured. This test could actually be performed using a photon pulse in a mode-locked laser. In
the rest frame (denoted by primed quantities), mirrors are separated by a distance D', and the
photon has no motion along the z axis. The time interval in the clock rest frame is

If the same event is viewed by an observer moving past the clock at a velocity - u, the photon
appears to follow the triangular path shown in Figure 2.3b. According to postulate 2, the photon
still travels with velocity c but follows a longer path in a double transit. The distance traveled in
the laboratory frame is
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c�t � 2 D 2
� (u�t/2)2 ½,

�t �
2D/c

(1 � u 2/c2)½
. (2.17)

Figure 2.4. Experiment to demonstrate
invariance of transverse lengths between
frames in relative motion

or

In order to compare time intervals, the relationship between mirror spacing in the stationary
and rest frames (D and D') must be known. A test to demonstrate that these are equal is
illustrated in Figure 2.4. Two scales have identical length when at rest. Electrical contacts at the
ends allow comparisons of length when the scales have relative motion. Observers are stationed
at thecenters of the scales. Since the transit times of electrical signals from the ends to the middle
are equal in all frames, the observers agree that the ends are aligned simultaneously. Measured
length may depend on the magnitude of the relative velocity, but it cannot depend on the
direction since there is no preferred frame or orientation in space. Let one of the scales move;
the observer in the scale rest frame sees no change of length. Assume, for the sake of argument,
that the stationary observer measures that the moving scale has shortened in the transverse
direction, D < D'. The situation is symmetric, so that the roles of stationary and rest frames can
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�t �
�t �

(1�u 2/c2)½
. (2.18)

� � u/c, ��(1�u 2/c2)�½. (2.19)

� � (1�1/�2)½. (2.21)

� � (1��2)�½, (2.20)

�t � ��t �. (2.22)

be interchanged. This leads to conflicting conclusions. Both observers feel that their clock is the
same length but the other is shorter. The only way to resolve the conflict is to take D = D'. The
key to the argument is that the observers agree on simultaneity of the comparison events
(alignment of the ends). This is not true in tests to compare axial length, as discussed in the next
section. Taking D = D', the relationship between time intervals is

Two dimensionless parameters are associated with objects moving with a velocity u in a
stationary frame:

These parameters are related by

A time interval�t measured in a frame moving at velocity u with respect to an object is related
to an interval measured 'in the rest frame of the object,�t', by

For example, consider an energetic�+ pion (rest energy 140 MeV) produced by the interaction
of a high-energy proton beam from an accelerator with a target. If the pion moves at velocity
2.968 × 108 m/s in the stationary frame, it has a� value of 0.990 and a corresponding� value of
8.9. The pion is unstable, with a decay time of 2.5 × 10-8 s at rest. Time dilation affects the decay
time measured when the particle is in motion. Newtonian mechanics predicts that the average
distance traveled from the target is only 7.5 in, while relativistic mechanics (in agreement with
observation) predicts a decay length of 61 in for the high-energy particles.

2.7 LORENTZ CONTRACTION

Another familiar result from relativistic mechanics is that a measurement of the length of a
moving object along the direction of its motion depends on its velocity. This phenomenon is
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c�t1 � (L � u�t1),

�t2 � (L � u�t2)/c.

�t � �t1 � �t2 �
L

c�u
�

L

c�u
,

�t �
2L/c

1�u 2/c2
.

Figure 2.5 Lorentz contraction of a photon clock. (a) Clock rest frame.
(bl) Stationary frame

known as Lorentz contraction. The effect can be demonstrated by considering the clock of
Section 2.6 oriented as shown in Figure 2.5.

The detector on the clock measures the double transit time of light between the mirrors. Pulses
are generated when a photon leaves and returns to the left-hand mirror. Measurement of the
single transit time would require communicating the arrival time of the photon at the right-hand
mirror to the timer at the left-hand mirror. Since the maximum speed with which this
information can be conveyed is the speed of light, this is equivalent to a measurement of the
double transit time. In the clock rest frame, the time interval is�t' = 2L'/c.

To a stationary observer, the clock moves at velocity u. During the transit in which the photon
leaves the timer, the right-hand mirror moves away. The photon travels a longer distance in the
stationary frame before being reflected. Let�t1, be the time for the photon to travel from the left
to right mirrors. During this time, the right-hand mirror moves a distance u At,. Thus,

where L is the distance between mirrors measured in the stationary frame. Similarly, on the
reverse transit, the left-hand mirror moves toward the photon. The time to complete this leg is

The total time for the event in the stationary frame is

or
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L � L �/�. (2.23)

x �
� x, (2.24)

y �
� y, (2.25)

z�
�

z�ut

(1�u 2/c2)½
� �(z�ut), (2.26)

t � �
t�uz/c2

(1�u 2/c2)½
� � t�

uz

c2
. (2.27)

Time intervals cannot depend on the orientation of the clock, so that Eq. (2.22) holds. The above
equations imply that

Thus, a moving object appears to have a shorter length than the same object at rest.
The acceleration of electrons to multi-GeV energies in a linear accelerator provides an

interesting example of a Lorentz contraction effect. Linear accelerators can maintain longitudinal
accelerating gradients of, at most, a few megavolts per meter. Lengths on the kilometer scale are
required to produce high-energy electrons. To a relativistic electron, the accelerator appears to
be rushing by close to the speed of light. The accelerator therefore has a contracted apparent
length of a few meters. The short length means that focusing lenses are often unnecessary in
electron linear accelerators with low-current beams.

2.8 LORENTZ TRANSFORMATIONS

Charged particle orbits are characterized by position and velocity at a certain time, (x, v, t). In
Newtonian mechanics, these quantities differ if measured in a frame moving with a relative
velocity with respect to the frame of the first measurement. The relationship between quantities
was summarized in the Galilean transformations.

The Lorentz transformations are the relativistic equivalents of the Galilean transformations. In
the same manner as Section 2.4, the relative velocity of frames is taken in the z direction and the
z and z' axes are colinear. Time is measured from the instant that the two coordinate systems are
aligned (z = z' = 0 at t = t' = 0). Theequations relating position and time measured in one frame
(unprimed quantities) to those measured in another frame moving with velocity u (primed
quantities) are



Particle Dynamics

21

dx�
� dx, dy�

� dy, dz�
� �(dz�udt),

dt � � �dt (1�uvz/c
2).

v �

x �

vx

� (1�uvz/c
2)

. (2.28)

v �

x � � vx. (2.29)

dz�

dt �
�

�dt (dz/dt�u)

�dt (1�uvz/c
2)

,

v �

z �
vz�u

1�uvz/c
2

. (2.30)

The primed frame is not necessarily the rest frame of a particle. One major difference between
the Galilean and Lorentz transformations is the presence of the� factor. Furthermore,
measurements of time intervals are different in frames in relative motion. Observers in both
frames may agree to set their clocks at t = t' = 0 (when z = z' = 0), butthey will disagree on the
subsequent passage of time [Eq. (2.27)]. This also implies that events at different locations in z
that appear to be simultaneous in one frame of reference may not be simultaneous in another.

Equations (2.24)-(2.27) may be used to derive transformation laws for particle velocities. The
differentials of primed quantities are

In the special case where a particle has only a longitudinal velocity equal to u, the particle is at
rest in the primed frame. For this condition, time dilation and Lorentz contraction proceed
directly from the above equations.

Velocity in the primed frame is dx'/dt'. Substituting from above,

When a particle has no longitudinal motion in the primed frame (i.e., the primed frame is the rest
frame and vz = u), the transformation of transverse velocity is

This result follows directly from time dilation. Transverse distances are the same in both frames,
but time intervals are longer in the stationary frame.

The transformation of axial particle velocities can be found by substitution for dz' and dt',

or
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vz �
v �

z�u

1�uv�

z/c
2

. (2.31)

dp/dt � F. (2.32)

p � �mov. (2.33)

m � �mo. (2.34)

This can be inverted to give

Equation (2.31) is the relativistic velocity addition law. If a particle has a velocity vz' in the
primed frame, then Eq. (2.31) gives observed particle velocity in a frame moving at-u. For vz'
approaching c, inspection of Eq. (2.31) shows that vz also approaches c. The implication is that
there is no frame of reference in which a particle is observed to move faster than the velocity of
light. A corollary is that no matter how much a particle's kinetic energy is increased, it will never
be observed to move faster than c. This property has important implications in particle
acceleration. For example, departures from the Newtoniain velocity addition law set a limit on the
maximum energy available from cyclotrons. In high-power, multi-MeV electron extractors,
saturation of electron velocity is an important factor in determining current propagation limits.

2.9 RELATIVISTIC FORMULAS

The motion of high-energy particles must be described by relativistic laws of motion. Force is
related to momentum by the same equation used in Newtonian mechanics

This equation is consistent with the Lorentz transformations if the momentum is defined as

The difference from the Newtonian expression is the� factor. It is determined by the total
particle velocity v observed in the stationary frame,� = (1-v2/c2)-½. One interpretation of Eq.
(2.33) is that a particle's effective mass increases as it approaches the speed of light. The
relativistic mass is related to the rest mass by

The relativistic mass grows without limit as vz approaches c. Thus, the momentum increases
although there is a negligible increase in velocity.

In order to maintain Eq. (2.6), relating changes of energy to movement under the influence of a
force, particle energy must be defined as
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E � �moc
2. (2.35)

T � E � moc
2
� moc

2(��1). (2.36)

E � c2p 2
� m2

o c4, (2.37)

v � c2p/E. (2.38)

E �

moc
2

1�v2/c2
� moc

2 (1 � v2/c2
� ...). (2.39)

The energy is not zero for a stationary particle, but approaches moc
2, which is called the rest

energy. The kinetic energy (the portion of energy associated with motion) is given by

Two useful relationships proceed directly from Eqs. (2.20). (2.33), and (2.35):

where p2 = p�p, and

The significance of the rest energy and the region of validity of Newtonian mechanics is
clarified by expanding Eq. (2.35) in limit that v/c « 1.

The Newtonian expression for T [Eq. (2.8)] is recovered in the second term. The first term is a
constant component of the total energy, which does not affect Newtonian dynamics. Relativistic
expressions must be used when T� moc2. The rest energy plays an important role in relativistic
mechanics.

Rest energy is usually given in units of electron volts. Electrons are relativistic when T is in the
MeV range, while ions (with a much larger mass) have rest energies in the GeV range. Figure 2.6
plots� for particles of interest for accelerator applications as a function of kinetic energy. The
Newtonian result is also shown. The graph shows saturation of velocity at high energy and the
energy range where departures from Newtonian results are significant.
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Figure 2.6.Particle velocity normalized to the speed of light as a function
of kinetic energy. (a) Protons: solid line, relativistic predicted, dashed
line, Newtonian predicition. (b) Relativistic predictions for various
particles.
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�movx
d�/dt

�
�

dvx/dt

vx

� Fx. (2.40)

E � moc
2 [1 � (v2

z�v2
x )/2c2

� 3(v2
z�v2

x )2/8c4
� ...].

�mo

dvx

dt
� Fx. (2.41)

2.10 NONRELATIVISTIC APPROXIMATION FOR
TRANSVERSE MOTION

A relativistically correct description of particle motion is usually more difficult to formulate and
solve than one involving Newtonian equations. In the study of the transverse motions of charged
particle beams, it is often possible to express the problem in the form of Newtonian equations
with the rest mass replaced by the relativistic mass. This approximation is valid when the beam is
well directed so that transverse velocity components are small compared to the axial velocity of
beam particles. Consider the effect of focusing forces applied in the x direction to confine
particles along the z axis. Particles make small angles with this axis, so that vx is always small
compared to vz. With F = ux Fx, Eq. (2.32) can be written in the form

Equation (2.39) can be rewritten as

When vx « vz, relative changes in� resulting from the transverse motion are small. In Eq. (2.40),
the first term in parenthesis is much less than the second, so that the equation of motion is
approximately

This has the form of a Newtonian expression with mo replaced by�mo.
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3

Electric and Magnetic Forces

Electromagnetic forces determine all essential features of charged particle acceleration and
transport. This chapter reviews basic properties of electromagnetic forces. Advanced topics, such
as particle motion with time-varying forces, are introduced throughout the book as they are
needed.

It is convenient to divide forces between charged particles into electric and magnetic
components. The relativistic theory of electrodynamics shows that these are manifestations of a
single force. The division into electric and magnetic interactions depends on the frame of
reference in which particles are observed.

Section 3.1 introduces electromagnetic forces by considering the mutual interactions between
pairs of stationary charges and current elements. Coulomb's law and the law of Biot and Savart
describe the forces. Stationary charges interact through the electric force. Charges in motion
constitute currents. When currents are present, magnetic forces also act.

Although electrodynamics is described completely by the summation of forces between
individual particles, it is advantageous to adopt the concept of fields. Fields (Section 3.2) are
mathematical constructs. They summarize the forces that could act on a test charge in a region
with a specified distribution of other charges. Fields characterize the electrodynamic properties of
the charge distribution. The Maxwell equations (Section 3.3) are direct relations between electric
and magnetic fields. The equations determine how fields arise from distributed charge and current
and specify how field components are related to each other.
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F(1�2) �
1

4πεo

q1q2ur

r 2
(newtons). (3.1)

εo � 8.85×10�12 (A�s/V�m).

Electric and magnetic fields are often visualized as vector lines since they obey equations similar
to those that describe the flow of a fluid. The field magnitude (or strength) determines the density
of tines. In this interpretation, the Maxwell equations are fluidlike equations that describe the
creation and flow of field lines. Although it is unnecessary to assume the physical existence
of field lines, the concept is a powerful aid to intuit complex problems.

The Lorentz law (Section 3.2) describes electromagnetic forces on a particle as a function of
fields and properties of the test particle (charge, position and velocity). The Lorentz force is the
basis for all orbit calculations in this book. Two useful subsidiary functions of field quantities, the
electrostatic and vector potentials, are discussed in Section 3.4. The electrostatic potential (a
function of position) has a clear physical interpretation. If a particle moves in a static electric field,
the change in kinetic energy is equal to its charge multiplied by the change in electrostatic
potential. Motion between regions of different potential is the basis of electrostatic acceleration.
The interpretation of the vector potential is not as straightforward. The vector potential will
become more familiar through applications in subsequent chapters.

Section 3.6 describes an important electromagnetic force calculation, motion of a charged
particle in a uniform magnetic field. Expressions for the relativistic equations of motion in
cylindrical coordinates are derived in Section 3.5 to apply in this calculation.

3.1 FORCES BETWEEN CHARGES AND CURRENTS

The simplest example of electromagnetic forces, the mutual force between two stationary point
charges, is illustrated in Figure 3.1a. The force is directed along the line joining the two particles,
r . In terms ofur (a vector of unit length aligned along r), the force on particle 2 from particle 1 is

The value ofεo is

In Cartesian coordinates,r = (x2-x1)ux + (y2-y1)uy + (z2-z1)uz. Thus, r2=(x2-x1)
2+(y2-y1)

2+(z2-z1)
2.

The force on particle 1 from particle 2 is equal and opposite to that of Eq. (3.1). Particles with the
same polarity of charge repel one another. This fact affects high-current beams. The electrostatic
repulsion of beam particles causes beam expansion in the absence of strong focusing.

Currents are charges in motion. Current is defined as the amount of charge in a certain cross
section (such as a wire) passing a location in a unit of time. The mks unit of current is the ampere
(coulombs per second). Particle beams may have charge and current. Sometimes, charge effects
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dF �

µo

4π

i2dl2×(i1dl1×ur)

r 2
. (3.2)

µo � 4π×10�7
� 1.26×10�6 (V�s/A�m).

dF(1�2) � �

µo

4π

i1i2dl1dl2

r 2
ur.

can be neutralized by adding particles of opposite-charge sign, leaving only the effects of current.
This is true in a metal wire. Electrons move through a stationary distribution of positive metal
ions. The force between currents is described by the law of Biot and Savart. If i1dl1 and i2dl2 are
current elements (e.g., small sections of wires) oriented as in Figure 3.1b, the force on element 2
from element 1 is

whereur is a unit vector that points from 1 to 2 and

Equation (3.2) is more complex than (3.1); the direction of the force is determined by vector cross
products. Resolution of the cross products for the special case of parallel current elements is
shown in Figure 3.1c. Equation (3.2) becomes

Currents in the same direction attract one another. This effect is important in high-current
relativistic electron beams. Since all electrons travel in the same direction, they constitute parallel
current elements, and the magnetic force is attractive. If the electric charge is neutralized by ions,
the magnetic force dominates and relativistic electron beams can be self-confined.
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F � �
n

1
4πεo

qoqnurn

r 2
n

,

E(x) � �
n

1
4πεo

qnurn

r 2
n

. (3.3)

3.2 THE FIELD DESCRIPTION AND THE LORENTZ FORCE

It is often necessary to calculate electromagnetic forces acting on a particle as it moves through
space. Electric forces result from a specified distribution of charge. Consider, for instance, a
low-current beam in an electrostatic accelerator. Charges on the surfaces of the metal electrodes
provide acceleration and focusing. The electric force on beam particles at any position is given in
terms of the specified charges by

where qo is the charge of a beam particle and the sum is taken over all the charges on the
electrodes (Fig. 3.2).

In principle, particle orbits can be determined by performing the above calculation at each point
of each orbit. A more organized approach proceeds from recognizing that (1) the potential force
on a test particle at any position is a function of the distribution of external charges and (2) the net
force is proportional to the charge of the test particle. The functionF(x)/qo characterizes the
action of the electrode charges. It can be used in subsequent calculations to determine the orbit of
any test particle. The function is called theelectric fieldand is defined by
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F(x) � qo E(x). (3.4)

dF � idl × B. (3.5)

idl � qdl
|dl|/|v|

� qv.

The sum is taken over all specified charges. It may include freely moving charges in conductors,
bound charges in dielectric materials, and free charges in space (such as other beam particles). If
the specified charges move, the electric field may also be a function of time-, in this case, the
equations that determine fields are more complex than Eq. (3.3).

The electric field is usually taken as a smoothly varying function of position because of the l/r2

factor in the sum of Eq. (3.3). The smooth approximation is satisfied if there is a large number of
specified charges, and if the test charge is far from the electrodes compared to the distance
between specified charges. As an example, small electrostatic deflection plates with an applied
voltage of 100 V may have more than 10" electrons on the surfaces. The average distance
between electrons on the conductor surface is typically less than 1 µm.

WhenE is known, the force on a test particle with charge qo as a function of position is

This relationship can be inverted for measurements of electric fields. A common nonperturbing
technique is to direct a charged particle beam through a region and infer electric field by the
acceleration or deflection of the beam.

A summation over current elements similar to Eq. (3.3) can be performed using the law of Biot
and Savart to determine forces that can act on a differential test element of current. This function
is called the magnetic fieldB. (Note that in some texts, the term magnetic field is reserved for the
quantityH, andB is called the magnetic induction.) In terms of the field, the magnetic force on idl
is

Equation (3.5) involves the vector cross product. The force is perpendicular to both the current
element and magnetic field vector.

An expression for the total electric and magnetic forces on a single particle is required to treat
beam dynamics. The differential current element, idl, must be related to the motion of a single
charge. The correspondence is illustrated in Figure 3.3. The test particle has charge q and velocity
v. It moves a distance dl in a time dt =�dl�/�v�. The current (across an arbitrary cross section)
represented by this motion is q/(�dl�/�v�). A moving charged particle acts like a current element
with
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F � qv × B. (3.6)

F(x,t) � q (E � v × B). (3.7)

The magnetic force on a charged particle is

Equations (3.4) and (3.6) can be combined into a single expression (the Lorentz
force law)

Although we derived Equation (3.7) for static fields, it holds for time-dependent fields as well.
The Lorentz force law contains all the information on the electromagnetic force necessary to treat
charged particle acceleration. With given fields, charged particle orbits are calculated by
combining the Lorentz force expression with appropriate equations of motion. In summary, the
field description has the following advantages.

1. Fields provide an organized method to treat particle orbits in the presence of large
numbers of other charges. The effects of external charges are summarized in a single,
continuous function.
2. Fields are themselves described by equations (Maxwell equations). The field concept
extends beyond the individual particle description. Chapter 4 will show that field lines
obey geometric relationships. This makes it easier to visualize complex force distributions
and to predict charged particle orbits.
3. Identification of boundary conditions on field quantities sometimes makes it possible to
circumvent difficult calculations of charge distributions in dielectrics and on conducting
boundaries.
4. It is easier to treat time-dependent electromagnetic forces through direct solution for
field quantities.

The following example demonstrates the correspondence between fields and charged particle
distributions. The parallel plate capacitor geometry is shown in Figure 3.4. Two infinite parallel
metal plates are separated by a distance d. A battery charges the plates by transferring electrons
from one plate to the other. The excess positive charge and negative electron charge spread
uniformerly on the inside surfaces. If this were not true, there would be electric fields inside the
metal. The problem is equivalent to calculating the electric fields from two thin sheets of charge,
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dFx �
2πρ dρ σqo cosθ

4πεo (ρ2
�x2)

,

as shown in Figure 3.4. The surface charge densities, ±σ (in coulombs per square meter), are
equal in magnitude and opposite in sign.

A test particle is located between the plates a distancex from the positive electrode. Figure 3.4
defines a convenient coordinate system. The force from charge in the differential annulus
illustrated is repulsive. There is force only in the x direction; by symmetry transverse forces
cancel. The annulus has charge (2πρ dρ σ) and is a distance (ρ2 + x2)½ from the test charge. The
total force [from Eq. (3.1)] is multiplied by cosθ to give the x component.

where cosθ = x/(ρ2 + x2)½. Integrating the above expression overρ from 0 to� gives the net force
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F �
� �

�

0

ρ dρ σqo x

2εo (ρ2
�x2)3/2

�

qoσ

2εo

. (3.8)

Ex(x) � (F �
�F �)/q � σ/εo. (3.9)

δ(x�xo) � 0, if x � xo,

�dx�dy�dz δ(x�xo) � 1.
(3.10)

A similar result is obtained for the force from the negative-charge layer. It is attractive and adds
to the positive force. The electric field is found by adding the forces and dividing by the charge of
the test particle

The electric field between parallel plates is perpendicular to the plates and has uniform magnitude
at all positions. Approximations to the parallel plate geometry are used in electrostatic deflectors;
particles receive the same impulse independent of their position between the plates.

3.3 THE MAXWELL EQUATIONS

The Maxwell equations describe how electric and magnetic fields arise from currents and charges.
They are continuous differential equations and are most conveniently written if charges and
currents are described by continuous functions rather than by discrete quantities. The source
functions are thecharge density, ρ(x, y, z, t) andcurrent densityj (x, y, z, t).

The charge density has units of coulombs per cubic meters (in MKS units). Charges are carried
by discrete particles, but a continuous density is a good approximation if there are large numbers
of charged particles in a volume element that is small compared to the minimum scale length of
interest. Discrete charges can be included in the Maxwell equation formulation by taking a charge
density of the formρ = qδ[x - xo(t)]. The delta function has the following properties:

The integral is taken over all space.
The current density is a vector quantity with units amperes per square meter. It is defined as the

differential flux of charge, or the charge crossing a small surface element per second divided by
the area of the surface. Current density can be visualized by considering how it is measured (Fig.
3.5). A small current probe of known area is adjusted in orientation at a point in space until
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��E � ρ/εo, (3.13)

�×B � (1/c2) �E/�t � µoj, (3.12)

�×E � ��B/�t, (3.11)

��B � 0. (3.14)

the current reading is maximized. The orientation of the probe gives the direction, and the current
divided by the area gives the magnitude of the current density.

The general form of the Maxwell equations in MKS units is

Although these equations will not be derived, there will be many opportunities in succeeding
chapters to discuss their physical implications. Developing an intuition and ability to visualize field
distributions is essential for understanding accelerators. Characteristics of the Maxwell equations
in the static limit and the concept of field lines will be treated in the next chapter.

No distinction has been made in Eqs. (3.1l)-(3.14) between various classes of charges that may
constitute the charge density and current density. The Maxwell equations are sometimes written in
terms of vector quantitiesD andH. These are subsidiary quantities in which the contributions
from charges and currents in linear dielectric or magnetic materials have been extracted. They
will be discussed in Chapter 5.

3.4 ELECTROSTATIC AND VECTOR POTENTIALS

The electrostatic potential is a scalar function of the electric field. In other words, it is specified by
a single value at every point in space. The physical meaning of the potential can be demonstrated
by considering the motion of a charged particle between two parallel plates (Fig. 3.6). We want to
find the change in energy of a particle that enters that space between the plates with kinetic energy
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dpx/dt � Fx � qEx.

(dpx/dx)(dx/dt) � vx dpx/dx � qEx.

c2px dpx/dx � E dE/dx.

dE/dx � [c2px/E] dpx/dx � vx dpx/dx. (3.15)

∆E � q � dxEx. (3.16)

T. Section 3.2 has shown that the electric field Ex, is uniform. The equation of motion is therefore

The derivative can be rewritten using the chain rule to give

The relativistic energyE of a particle is related to momentum by Eq. (2.37). Taking the derivative
in x of both sides of Eq. (2.37) gives

This can be rearranged to give

The final form on the right-hand side results from substituting Eq. (2.38) for the term in brackets.
The expression derived in Eq. (3.15) confirms the result quoted in Section 2.9. The right-hand
side isdpx/dt which is equal to the forceFx. Therefore, the relativistic form of the energy [Eq.
(2.35)] is consistent with Eq. (2.6). The integral of Eq. (3.15) between the plates is
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φ � �� E�dx. (3.17)

E � moc
2
� To � q(φ�φo), (3.18)

E � moc
2
� qφ

γ � 1 � qφ/moc
2. (3.19)

E � ��φ � (�φ/�x) ux � (�φ/�y) uy � (�φ/�z) uz

�Ex ux � Ey uy � Ez uz.
(3.20)

φ(x) � �
n

qn/4πεo

|x�xn|
. (3.21)

Theelectrostatic potentialφ is defined by

The change in potential along a path in a region of electric fields is equal to the integral of electric
field tangent to the path times differential elements of pathlength. Thus, by analogy with the
example of the parallel plates [Eq. (3.1 6)]∆E = -q∆φ. If electric fields are static, the total energy
of a particle can be written

where To is the particle kinetic energy at the point whereφ = φo.
The potential in Eq. (3.18) is not defined absolutely; a constant can be added without changing

the electric field distribution. In treating electrostatic acceleration, we will adopt the convention
that the zero point of potential is defined at the particle source (the location where particles have
zero kinetic energy). The potential defined in this way is called the absolute potential (with respect
to the source). In terms of the absolute potential, the total energy can be written

or

Finally, the static electric field can be rewritten in the differential form,

If the potential is known as a function of position, the three components of electric field can be
found by taking spatial derivatives (the gradient operation). The defining equation for electrostatic
fields [Eq. (3.3)] can be combined with Eq. (3.20) to give an expression to calculate potential
directly from a specified distribution of charges
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φ(x) �
1

4πεo
��� d 3x � ρ(x �)

|x�x �|
. (3.22)

B � � × A. (3.23)

A(x) �
µo

4π ��� d 3x � j(x �)

|x�x �|
. (3.24)

The denominator is the magnitude of the distance from the test charge to thenth charge. The
integral form of this equation in terms of charge density is

Although Eq. 3.22 can be used directly to find the potential, we will usually use differential
equations derived from the Maxwell equations combined with boundary conditions for such
calculations (Chapter 4). Thevector potentialA is another subsidiary quantity that can be
valuable for computing magnetic fields. It is a vector function related to the magnetic field
through the vector curl operation

This relationship is general, and holds for time-dependent fields. We will useA only for static
calculations. In this case, the vector potential can be written as a summation over source current
density

Compared to the electrostatic potential, the vector potential does not have a straightforward
physical interpretation. Nonetheless, it is a useful computational device and it is helpful for the
solution of particle orbits in systems with geometry symmetry. In cylindrical systems it is
proportional to the number of magnetic field lines encompassed within particle orbits (Section
7.4).

3.5 INDUCTIVE VOLTAGE AND DISPLACEMENT CURRENT

The static concepts already introduced must be supplemented by two major properties of
time-dependent fields for a complete and consistent theory of electrodynamics. The first is the fact
that time-varying magnetic fields lead to electric fields. This is the process of magnetic induction.
The relationship between inductively generated electric fields and changing magnetic flux is stated
in Faraday's law. This effect is the basis of betatrons and linear induction accelerators. The second
phenomenon, first codified by Maxwell, is that a time-varying electric field leads to a virtual
current in space, the displacement current. We can verify that displacement currents "exist" by
measuring the magnetic fields they generate. A current monitor such as a Rogowski loop
enclosing an empty space with changing electric fields gives a current reading. The combination of
inductive fields with the displacement current leads to predictions of electromagnetic oscillations.
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ψ � �� B�n dS, (3.25)

V � �dψ/dt. (3.26)

Propagating and stationary electromagnetic waves are the bases for RF (radio-frequency) linear
accelerators.

Faraday's law is illustrated in Figure 3.7a. A wire loop defines a surfaceS. The magnetic fluxψ
passing through the loop is given by

wheren is a unit vector normal toSanddSis a differential element of surface area. Faraday's law
states that a voltage is induced around the loop when the magnetic flux changes according to

The time derivative ofψ is the total derivative. Changes inψ can arise from a time-varying field at
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Q � εoExA.

i � εo A (�Ex/�t). (3.27)

jd � εo (�Ex/�t). (3.28)

constant loop position, motion of the loop to regions of different field magnitude in a static field,
or a combination of the two.

The terminductioncomes from induce, to produce an effect without a direct action. This is
illustrated by the example of Figure 3.7b. an inductively coupled plasma source. (A plasma is a
conducting medium of hot, ionized gas.) Such a device is often used as an ion source for
accelerators. In this case, the plasma acts as the loop. Currents driven in the plasma by changing
magnetic flux ionize and heat the gas through resistive effects. The magnetic flux is generated by
windings outside the plasma driven by a high-frequency ac power supply. The power supply
couples energy to the plasma through the intermediary of the magnetic fields. The advantage of
inductive coupling is that currents can be generated without immersed electrodes that may
introduce contaminants.

The sign convention of Faraday's law implies that the induced plasma currents flow in the
direction opposite to those of the driving loop. Inductive voltages always drive reverse currents in
conducting bodies immersed in the magnetic field; therefore, oscillating magnetic fields are
reduced or canceled inside conductors. Materials with this property are called diamagnetic.
Inductive effects appear in the Maxwell equations on the right-hand side of Eq. (3.11).
Application of the Stokes theorem (Section 4.1) shows that Eqs. (3.11) and (3.26) are equivalent.

The concept of displacement current can be understood by reference to Figure 3.7c. An electric
circuit consists of an ac power supply connected to parallel plates. According to Eq. 3.9, the
power supply produces an electric field E. between the plates by moving an amount of charge

whereA is the area of the plates. Taking the time derivative, the current through the power supply
is related to the change in electric field by

The partial derivative of Eq. (3.27) signifies that the variation results from the time variation of Ex

with the plates at constant position. Suppose we considered the plate assembly as a black box
without knowledge that charge was stored inside. In order to guarantee continuity of current
around the circuit, we could postulate a virtual current density between the plates given bv

This quantity, the displacement current density, is more than just an abstraction to account for a
change in space charge inside the box. The experimentally observed fact is that there are magnetic
fields around the plate assembly that identical to those that would be produced by a real wore
connecting the plates and carrying the current specified by Eq. (3.27) (see Section 4.6). There is
thus a parallelism of time-dependent effects in electromagnetism. Time-varving magnetic fields



Electric and Magnetic Forces

40

c � 1/ εoµo , (3.29)

x � r cosθ, y � r sinθ, z � z, (3.30)

r � x2
�y2, θ � tan�1(y/x). (3.31)

produce electric fields, and changing electric fields produce magnetic fields. The coupling and
interchange of electric and magnetic field energy is the basis of electromagnetic oscillations.
Displacement currents or, equivalently, the generation of magnetic fields by time-varying electric
fields, enter the Maxwell equations on the right side of Eq. (3.12). Noting that

we see that the displacement current is added to any real current to determine the net magnetic
field.

3.6 RELATIVISTIC PARTICLE MOTION IN CYLINDRICAL
COORDINATES

Beams with cylindrical symmetry are encountered frequently in particle accelerators. For example,
electron beams used in applications such as electron microscopes or cathode ray tubes have
cylindrical cross sections. Section 3.7 will introduce an important application of the Lorentz force,
circular motion in a uniform magnetic field. In order to facilitate this calculation and to derive
useful formulas for subsequent chapters, the relativistic equations of motion for particles in
cylindrical coordinates are derived in this section.

Cylindrical coordinates, denoted by (r, 0, z), are based on curved coordinate lines. We
recognize immediately that equations of the formdpr/dt = Fr are incorrect. This form implies that
particles subjected to no radial force move in a circular orbit (r = constant,dpr/dt = 0). This is not
consistent with Newton's first law. A simple method to derive the proper equations is to
express dp/dt = F in Cartesian coordinates and make a coordinate transformation by direct
substitution.

Reference to Figure 3.8 shows that the following equations relate Cartesian coordinates to
cylindrical coordinates sharing a common origin and a common z axis, and with the line (r, 0, 0)
lying on the x axis:

and

Motion along the z axis is described by the same equations in both frames, dpz/dt = Fz. We will
thus concentrate on equations in the (r, 0) plane. The Cartesian equation of motion in the x
direction is
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dpx/dt � Fx. (3.32)

px � prcosθ � p
θ
sinθ, Fx � Frcosθ � F

θ
sinθ.

(dpr/dt)cosθ � prsinθ(dθ/dt) � (dp
θ
/dt)sinθ � p

θ
cosθ(dθ/dt) � Frcosθ � F

θ
sinθ.

dpr/dt � Fr � [p
θ

dθ/dt], (3.33)

dp
θ
/dt � F

θ
� [pr dθ/dt]. (3.34)

Centrigfugal force� γmov
2
θ
/r, (3.35)

Figure 3.8 shows that

Substituting in Eq. (3.32),

The equation must hold at all positions, or at any value ofθ. Thus, terms involving cosθ and sinθ
must be separately equal. This yields the cylindrical equations of motion

The quantities in brackets are correction terms for cylindrical coordinates. Equations (3.33) and
(3.34) have the form of the Cartesian equations if the bracketed terms are considered as virtual
forces. The extra term in the radial equation is called the centrifugal force, and can be rewritten
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Coriolis force � �γmovrvθ/r. 3.36

noting that v
θ

= rdθ/dt. The bracketed term in the azimuthal equation is the Coriolis force, and can
be written

Figure 3.9 illustrates the physical interpretation of the virtual forces. In the first example, a
particle moves on a force-free, straight-line orbit. Viewed in the cylindrical coordinate system, the
particle (with no initial vr) appears to accelerate radially, propelled by the centrifugal force. At
large radius, when v

θ
approaches 0, the acceleration appears to stop, and the particle moves

outward at constant velocity. The Coriolis force is demonstrated in the second example. A
particle from large radius moves in a straight line past the origin with nonzero impact parameter.
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dp/dt � d(γmov)/dt � q v × B. (3.37)

The azimuthal velocity, which was initially zero, increases as the particle moves inward with
negative u, and decreases as the particle moves out. The observer in the cylindrical coordinate
system notes a negative and then positive azimuthal acceleration.

Cylindrical coordinates appear extensively in accelerator theory. Care must be exercised to
identify properly the orientation of the coordinates. For example, the z axis is sometimes aligned
with the beam axis, white in other cases, the z axis may be along a symmetry axes of the
accelerator. In this book, to avoid excessive notation, (r, 0, z) will be used for all cylindrical
coordinate systems. Illustrations will clarify the geometry of each case as it is introduced.

3.7 MOTION OF CHARGED PARTICLES IN A UNIFORM MAGNETIC
FIELD

Motion of a charged particle in a uniform magnetic field directed along the z axis,B = Bouz, is
illustrated in Figure 3.10. Only the magnetic component of the Lorentz force is included. The
equation of motion is

By the nature of the cross product, the magnetic force is always perpendicular to the velocity of
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qv
θ
Bo � γmov

2
θ
/r.

rg � γmovθ/|q|Bo. (3.38)

ωg � |q|Bo/γmo. (3.39)

x(t) � xo � rg cos(ωgt),

y(t) � yo � rg sin(ωgt),

the particle. There is no force along a differential element of pathlength,dx. Thus,�F�dx = 0.
According to Eq. (2.6), magnetic fields perform no work and do not change the kinetic energy of
the particle. In Eq. (3.37),γ is constant and can be removed from the time derivative.

Because the force is perpendicular to B, there is no force along the z axis. Particles move in this
direction with constant velocity. There is a force in the x-y plane. It is of constant magnitude
(since the total particle velocity cannot change), and it is perpendicular to the particle motion. The
projection of particle motion in the x-y plane is therefore a circle. The general three-dimensional
particle orbit is a helix.

If we choose a cylindrical coordinate system with origin at the center of the circular orbit, then
dpr/dt = 0, and there is no azimuthal force. The azimuthal equation of motion [Eq. (3.34)] is
satisfied trivially with these conditions. The radial equation [Eq. (3.33)] is satisfied when the
magnetic force balances the centrifugal force, or

The particle orbit radius is thus

This quantity is called thegyroradius. It is large for high-momentum particles; the gyroradius is
reduced by applying stronger magnetic field. The point about which the particle revolves is called
thegyrocenter. Another important quantity is the angular frequency of revolution of the particle,
thegyrofrequency. This is given byωg = v

θ
/r, or

The particle orbits in Cartesian coordinates are harmonic,

where xo and yo are the coordinates of the gyrocenter. The gyroradius and gyrofrequency arise in
all calculations involving particle motion in magnetic fields. Magnetic confinement of particles in
circular orbits forms the basis for recirculating high-energy accelerators, such as the cyclotron,
synchrotron, microtron, and betatron.
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4

Steady-State Electric and Magnetic Fields

A knowledge of electric and magnetic field distributions is required to determine the orbits of
charged particles in beams. In this chapter, methods are reviewed for the calculation of fields
produced by static charge and current distributions on external conductors. Static field
calculations appear extensively in accelerator theory. Applications include electric fields in beam
extractors and electrostatic accelerators, magnetic fields in bending magnets and spectrometers,
and focusing forces of most lenses used for beam transport.

Slowly varying fields can be approximated by static field calculations. A criterion for the static
approximation is that the time for light to cross a characteristic dimension of the system in
question is short compared to the time scale for field variations. This is equivalent to the condition
that connected conducting surfaces in the system are at the same potential. Inductive accelerators
(such as the betatron) appear to violate this rule, since the accelerating fields (which may rise over
many milliseconds) depend on time-varying magnetic flux. The contradiction is removed by noting
that the velocity of light may be reduced by a factor of 100 in the inductive media used in these
accelerators. Inductive accelerators are treated in Chapters 10 and 11. The study of rapidly
varying vacuum electromagnetic fields in geometries appropriate to particle acceleration is
deferred to Chapters 14 and 15.

The static form of the Maxwell equations in regions without charges or currents is reviewed in
Section 4.1. In this case, the electrostatic potential is determined by a second-order differential
equation, the Laplace equation. Magnetic fields can be determined from the same equation by
defining a new quantity, the magnetic potential. Examples of numerical (Section 4.2) and analog
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��E � 0, (4.1)

�×E � 0, (4.2)

��B � 0, (4.3)

�×B � 0. (4.4)

�Ex/�x � �Ey/�y � �Ez/�z � 0. (4.5)

(Section 4.3) methods for solving the Laplace equation are discussed. The numerical technique of
successive overrelaxation is emphasized since it provides insight into the physical content of the
Laplace equation. Static electric field calculations with field sources are treated in Section 4.4.
The classification of charge is emphasized; a clear understanding of this classification is essential
to avoid confusion when studying space charge and plasma effects in beams. The final sections
treat the calculation of magnetic fields from specific current distributions through direct solution
of the Maxwell equations (Section 4.5) and through the intermediary of the vector potential
(Section 4.6).

4.1 STATIC FIELD EQUATIONS WITH NO SOURCES

When there are no charges or currents present. the Maxwell equations have the form

These equations resolve into two decoupled and parallel sets for electric fields [Eqs. (4.1) and
(4.2)] and magnetic fields [Eqs. (4.3) and (4.4)]. Equations (4.1)-(4.4) hold in regions such as that
shown in Figure 4.1. The charges or currents that produce the fields are external to the volume of
interest. In electrostatic calculations, the most common calculation involves charge distributed on
the surfaces of conductors at the boundaries of a vacuum region.

Equations (4.1)-(4.4) have straightforward physical interpretations. Similar conclusions hold for
both sets, so we will concentrate on electric fields. The form for the divergence equation [Eq.
(4.1)] in Cartesian coordinates is

An example is illustrated in Figure 4.2. The electric field is a function of x and y. The meaning of
the divergence equation can be demonstrated by calculating the integral of the normal electric
field over the surface of a volume with cross-sectional area A and thickness∆x. The integral over
the left-hand side is AEx(x). If the electric field is visualized in terms of vector field lines, the
integral is the flux of lines into the volume through the left-hand face. The electric field line flux
out of the volume through the right-hand face is AEx(x + ∆x).
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�� E�n da � ��� (��E) dV. (4.6)

When the electric field is a smooth function of x, variations about a point can be approximated by
a Taylor expansion. The right-hand integral is A[Ex(x) + ∆x �Ex/�x]. The condition that�Ex/�x =
0 leads to a number of parallel conclusions.

1.The integrals of normal electric field over both faces of the volume are equal.
2.All field lines that enter the volume must exit.
3.The net flux of electric field lines into the volume is zero.
4. No field lines originate inside the volume.

Equation (4.5) is the three-dimensional equivalent of these statements.
Thedivergence operatorapplied to a vector quantity gives the effluence of the quantity away

from a point in space. The divergence theorem can be written

Equation (4.6) states that the integral of the divergence of a vector quantity over all points of a
volume is equal to the surface integral of the normal component of the vector over the surface of
the volume. With no enclosed charges, field lines must flow through a volume as shown in Figure
4.3. The same holds true for magnetic fields. The main difference between electric and magnetic
fields is that magnetic field lilies have zero divergence under all conditions, even in regions with
currents. This means that magnetic field lines never emanate from a source point. They either
extend indefinitely or are self-connected.
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� E�dl � �� (�×E)�n da. (4.7)

The curl equations determine another geometric property of field lines. This
property proceeds from the Stokes theorem, which states that

The quantities in Eq. (4.7) are defined in Figure 4.4;S is a two-dimensional surface in space and
dl is a length element oriented along the circumference. The integral on the left-hand side is taken
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around the periphery. The right-hand side is the surface integral of the component of the vector v
x E normal to the surface. If the curl is nonzero at a point in space, then field lines form closed
loops around the point. Figure 4.5 'illustrates points in vector fields with zero and nonzero curl..
The study of magnetic fields around current-carrying wires (Section 4.5) will illustrate a vector
function with a nonzero curl.
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�×E �

ux uy uz

�/�x �/�y �/�z

Ex Ey Ez

. (4.8)

�× � ux

�Ez

�y
�

�Ey

�z
� uy

�Ex

�z
�

�Ez

�x
� uz

�Ey

�x
�

�Ex

�y
. (4.9)

E � ��φ. (4.10)

��(�φ) � 0,

�
2φ � �

2φ/�x2
� �

2φ/�y2
� �

2φ/�z2
� 0. (4.11)

For reference, the curl operator is written in Cartesian coordinates as

The usual rule for evaluating a determinant is used. The expansion of the above expression is

The electrostatic potential functionφ can be defined when electric fields are static. The electric
field is the gradient of this function,

Substituting forE in Eq. (4.1) gives

or

The operator symbolized by�2 in Eq. (4.11) is called the Laplacian operator. Equation (4.11) is
theLaplace equation. It determines the variation ofφ (and henceE) in regions with no charge.
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The curl equation is automatically satisfied through the vector identity�×(�φ)= 0.
The main reason for using the Laplace equation rather than solving for electric fields directly is

that boundary conditions can be satisfied more easily. The difficulty in solving the Maxwell
equations directly lies in determining boundary conditions for vector fields on surrounding
conducting surfaces. The electrostatic potential is a scalar function; we can show that the
potential is a constant on a connected metal surface. Metals contain free electrons; an electric field
parallel to the surface of a metal drives large currents. Electrons in the metal adjust their positions
to produce a parallel component of field equal and opposite to the applied field. Thus, at a metal
surfaceE(parallel) = 0 andE(normal) is unspecified. Equation (4.10) implies that electric field
lines are always normal to surfaces of constantφ. This comes about because the gradient of a
function (which indicates the direction in which a function has maximum rate of variation) must
always be perpendicular to surfaces on which the function is constant (Fig. 4.6). Since a metal
surface is everywhere perpendicular to the electric field, it must be an equipotential surface with
the boundary conditionφ = constant.
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In summary, electric field lines have the following properties in source-free
regions:

(a) Field lines are continuous. All lines that enter a volume eventually exit.
(b)Field lines do not kink, curl, or cross themselves.
(c)Field lines do not cross each other, since this would result in a point of infinite flux.
(d)Field lines are normal to surfaces of constant electrostatic potential.
(e) Electric fields are perpendicular to metal surfaces.

Fairly accurate electric field sketches can be made utilizing the laminar flow nature of electric field
lines and the above properties. Even with the availability of digital computers, it is valuable to
generate initial sketches of field patterns. This saves time and gives insight into the nature of
fields. An example of an electrostatic field pattern generated by the method of squares is shown in
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�
2Um � 0. (4.12)

�φ(x�∆/2)/�x � [Φ(i�1,j,k)�Φ(i,j,k)]/∆. (4.13)

�

�x
�φ(x)
�x

�
1
∆

�φ(x�∆/2)
�x

�

�φ(x�∆/2)
�x

Figure 4.7. In this method, a number of equipotential lines between metal surfaces are sketched.
Electric field lines normal to the equipotential lines and electrodes are added. Since the density of
field lines is proportional to the distance between equipotentials, a valid final solution results when
the elements between equipotential and field lines approach as close as possible to squares. The
process is iterative and requires only some drawing ability and an eraser.

It is also possible to define formally a magnetic potential Um such that

The function Um should not be confused with the vector potential. Methods used for electric field
problems in source-free regions can also be applied to determine magnetic fields. We will defer
use of Eq. (4.12) to Chapter 5. An understanding of magnetic materials is necessary to determine
boundary conditions for Um.

4.2 NUMERICAL SOLUTIONS TO THE LAPLACE EQUATION

The Laplace equation determines electrostatic potential as a function of position. Resulting
electric fields can then be used to calculate particle orbits. Electrostatic problems may involve
complex geometries with surfaces at many different potentials. In this case, numerical methods of
analysis are essential.

Digital computers handle discrete quantities, so the Laplace equation must be converted from a
continuous differential equation to a finite difference formulation. As shown in Figure 4.8, the
quantityΦ(i, j, k) is defined at discrete points in space. These points constitute a
three-dimensional mesh. For simplicity, the mesh spacing∆ between points in the three Cartesian
directions is assumed uniform. The quantityΦ has the property that it equalsφ(x, y, z) at the
mesh points. Ifφ is a smoothly varying function, then a linear interpolation ofΦ gives a good
approximation forφ at any point in space. In summary,Φ is a mathematical construct used to
estimate the physical quantity,φ.

The Laplace equation forφ implies an algebraic difference equation forΦ. The spatial position
of a mesh point is denoted by (i, j, k), with x = i∆, y = j∆, and z = k∆. The x derivative ofφ to
the right of the point (x, y, z) is approximated by

A similar expression holds for the derivative at x -∆/2. The second derivative is the difference of
derivatives divided by∆, or



Steady State Electric and Magnetic Fields

54

�
2φ

�x2
�

Φ(i�1,j,k) � 2Φ(i,j,k) � Φ(i�1,j,k)]

∆2
. (4.14)

Φ(i,j,k) � 1/6 [Φ(i�1,j,k) � Φ(i�1,j,k) � Φ(i,j�1,k)

� Φ(i,j�1,k) � Φ(i,j,k�1) � Φ(i,j,k�1)].
(4.15)

Combining expressions,

Similar expressions can be found for the�
2φ/�y2 and�2φ/�z2 terms. Setting�2φ1 = 0 implies

In summary, (1)Φ(i, j, k) is a discrete function defined as mesh points, (2) the interpolation of
Φ(i, j, k) approximatesφ(x, y, z), and (3) ifφ(x, y, z) satisfies the Laplace equation, thenΦ(i, j, k)
is determined by Eq. (4.15).

According to Eq. (4.15), individual values ofΦ(i, j, k) are the average of their six neighboring
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R(i,j) � ¼[Φ(i�1,j) � Φ(i�1,j) � Φ(i,j�1) � Φ(i,j�1)] � Φ(i,j) (4.16)

Φ(i,j)n�1 � Φ(i,j)n � ωR(i,j)n. (4.17)

points. Solving the Laplace equation is an averaging process; the solution gives the smoothest
flow of field lines. The net length of all field lines is minimized consistent with the boundary
conditions. Therefore, the solution represents the state with minimum field energy (Section 5.6).

There are many numerical methods to solve the finite difference form for the Laplace equation.
We will concentrate on themethod of successive ouerrelaxation. Although it is not the fastest
method of solution, it has the closest relationship to the physical content of the Laplace equation.
To illustrate the method, the problem will be formulated on a two-dimensional, square mesh.
Successive overrelaxation is an iterative approach. A trial solution is corrected until it is close to a
valid solution. Correction consists of sweeping through all values of an intermediate solution to
calculateresiduals, defined by

If R(i, j) is zero at all points, thenΦ(i, j) is the desired solution. An intermediate result can be
improved by adding a correction factor proportional to R(i, j),

The valueω = 1 is the obvious choice, but in practice values ofω between 1 and 2 produce a
faster convergence (hence the term overrelaxation). The succession of approximations resembles
a time-dependent solution for a system with damping, relaxing to its lowest energy state. The
elastic sheet analog (described in Section 4.3) is a good example of this interpretation. Figure 4.9
shows intermediate solutions for a one-dimensional mesh with 20 points and withω = 1.00.
Information on the boundary with elevated potential propagates through the mesh.

The method of successive overrelaxation is quite slow for large numbers of points. The number
of calculations on ann x nmesh is proportional ton2. Furthermore, the number of iterations
necessary to propagate errors out of the mesh is proportional to n. The calculation time increases
as n3 . A BASIC algorithm to relax internal points in a 40 x 48 point array is listed in Table 4.1.
Corrections are made continuously during the sweep. Sweeps are first carried out along thex
direction and then along they direction to allow propagation of errors in both directions. The
electrostatic field distribution in Figure 4.10 was calculated by a relaxation program.

Advanced methods for solving the Laplace equation generally use more efficient algorithms
based on Fourier transforms. Most available codes to solve electrostatic problems utilize a more
complex mesh. The mesh may have a rectangular or even triangular divisions to allow a close
match to curved boundary surfaces.
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Boundary conditions present special problems and must be handled differently from internal points
representing the vacuum region. Boundary points may include those on the actual boundary of the
calculational mesh, or points on internal electrodes maintained at a constant potential. The latter
points are handled easily. They are marked by a flag to indicate locations of nonvariable potential.
The relaxation calculation is not performed at such points. Locations on the mesh boundary have
no neighbors outside the mesh, so that Eq. (4.16) can not be applied. If these points have constant
potential, there is no problem since the residual need not be computed. Constant-potential points
constitute a Dirichlet boundary condition.

The other commonly encountered boundary specification is the Neumann condition in which the
normal derivative of the potential at the boundary is specified. In most cases where the Neumann
condition is used, the derivative is zero, so that there is no component of the electric field normal
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R(0,j) � ¼ [Φ(0,j�1) � 2Φ(1,j) � Φ(0,j�1)] � Φ(0,j). (4.18)

1
r

�

�r
r
�φ

�r
�

�
2φ

�z2
� 0. (4.19)

to the boundary. This condition applies to boundaries with special symmetry, such as the axis in a
cylindrical calculation or a symmetry plane of a periodic system. Residues can be calculated at
Neumann boundaries since the potential outside the mesh is equal to the potential at the first point
inside the mesh. For example, on the boundaryi = 0 , the conditionΦ(-1, j) = Φ(+1, j) holds. The
residual is

Two-dimensional systems with cylindrical symmetry are often encountered in accelerator
applications. Potential is a function of (r, z), with no azimuthal dependence. The Laplace equation
for a cylindrical system is

The finite difference form for the Laplace equation for this case is
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Φ(i,j) �
1
4

(i�½)Φ(i�1,j)
i

�

(i�½)Φ(i�1,j)
i

� Φ(i,j�1) � Φ(i,j�1) . (4.20)

where r = i∆ and z = j∆.
Figure 4.10 shows results for a relaxation calculation of an electrostatic immersion lens. It

consists of two cylinders at different potentials separated by a gap. Points of constant potential
and Neumann boundary conditions are indicated. Also shown is the finite difference
approximation for the potential variation along the axis, 0(0, z). This data can be used to
determine the focal properties of the lens (Chapter 6).

4.3 ANALOG METHODS TO SOLVE THE LAPLACE EQUATION

Analog methods were used extensively to solve electrostatic field problems before the advent of
digital computers. We will consider two analog techniques that clarify the nature of the Laplace
equation. The approach relies on finding a physical system that obeys the Laplace equation but
that allows easy measurements of a characteristic quantity (the analog of the potential).

One system, the tensioned elastic sheet, is suitable for two-dimensional problems (symmetry
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F[(i�½)∆] � T [H(i∆,j∆)�H([i�1]∆,j∆)]/∆,

F[(i�½)∆] � T [H([i�1]∆,j∆)�H(i∆,j∆)]/∆.

F[(i�½)∆] � �F[(i�½)∆],

F[(j�½)∆] � �F[(j�½)∆].

�
2H(x,y)/�x2

� �
2H(x,y)/�y2

� 0.

along the z axis). As shown in Figure 4.11, a latex sheet is stretched with uniform tension on a
frame. If the sheet is displaced vertically a distanceH(x, y), there will be vertical restoring forces.
In equilibrium, there is vertical force balance ateach point. The equation of force balance can be
determined from the finite difference approximation defined in Figure 4.11. In terms of the surface
tension, the forces to the left and right of the point (i∆, j∆) are

Similar expressions can be determined for they direction. The height of the point (i∆, j∆) is
constant in time; therefore,

and

Substituting for the forces shows that the height of a point on a square mesh is the average of its
four nearest neighbors. Thus, inverting the arguments of Section 4.2,H(x, y) is described by the
two-dimensional Laplace equation



Steady State Electric and Magnetic Fields

60

E � ρ j

Height is the analog of potential. To make an elastic potential solution, parts are cut to the
shape of the electrodes. They are fastened to the frame to displace the elastic sheet up or down a
distance proportional to the electrode potential. These pieces determine equipotential surfaces.
The frame is theground plane.

An interesting feature of the elastic sheet analog is that it can also be used to determine orbits of
charged particles in applied electrostatic fields. Neglecting rotation, the total energy of a ball
bearing on the elastic sheet isE = T + mgh(x, y), where g is the gravitational constant. The
transverse forces acting on a ball bearing on the elastic sheet are Fx = �H/�x and Fy = �H/�y.
Thus, ball bearings on the elastic sheet follow the same orbits as charged particles in the
analogous electrostatic potential, although over a considerably longer time scale.

Figure 4.12 is a photograph of a model that demonstrates the potentials in a planar electron
extraction gap with a coarse grid anode made of parallel wires. The source of the facet lens effect
associated with extraction grids (Section 6.5) is apparent.

A second analog technique, the electrolytic tank, permits accurate measurements of potential
distributions. The method is based on the flow of current in a liquid medium of constant-volume
resistivity,ρ (measured in units of ohm-meters). A dilute solution of copper sulfate in water is a
common medium. A model of the electrode structure is constructed to scale from copper sheet
and immersed in the solution. Alternating current voltages with magnitude proportional to those
in the actual system are applied to the electrodes.

According to the definition of volume resistivity, the current density is proportional to the
electric field

Figure 4.12 Elastic sheet analog for electrostatic potential near an extraction grid. Elevated
section represents a high-voltage electrode surrounded by a grounded enclosure. Note the
distortion of the potential near the grid wires that results in focusing of extracted particles.
(Photograph and model by the author. Latex courtesy of the Hygenic Corporation.)
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j � ��φ/ρ. (4.21)

��j � 0. (4.22)

or

The steady-state condition that charge at any point in the liquid is a constant implies that all
current that flows into a volume element must flow out. This condition can be written

Combining Eq. (4.21) with (4.22), we find that potential in the electrolytic solution obeys the
Laplace equation.

In contrast to the potential in the real system, the potential in the electrolytic analog is
maintained by a real current flow. Thus, energy is available for electrical measurements. A
high-impedance probe can be inserted into the solution without seriously perturbing the fields.
Although the electrolytic method could be applied to three-dimensional problems, in practice it is
usually limited to two-dimensional simulations because oflimitations on insertion of a probe. A
typical setup is shown in Figure 4.13. Following the arguments given above, it is easy to show
that a tipped tank can be used to solve for potentials in cylindrically symmetric systems.

4.4 ELECTROSTATIC QUADRUPOLE FIELD

Although numerical calculations are often necessary to determine electric and magnetic fields in
accelerators, analytic calculations have advantages when they are tractable. Analytic solutions
show general features and scaling relationships. The field expressions can be substituted into
equations of motion to yield particle orbit expressions in closed form. Electrostatic solutions for a
wide variety of electrode geometries have been derived. In this section. we will examine the
quadrupole field, a field configuration used in all high-energy transport systems. We will
concentrate on the electrostatic quadrupole; the magnetic equivalent will be discussed in Chapter
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Ex � �kx � Eox/a, (4.23)

Ey � �ky � �Eoy/a. (4.24)

�φ/�x � �Eox/a, �φ/�y � �Eoy/a,

φ � �Eox
2/2a � f(y) � C, φ � �Eoy

2/2a � g(x) � C �.

φ(x,y) � (Eo/2a) (y2
� x2). (4.25)

φ(x,y)
Eoa/2

�

y
a

2

�

x
a

2

. (4.26)

5.
The most effective procedure to determine electrodes to generate quadrupole fields is to work

in reverse, starting with the desired electric field distribution and calculating the associated
potential function. The equipotential lines determine a set of electrode surfaces and potentials that
generate the field. We assume the following two-dimensional fields:

It is straightforward to verify that both the divergence and curl ofE are zero. The fields of Eqs.
(4.23) and (4.24) represent a valid solution to the Maxwell equations in a vacuum region. The
electric fields are zero at the axis and increase (or decrease) linearly with distance from the axis.
The potential is related to the electric field by

Integrating the partial differential equations

Takingφ(0, 0) = 0, both expressions are satisfied if

This can be rewritten in a more convenient, dimensionless form:

Equipotential surfaces are hyperbolas in all four quadrants. There is an infinite set of electrodes
that will generate the fields of Eqs. (4.23) and (4.24). The usual choice is symmetric electrodes on
the equipotential linesφo = ±E oa/2. Electrodes, field lines, and equipotential surfaces are plotted
in Figure 4.14. The quantitya is the minimum distance from the axis to the electrode, and Eo is
the electric field on the electrode surface at the position closest to the origin. The equipotentials in
Figure 4.14 extend to infinity. In practice, focusing fields are needed only near the axis. These
fields are not greatly affected by terminating the electrodes at distances a few times a from
the axis.
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��E � (ρ1 � ρ2 � ρ3)/εo. (4.27)

E � E1(applied) � E2(dielectric) � E3(spacecharge). (4.28)

4.5 STATIC ELECTRIC FIELDS WITH SPACE CHARGE

Space chargeis charge density present in the region in which an electric field is to be calculated.
Clearly, space charge is not included in the Laplace equation, which describes potential arising
from charges on external electrodes. In accelerator applications, space charge is identified with
the charge of the beam; it must be included in calculations of fields internal to the beam. Although
we will not deal with beam self-fields in this book, it is useful to perform at least one space charge
calculation. It gives insight into the organization of various types of charge to derive electrostatic
solutions. Furthermore, we will derive a useful formula to estimate when beam charge can be
neglected.

Charge density can be conveniently divided into three groups: (1) applied, (2) dielectric, and (3)
space charge. Equation 3.13 can be rewritten

The quantityρ1 is the charge induced on the surfaces of conducting electrodes by the application
of voltages. The second charge density represents charges indielectric materials. Electrons in
dielectric materials cannot move freely. They are bound to a positive charge and can be displaced
only a small distance. The dielectric charge density can influence fields in and near the material.
Electrostatic calculations with the inclusion ofρ2 are discussed in Chapter 5. The final charge
density,ρ3, represents space charge, or free charge in the region of the calculation. This usually
includes the charge density of the beam. Other particles may contribute toρ3, such as low-energy
electrons in a neutralized ion beam.

Electric fields have the property of superposition. Given fields corresponding to two or more
charge distributions, then the total electric field is the vector sum of the individual fields if the
charge distributions do not perturb one another. For instance, we could calculate electric fields
individually for each of the charge components,El, E2, andE3. The total field is

Only the third component occurs in the example of Figure 4.15. The cylinder with uniform charge
density is a commonly encountered approximation for beam space charge. The charge density is
constant,ρo, from r = 0 to r = rb. There is no variation in the axial (z) or azimuthal (θ) directions
so that�/�z = �/�θ = 0. The divergence equation (3.13) implies that there is only a radial
component of electric field. Because all field lines radiate straight outward (or inward forρo < 0),
there can be no curl, and Eq. (3.11) is automatically satisfied.
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1
r

d(rEr)

dr
�

ρo

εo

. (4.29)

Er(r < rb) �
ρor

2εo

. (4.30)

Er(r > rb) �
ρor

2
b

2εor
. (4.31)

Inside the charge cylinder, the electric field is determined by

Electric field lines are generated by the charge inside a volume. The size of the radial volume
element goes to zero near the origin. Since no field lines can emerge from the axis, the condition
Er(r = 0) = 0 must hold. The solution of Eq. (4.29) is

Outside the cylinder, the field is the solution of Eq. (4.29) with the right-hand side equal to zero.
The electric field must be a continuous function of radius in the absence of a charge layer. (A
charge layer is a finite quantity of charge in a layer'of zero thickness; this is approximately the
condition on the surface of an electrode.) Thus, Er(r = rb

+) = Er(r = rb
-), so that

The solution is plotted in Figure 4,16. The electric field increases linearly away from the axis in
the charge region. It decreases as1/r for r > r b because the field lines are distributed over a larger
area.

The problem of the charge cylinder can also be solved through the electrostatic potential. The
Poisson equation results when the gradient of, the potential is substituted in Eq. (3.13):
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�
2φ � �

ρ(x)
εo

, (4.32)

1
r

d
dr

r
dφ
dr

� �

ρo

εo

. (4.33)

φ(r < rb) � �

ρor
2

4εo

, (4.34)

φ(r > rb) � �

ρor
2
b

4εo

2 ln
r
rb

� 1 . (4.35)

�6Φ(i,j,k) � Φ(i�1,j,k) � Φ(i�1,j,k) � Φ(i,j�1,k)

� Φ(i,j�1,k) � Φ(i,j,k�1) � Φ(i,j,k�1) � �ρ(x,y,z)∆3/∆εo.
(4.36)

or

The solution to the Poisson equation for the charge cylinder is

The potential is also plotted in Figure 4.16.
The Poisson equation can be solved by numerical methods developed in Section 4.2. If the finite

difference approximation to�2φ [Eq. (4.14)] is substituted in the Poisson equation in Cartesian
coordinates (4.32) and both sides are multiplied by∆2, the following equation results:
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Φ(i,j,k) � 1/6 [Φ(i�1,j,k) � Φ(i�1,j,k) � Φ(i,j�1,k)

� Φ(i,j�1,k) � Φ(i,j,k�1) � Φ(i,j,k�1)] � Q(i,j,k)/6εo.
(4.37)

R(i,j,) � 1/4 [Φ(i�1,j) � Φ(i�1,j) � Φ(i,j�1) � Φ(i,j�1)]

� Φ(i,j) � Q(i,j)/4εo .
(4.38)

� B�dl � µo �� jzdA � µoI. (4.39)

B
θ
� µoI/2πr. (4.40)

The factorρ∆3 is approximately the total charge in a volume∆3 surrounding the mesh point(i, j,k)
when (1) the charge density is a smooth function of position and (2) the distance∆ is small
compared to the scale length for variations inρ. Equation (4.36) can be converted to a finite
difference equation by defining Q(i, j, k) =ρ(x, y, z)∆3. Equation (4.36) becomes

Equation (4.37) states that the potential at a point is the average of 'its nearest neighbors elevated
(or lowered) by a term proportional to the space charge surrounding the point.

The method of successive relaxation can easily be modified to treat problems with space charge.
In this case, the residual [Eq. (4.16)] for a two-dimensional problem is

4.6 MAGNETIC FIELDS IN SIMPLE GEOMETRIES

This section illustrates some methods to find static magnetic fields by direct use of the Maxwell
equations [(4.3) and (4.4)]. The fields are produced by current-carrying wires. Two simple, but
often encountered, geometries are included: the field outside a long straight wire and the field
inside of solenoidal winding of infinite extent.

The wire (Fig. 4.17) has currentI in thez direction. There are no radial magnetic field lines
since��B = 0. There is no component Bz since the fields must be perpendicular to the current.
Thus, magnetic field lines are azimuthal. By symmetry, the field lines are circles. The magnitude of
the azimuthal field (or density of lines) can be determined by rewriting the static form of Eq.
(3.12) in integral form according to the Stokes law [Eq. (4.7)],

Using the fact that field lines are circles, we find that
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1
r

�(rBr)

�r
�

�Bz

�z
� 0,

�Br

�z
�

�Bz

�r
� 0. (4.41)

Bo � µo J � µo (N/L) I. (4.42)

The solenoidal coil is illustrated in Figure 4.18. It consists of a helical winding of insulated wire
on a cylindrical mandrel. The wire carries currentI. The quantity(N/L) is the number of turns per
unit length.Solenoidderives from the Greek word for pipe; magnetic field lines are channeled
through the windings. In a finite length winding, the field lines return around the outside. We will
consider the case of an infinitely long structure with no axial variations. Furthermore, we assume
there are many windings over a length comparable to the coil radius, or (N/L)rc » 1. In this limit,
we can replace the individual windings with a uniform azimuthal current sheet. The sheet has a
current per unit lengthJ (A/m) = (N/L)I.

The current that produces the field is azimuthal. By the law of Biot and Savart, there can be no
component of azimuthal magnetic field. By symmetry, there can be no axial variation of field. The
conditions of zero divergence and curl of the magnetic field inside the winding are written

Setting�/�z equal to zero in Eqs. (4.41); we find thatBr is zero and thatBz has equal magnitude
at all radii. The magnitude of the axial field can be determined by applying Eq. (4.39) to the loop
illustrated in Figure 4.18. The field outside a long solenoid is negligible since return magnetic flux
is spread over a large area. There are no contributions to the loop integral from the radial
segments because fields are axial. The only component of the integral comes from the part of the
path inside the solenoid, so that

Many magnetic confinement systems for intense electron beams or for high-temperature plasmas
are based on a solenoidal coil bent in a circle and connected, as shown in Figure 4.19. The
geometry is that of a doughnut ortoruswith circular cross section. The axial fields that circulate
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around the torus are calledtoroidal field lines. Field lines are continuous and self-connected. All
field lines are contained within the winding. The toroidal field magnitude inside the winding is not
uniform. Modification of the loop construction of Figure 4.19 shows that the field varies as the
inverse of the major radius. Toroidal field variation is small when the minor radius (the radius of
the solenoidal windings) is much less than the major radius.
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Bx � �Az/�y, By � ��Az/�x. (4.43)

dAz � 0 � (�Az/�x) dx � (�Az/�y) dy. (4.44)

4.7 MAGNETIC POTENTIALS

The magnetic potential and the vector potential aid in the calculation of magnetic fields. In this
section, we will consider how these functions are related and investigate the physical meaning of
the vector potential in a two-dimensional geometry. The vector potential will be used to derive
the magnetic field for a circular current loop. Assemblies of loop currents are used to generate
magnetic fields in many particle beam transport devices.

In certain geometries, magnetic field lines and the vector potential are closely related. Figure
4.20 illustrates lines of constant vector potential in an axially uniform system in which fields are
generated by currents in thez direction. Equation (3.24) implies that the vector potential has only
an axial component,Az. Equation (3.23) implies that

Figure 4.20 shows a surface of constantAz in the geometry considered. This line is defined by
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dy/dx � By/Bx. (4.45)

Bx � �Um/�x, By � �Um/�y. (4.46)

dUm � (�Um/�x) dx � (�Um/�y) dy � Bxdx � Bydy.

dy/dx � �By/Bx. (4.47)

Az � ±½µoI ln(x �2
�y �2)/2π.

Az �
µoI

4π
ln

(x�d)2
�y2

(x�d)2
�y2

.

Substituting Eqs. (4.43) into Eq. (4.44), an alternate equation for a constantAz line is

Equation (4.45) is also the equation for a magnetic field line. To summarize, when magnetic fields
are generated by axial currents uniform inz, magnetic field lines are defined by lines of constant
Az.

A similar construction shows that magnetic field lines are normal to surfaces of constant
magnetic potential. In the geometry of Figure 4.20,

by the definition ofUm. The equation for a line of constantUm is

Lines of constant magnetic potential are described by the equation

Analytic geometry shows that the line described by Eq. (4.47) is perpendicular to that of Eq.
(4.45).

The correspondence of field lines and lines of constantAz can be used to find magnetic fields of
arrays of currents. As an example, consider the geometry illustrated in Figure 4.21. Two infinite
length wires carrying opposed currents±I are separated by a distance2d. It is not difficult to
show that the vector potential for a single wire is

where the origin of the coordinate system(x', y') is centered on the wire. The total vector
potential is the sum of contributions from both wires. In terms of the coordinate system(x, y)
defined in Figure 4.21, the total vector potential is

Lines of constantAz (corresponding to magnetic field tines) are plotted in Figure 4.21.
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j
θ
� I δ(z�) δ(r �

�a). (4.48)

There are many instances in accelerator applications in which magnetic fields are produced by
azimuthal currents in cylindrically symmetric systems. For instance, the field of a solenoidal lens
(Section 6.7) is generated by axicentered current loops of various radii. There is only one nonzero
component of the vector potential,A

θ
. It can be shown that magnetic field lines follow surfaces of

constant2πrA
θ
. The function 2πrA

θ
is called thestream function. The contribution from many

loops can be summed to find a net stream function.
The vector potential of a current loop of radiusa (Fig. 4.22) can be found by application of Eq.

(3.24). In terms of cylindrical coordinates centered at the loop axis, the current density is

Care must be exercised in evaluating the integrals, since Eq. (3.24) holds only for a Cartesian
coordinate system. The result is
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A
θ
�

µoIa

4π �

2π

0

cosθ�dθ�

(a 2
� r 2

� z2
� 2ar cosθ�)½

. (4.49)

M � 4ar/(a 2
� r 2

� z2
� 2ar),

A
θ
�

µoIa

π (a 2
� r 2

� z2
� 2ar)½

(2�M) K(M) � 2 E(M)
M

. (4.50)

Defining the quantity

Eq. (4.49) can be written in terms of the complete elliptic integrals E(M) and K(M) as

Although the expressions in Eq. (4.50) are relatively complex, the vector potential can be
calculated quickly on a computer. Evaluating the elliptic integrals directly is usually ineffective
and time consuming. A better approach is to utilize empirical series tabulated in many
mathematical handbook s. These series give an accurate approximation in terms of power series
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K(M) � 1.38629� 0.111972(1�M) � 0.0725296(1�M)2

� [0.50000� 0.121348(1�M) � 0.0288729(1�M)2)] ln(1/(1�M)l
(4.51)

E(M) � 1�0.463015(1�M) � 0.107781(1�M)2

� [0.245273(1�M) � 0.0412496(1�M)2] ln[1/(1�M)].
(4.52)

Bz �
1
r

�(rA
θ
)

�r
, Br � �

�A
θ

�z
. (4.53)

A
θ
(r,z) �

µoIa

4π �

2π

0

cosθ� dθ�

a 2
�z2

�

arcos2θ� dθ�

a 2
�z2 3

. (4.54)

A
θ
�

µoIa
2r

4 a 2
�z2 3

. (4.55)

Bz(0,z) �
µoIa

2

2 a 2
�z2 3

. (4.56)

and elementary transcendental functions. For example, the elliptic integrals are given to an
accuracy of 4 x 10-5 by [adapted from M. Abramowitz and I. A. Stegun, Eds.,Handbook of
Mathematical Functions (Dover, New York, 1970), p. 591].

(4.52)

The vector potential can be calculated for multiple coils bv transforming coordinates and then
summingA

θ
. The transformations arez�(z - zcn) anda � rcn, wherezcn andrcn are the coordinates

of thenth coil. Given the net vector potential, the magnetic fields are

A quantity of particular interest for paraxial orbit calculations (Section 7.5) is the longitudinal
field magnitude on the axisBz(0, z). The vector potential for a single coil [Eq. (4.49)] can be
expanded for r « a as

The integral of the first term is zero, while the second term gives

Applying Eq. (4.53), the axial field is
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Bz(0,z) � (B1�B2) � (�B1/�z � �B2/�z) z

� (�2B1/�z2
� �

2B2/�z2) z2
�...

Bz � µoI / (1.25)3/2 a (4.57)

We can use Eq. (4.56) to derive the geometry of the Helmholtz coil configuration. Assume that
two loops with equal current are separated by an axial distanced. A Taylor expansion of the axial
field near the axis about the midpoint of the coils gives

The subscript1 refers to the contribution from the coil atz = - d/2, while 2 is associated with the
coil at z = + d/2. The derivatives can be determined from Eq. (4.56). The zero-order components
from both coils add. The first derivatives cancel at all values of the coil spacing. At a spacing ofd
= a, the second derivatives also cancel. Thus, field variations near the symmetry point are only on
the order of(z/a)3 . Two coils withd = a are called Helmholtz coils. They are used when a weak
but accurate axial field is required over a region that is small compared to the dimension of the
coil. The field magnitude for Helmholtz coils is
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5

Modification of Electric and Magnetic Fields
by Materials

Certain materials influence electric and magnetic fields through bound charges and currents. Their
properties differ from those of metals where electrons are free to move. Dielectric materials
contain polar molecules with spatially displaced positive and negative charge. Applied electric
fields align the molecules. The resulting charge displacement reduces the electric field in the
material and modifies fields in the vicinity of the dielectric. There are corresponding magnetic field
effects in paramagnetic and ferromagnetic materials. These materials contribute to magnetic fields
through orientation of atomic currents rather than a macroscopic flow of charge as in a metal.

Although the responses of materials to fields differ in scale, the general behavior is similar in
form. This is the reason the contributions of dielectric and magnetic materials were singled out in
Section 4.5 asρ2 and j2 It is often useful to define new field quantities that automatically
incorporate the contributions of bound charges and currents. These quantities areD (the electric
displacement vector) andH (the magnetic field intensity).

The study of the properties of dielectric and magnetic materials (including subsidiary field
quantities and boundary conditions) is not conceptually exciting. This is especially true for
ferromagnetic materials where there is considerable terminology. Nonetheless, it is essential to
understand the properties of dielectric and ferromagnetic materials since they have extensive uses
in all types of accelerators.
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A partial list of applications of dielectric materials includes the following:

1. Electric field distributions can be modified by adjustment of dielectric-vacuum boundaries.
For example, dielectric boundary conditions must be applied to determine optimum shapes of
high-voltage vacuum insulators.

2. Dielectrics can store more electrostatic field energy than vacuum. The high-energy storage
density of water (80 times that of vacuum) is the basis for much of modern pulsed power
technology.

3. Dielectrics reduce the velocity of propagation of electromagnetic waves (or photons). This
helps to match the velocities of rf waves and high-energy particles for resonant acceleration. This
effect is also important in designing energy storage transmission lines for pulse modulators.

All high-energy accelerators utilize ferromapetic materials. The following are some important
applications.

1. Ferromagnetic materials shape magnetic fields. They play a role analogous to electrodes in
electrostatics. Shaped iron surfaces (poles) are utilized to generate complex field distributions for
focusing and bending magnets.

2. Ferromagnetic materials amplify the flux change produced by a real current. The resulting
increased inductance is essential to the operation of transformers. Inductive isolation is the basis
of the betatron and linear induction accelerator.

3. Ferromagnetic materials convey magnetic field lines in a manner analogous to the conduction
of current by a low-resistivity wire. This effect leads to substantial reductions in power
requirements for beam transport magnets.

4. The nonlinear response of a ferromagnetic material to an applied field can be utilized for fast,
high-power switching.

The physics of dielectric and ferromagnetic materials is reviewed in this chapter. Special
emphasis is placed on the concept of the magnetic circuit. A section is included on permanent
magnet circuits.

5.1 DIELECTRICS

Dielectric materials are composed ofpolar molecules. Such molecules have spatially separated
positive and negative charge. The molecules may be either bound in one position (solids) or free
to move (liquids and gases). Figure 5.la shows a diagram of a water molecule. The
electronegative oxygen atom attracts the valence electrons of the hydrogen atoms, leaving an
excess of positive charge at the locations of the hydrogen atoms.
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In the absence of an applied electric field, the molecules of a dielectric are randomly oriented (Fig.
5.1b). This results from the disordering effects of thermal molecular motion and collisions.
Molecular ordering cannot occur spontaneously because a net electric field would result. With no
external influence, there is no source of energy to generate such fields (Section 5.6). The
randomized state is the state of lowest net energy (thermodynamic equilibrium).

Applied electric fields act on the charges of a polar molecule to align it as shown in Figure 5.1c.
On the average, the molecular distribution becomes ordered as the change in electrostatic
potential energy counteracts the randomizing thermal kinetic energy. The macroscopic effect of
molecular alignment is shown in Figure 5.1d. Inside the material, a shifted positive charge in
one molecule is balanced by a shifted negative charge of a nearby molecule. On the average, there
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E �

E1

ε/εo

� E1 � E2. (5.1)

is no net internal charge to contribute to fields. This balance does not occur on the surfaces. An
applied electric field results in positive and negative charge layers at opposite surfaces. The field
produced by these layers inside the dielectric is opposed to the applied field.

The simplest geometry to consider is a one-dimensional dielectric slab in a region of uniform
applied electric field. The applied field is produced by a voltage difference between two parallel
plates (Fig. 5.1d). The electric field resulting from the charges on the plates (Section 3.2) is
denotedE1. The surface charges induced on the dielectric produce a field,-E2. The total field
inside the dielectric isE = E1 - E2. Most dielectrics have the property that the degree of
orientation of polar molecules is linearly proportional to the applied field at typical field strengths.
Thus, the surface charge density is proportional to applied field, andE2 � E1.

The linear response of dielectrics comes about because the degree of alignment of molecules is
small at normal temperatures and field strength. Increased applied field strength brings about a
proportional increase in the orientation. Nonlinear effects are significant when the dielectric
approachessaturation. In a saturated state, all molecules are aligned with the field so that
an increase in applied field brings about no increase in surface charge. We can estimate the
magnitude of the saturation electric field. At room temperature, molecules have about 0.025 eV
of thermal kinetic energy. Saturation occurs when the electrostatic potential energy is comparable
to the thermal energy. The decrease in potential energy associated with orientation of a polar
molecule with charge separationd is qE1d. Takingq = e andd = 1 � (10-10 m), E1 must be on the
order of 250 MV/m. This is much higher than the strongest fields generated in rf accelerators, so
that the linear approximation is well satisfied. In contrast, saturation effects occur in
ferromagnetic materials at achievable values of applied magnetic field.

The net electric field inside a linear dielectric is proportional to the applied field. The constant of
proportionality is defined by

The quantityε/εo is the relative dielectric constant. Ordinary solid or liquid dielectrics reduce the
magnitude of the electric field, so thatε/εo > 1. Equation (5.1) is written in vector notation. This
result can be derived from the above one-dimensional arguments by considering a differential
cubic volume and treating each component of the field separately. This approach holds if the
material is isotropic (liquids, glass). Equation (5.1) may not be valid for some solid materials. For
instance, if polar molecules are bound in a crystal lattice, their response to an applied field may
vary depending on the orientation of the field with respect to the crystal axes. The dielectric
constant depends on the alignment of the field relative to the crystal. Such materials are called
bifringent.
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D � εo (E1 � E3). (5.2)

Water is a commonly encountered isotropic dielectric medium in electrical energy storage
applications. The relative dielectric constant of liquid water is plotted in Figure 5.2 versus
temperature and the frequency of an oscillating applied electric field. The low-frequency value is
high since water molecules have large charge separation. The dielectric constant decreases with
increasing temperature. This comes about because the molecules have higher thermal energy;
therefore, they do not align as strongly in an applied electric field. At constant temperature, the
relative dielectric constant decreases at high frequency (the microwave regime). This is because
the inertia of the water molecules retards their response to the oscillating electric field. The
alignment of the molecules lags in phase behind the electric field, so that the medium extracts
energy from the field. Thus, water is not an ideal dielectric at high frequency. The loss process is
usually denoted by an imaginary part of the dielectric constant,ε". Higher temperatures randomize
molecular motion and lessen the relative effect of the ordered phase lag. This explains the unusual
result that the absorption of high-frequency electric fields in water is reduced at higher
temperature.

It is useful to define thedisplacement vectorD when the dielectric is linear. The displacement
vector is proportional to the sum of field components excluding the contribution of dielectrics, or
(in the notation of Chapter 4)
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D � εE. (5.3)

��D � 0, ��E � 0. (5.4)

� �
ε(x)
εo

�φ � 0. (5.5)

Thus,D arises from free charges (either on electrodes or in the volume). Combining Eqs. (5.1)
and (5.2) the electric displacement is related to the net field inside a dielectric region by

If a dielectric is inserted into a vacuum field region (Section 4.1), the following equations hold:

The meaning of these equations is illustrated in Figure 5.3. A thin differential volume element that
includes a vacuum-dielectric boundary is illustrated. There is no flux ofD lines out of the volume
since there are no free charges to act as sources. The divergence ofE is nonzero because the
magnitude is different on both faces. The volume includes a net positive charge in the form
of the dielectric surface charge.

When dielectrics are included in a vacuum region, the Laplace equation can be written

Equation (5.5) proceeds from Eq. (5.4), which implies that��εE = 0. The potential is still given
by -�φ = E since the force on a particle depends on the net electric field, independent of the
sources of the field. Numerical methods to solve Eq. (5.5) are similar to those of Section 4.2. A
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value of the relative dielectric constant is associated with each point and must be included in the
finite difference formulation of the Laplacian operator.

The concept of the dielectric constant often leads to confusion in treating plasmas. A plasma is a
relatively dense region of equal positive and negative free charges (Fig. 5.4). The clearest
approach to describe the interactions of plasmas and electric fields is to include the electron and
ion space charge as contributions toρ3 (free space charge). Nonetheless, it is a common practice
to introduce the concept of a plasma dielectric constant to describe phenomena such as the
refraction of optical radiation. This permits utilization of familiar optical definitions and equations.
Referring to the plasma slab illustrated in Figure 5.4a, the plasma dielectric constant is clearly
undefined for a steady-state applied field since positive and negative charges are free to move in
opposite directions. At very low frequency, plasmas support real currents, as in a metal
conductor. When a medium-frequency ac electric field is applied, the heavy ions are relatively
immobile. The electrons try to move with the field, but
displacements lead to charge separation. The space charge tield acts to cancel the applied field.
The electrons are thus bound to the ions. The result is that at medium frequency, electric fields are
excluded from plasmas. Alternatively, the plasma can be described by a relative dielectric constant
much greater than unity. Note the geometric similarity between Figure 5.4b and 5.1d. At high
frequencies, electron inertia becomes an important factor. At high frequencies (such as the optical
regime), the electron motion is 180� out of phase with applied electric fields. In this case, the
electron space charge (oscillating about the immobile positive charge) adds to the applied field,
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Figure 5.5. Infrared laser interferogram of plasma in dense neutral backgrounds. (a) Exploding
wire: note that the dense expanding neutrals cause an upward shift of fringes (ε/εo > 1) while the
electrode plasma causes a downward fringe shift (ε/εo < 1). (b) Spark in atmospheric air: dense
plasma causes a downward shift. (Photographs by the author.)

so thatε/εo < 1. Plasmas are a very unusual dielectric material at high frequencies. This effect is
important in laser interferometry of plasmas. Figure 5.5 shows far-infrared holographic
interferograms of an exploding wire and a plasma spark in atmospheric air. The direction of
displacement of the fringes shows the dielectric constant relative to vacuum. Note that there are
displacements in both directions in Figure 5.5a because of the presence of a dense shock wave
of neutrals (ε/εo > 1) and an electrode plasma (ε/εo < 1).

5.2 BOUNDARY CONDITIONS AT DIELECTRIC SURFACES

Methods for the numerical calculation for vacuum electric fields in the presence of dielectrics
were mentioned in Section 5.1. There are also numerous analytic methods. Many problems
involve uniform regions with different values ofε/εo. It is often possible to find general forms of
the solution in each region by the Laplace equation, and then to determine a general solution by
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�� dA (εoE�α
� εE

�β
) � 0.

matching field components at the interfaces. In this section, we shall consider how electric fields
vary passing from a region withε/εo � 0 to a vacuum. Extensions to interfaces between two
dielectrics is straightforward.

The electric fields at a dielectric-vacuum interface are divided into components parallel and
perpendicular to the surface (Fig. 5.6). The magnitude of the electric field is different in each
region (Section 5.1); the direction may also change. The relationship between field components
normal to the interface is demonstrated by the construction of Figure 5.6b. A surface integral is
taken over a thin volume that encloses the surface. The main contributions come from integration
over the faces parallel to the surface. Using Eq. (5.3) and the divergence theorem,
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E
�β

/E
�α
� εo/ε, (5.6)

E
�α
� E

�β
. (5.7)

This gives the matching condition for perpendicular field components,

Matching conditions for the parallel field components can be determined from the construction of
Figure 5.6c. A slab of dielectric extends between two parallel metal plates at different voltages.
The dielectric-vacuum interface is normal to the plates. The geometry of Figure 5.6c is the
simplest form of capacitor. The charges that produce the electric field must be moved against the
potential difference in order to charge the plates. During this process, work is performed on the
system; the energy can be recovered by reversing the process. Thus, the capacitor is a storage
device for electrostatic energy.

In the absence of the dielectric, electric field lines normal to the plates are produced by positive
and negative surface charge layers on the plates. When the dielectric is introduced, polarization
charge layers are set up that try to reduce the electric field inside the dielectric. Because there is
no net charge between the plates or inside the dielectric, the condition��E = 0 holds everywhere
between the plates. Field lines are thus straight lines parallel to the dielectric-vacuum interface.
The integral -�E�dx has the constant value Vo on any path between the equipotential plates. In
particular, the integral can be taken just inside and outside the dielectric interface. This implies
that the parallel electric field is the same inside and outside the dielectric surface. This fact can be
reconciled with the presence of the polarization charge by noting that additional surface charge is
distributed on the plates. The extra charge cancels the effect of polarization charge on the electric
field, as shown in Figure 5.6 c.

The matching condition for parallel components of electric field at a dielectric-vacuum surface is

The construction also shows that a dielectric fill allows a capacitor to store more plate charge at
the same voltage. Since the electrostatic energy is proportional to the charge, the energy density is
proportional toε/εo. This explains the predominance of water as a medium for high-power
density-pulsed voltage systems. Compact high-voltage capacitors are produced using barium
titanate, which has a relative dielectric constant which may exceed 104.

The combined conditions of Eqs. (5.6) and (5.7) imply that the normal components of electric
field lines entering a medium of highε/εo from vacuum are small. Inside such a medium, electric
field lines are thus bent almost parallel to the interface. Figure 5.7 shows an example of applied
dielectric boundary conditions. Equipotential lines are plotted at the output of a high-power,
water-filled pulser. The region contains water (ε/εo= 80), a lucite insulator (ε/εo � 3), and a
vacuum region (ε/εo= 1) for electron beam acceleration. The aim of the designer was to distribute
equipotentials evenly across the vacuum side of the insulator for uniform field stress and to shape
boundaries so that field lines enter the surface at a 45' angle for optimum hold-off (see Section
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9.5). Note the sharp bending of equipotential lines at the lucite-water boundary. The
equipotentials in the water are evenly spaced straight lines normal to the boundary. They are
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pm � I (πa 2). (5.8)

relatively unaffected by the field distribution in the low dielectric constant region.

5.3 FERROMAGNETIC MATERIALS

Some materials modify applied magnetic fields by alignment of bound atomic currents. Depending
on the arrangement of electrons, atoms may have a magnetic moment. This means that the
circulating electrons produce magnetic fields outside the atom. The fields, illustrated in Figure
5.8, have the same form as those outside a circular current loop (Section 4.7); therefore, the
circular loop is often used to visualize magnetic interactions of atoms. The magnetic momentpm

of a loop of radius a carrying a currentI is
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pm � ±meh/4πme, (5.9)

h � 6.63×10�34 J�s,

B � (µ/µo) B1 � B1 � B2. (5.10)

H � B1/µo.

In classical physics, the atomic pm is visualized to originate from the circular current loop of a
valenc electron rotating about the atom. The currentI is aboutqev/2πa (wherev is the orbital
velocity) anda is about 1�. Although this gives a rough estimate of a typical atomic pm the
microscopic problem must be approached by quantum mechanics. The correct result is that the
magnetic moment is quantified, and can have values

whereh is the Planck constant

andm is an integer which depends on the arrangement of electrons in the atom.
On a macroscopic scale, when two fixed adjacent current loops have the same orientation, the

magnetic forces act to rotate the loops to opposite polarity (Fig. 5.9a). This is a consequence of
the fact that when the magnetic moments are aligned antiparallel, magnetic fields cancel so that
the field energy is minimized. With no applied field, atomic currents are oriented randomly, and
there is no macroscopic field. The situation is analogous to that of molecules in a dielectric.
Material that can be described by this classical viewpoint is calledparamagnetic, which means
"along or parallel to the field." Reference to Figure 5.9b shows that when a magnetic field is
applied to a paramagnetic material, the atomic currents line up so that the field inside the loop is
in the same direction as the applied field while the return flux is in opposition. As in dielectrics,
the fractional alignment is small since the change in magnetostatic energy is much less than the
average thermal energy of an atom. Figure 5.9c shows what the net magnetic field looks like when
magnetic moments of atoms in a dense medium are aligned; there is an increase of magnetic flux
inside the material above the applied field. Negative flux returns around the outside of the
material. A view of the atomic and real currents normal to the applied field clarifies the process
(Fig. 5.9d). Alignment of magnetic moments does not produce a net atomic current inside the
material, but results in a surface current in the same direction as the applied field. The surface
current is the magnetic analogy of the surface charge of dielectrics.

The field inside a paramagnetic material is approximately proportional to the applied field, or

The quantity µ/µo is therelative permeability. The magnetic field intensityH is a vector quantity
proportional to the magnetic field minus the contribution of atomic material currents, or
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H � B/µ. (5.11)

� B1�dl � µoI1.

The field intensity is related to the magnetic field inside a magnetic material by

Magnetic fields obey the principle of superposition. Equation (4.39) can be written
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� H�dl � I1. (5.12)

for the applied fields. This can be expressed in terms of H by

Thus, the magnetic intensity is determined only by free currents and has the dimensions amperes
per meter in the mks system.

The relative permeability in typical paramagnetic materials is only about a factor of 10-6 above
unity. Paramagnetic effects are not important in accelerator applications. Ferromagnetic materials,
on the other hand, have µ/µo factors that can be as high as 10,000. This property gives them many
important uses in magnets for charged particle acceleration and transport. Ferromagnetism is a
quantum mechanical phenomenon with no classical analogy. In some materials (chiefly iron,
nickel, and iron alloys), the minimum energy state consistent with the exclusion principle has
atomic magnetic moments aligned parallel rather than antiparallel. The energy involved in this
alignment is greater than thermal kinetic energies at room temperature. On a microscopic
scale, all the magnetic moments in a ferromagnetic material are aligned in the minimum energy
state.

Alignment does not extend to macroscopic scales. Macroscopic alignment of magnetic moments
produces fields outside the material which require additional energy. Two opposing factors are
balanced in ferromagnetic materials in the minimum energy state. On the microscopic scale,
minimum energy is associated with atomic alignment, while on the macroscopic scale minimum
energy is equivalent to maximum disorder. The situation is resolved by the formation of domains,
small regions in which all magnetic moments are aligned. On a macroscopic scale, the domains are
randomized (Fig. 5.10) so that there is no magnetic field outside the ferromagnetic material in its
ordinary state. The domain size (the separatrix between the quantum mechanical and classical
regimes) is about 10-5 cm, or 1000 atoms wide.

Ferromagnetic materials respond to applied magnetic fields by shifting domain boundaries to
favor domains aligned with the field. In contrast to paramagnetic materials, the resulting high
degree of atomic orientation produces large magnetic effects. Saturation (total alignment) can
occur at attainable applied field strengths (�2 T). Although the magnetic field is a monotonic



Modification of Electric and Magnetic Fields by Materials

91

∆B � µ(H) ∆H. (5.13)

µ(H) � (dB/dH)H.

function of the applied field, we cannot expect the response to be linear or reversible. Equation
(5.11) is no longer valid. We can preserve the concept of the permeability by considering the
response of ferromagnetic materials to small excursions in the applied field about an equilibrium
value. The small signal µ is defined by

or

5.4 STATIC HYSTERESIS CURVE FOR FERROMAGNETIC
MATERIALS

In this section we shall look in more detail at the response of ferromagnetic materials to an
applied field. In unmagnetized material, the directions of domains are randomized because energy
is required to generate magnetic fields outside the material. If the external magnetic field energy is
supplied by an outside source, magnetic moments may become orientated, resulting in large
amplified flux inside the material. In other words, an applied field tips the energy balance in favor
of macroscopic magnetic moment alignment.

A primary use of ferromagnetic materials in accelerators is to conduct magnetic flux between
vacuum regions in which particles are transported. We shall discuss relationships between fields
inside and outside ferromagnetic materials when we treat magnetic circuits in Section 5.7. In this
section we limit the discussion to fields confined inside ferromagnetic materials. Figure 5.11
illustrates such a case; a ferromagnetic torus is enclosed in a tight uniform magnet wire winding.
We want to measure the net toroidal magnetic field inside the material,B, as a function of the
applied fieldB1, or the field intensityH. The current in the winding is varied slowly so that applied
field permeates the material uniformly. The current in the winding is related toB1 through Eq.
(4.42). By Eq. (5.1 1),H = NI/L , hence the designation ofH in ampere-turns per meter. The
magnetic field inside the material could be measured by a probe inserted in a thin gap. A more
practical method is illustrated in Figure 5.11. The voltage from a loop around the torus in
integrated electronically. According to Section 3.5, the magnetic field enclosed by the loop of area
A can be determined fromB = � Vdt/A.

With zero current in the windings, a previously unmagnetized core has randomly orientated
domains and has no macroscopic magnetization (H = 0, B = 0). Domains become aligned as the
applied field is raised. BothH andB increase, as shown in Figure 5.12. The field in the material
(the sum of the applied and atomic contributions) may be over 1000 times that of the applied
field alone; thus, the small signal µ is high. At some value of applied field, all the domains are
aligned. This is calledsaturation. Beyond this point, there is no increase in the contribution of
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material currents to the field with increasing applied field; therefore, the small signal µ drops to
µo. The portion of theB-H curve from (H = 0, B = 0) to saturation (the dashed line in Fig. 5.12)
is called thevirgin magnetization curve. Unless the material is completely demagnetized, it will
not be repeated again.

The next step in the hypothetical measurement is to reduce the applied field. If the
magnetization process were reversible, the B-H curve would follow the virgin magnetization
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curve back to the origin. This does not happen since it takes energy to shift domain boundaries.
WhenH is returned to zero, the domains are energetically able to retain much of their alignment
so that the torus remains magnetized. This occurs because all field lines are contained in the torus
and no energy need be expended to produce external fields. The magnetization would be reduced
if there were an air gap in the core (see Section 5.8). If a reverse current is applied to the driving
circuit, the magnetic field will return to zero and eventually be driven to reverse saturation. The
B-H curve of a magnetic material exhibitshysteresisor nonreversibility. The term derives from a
Greek word meaning shortcoming or lagging. The B-H curve described is a particular case, the
saturation hysteresis curve. There is a nested family of hysteresis curves converging to the origin,
depending on the magnitude of current in the driving circuit.

Magnet engineering is based on some straightforward concepts and a large body of terminology.
A clear understanding of the definitions of magnetic properties is essential to utilize data on
magnetic materials. To facilitate this, important terms will be singled out in this section and in
Sections 5.7 and 5.8. Terms related to the hysteresis curve are illustrated in Figure 5.12. Most
data on magnetic materials and permanent magnets is given in cgs units, so it is important to
know the transformation of quantities between mks and cgs.

H Magnetic Intensity. Also called magnetizing force. The cgs unit is oersteds (Oe), where I A-
turn/m = 0.01256 Oe.

B Magnetic Induction Field. Also called magnetic field, magnetic induction, magnetic flux
density. The cgs unit is the gauss (G), where 1 tesla (T) = 104 gauss.

Bs Saturation Induction . The magnetic field in a ferromagnetic material when all domains are
aligned.

Hs The magnetizing force necessary to drive the material to saturation.

Hc Coercive Force. The magnetic intensity necessary to reduce the magnetization of a
previously saturated material to zero.

Br Remanence Flux. Also called residual induction. The value of the magnetic field on the
saturation hysteresis curve when the driving current is zero. It is assumed that all magnetic flux is
contained in the material.

Soft Magnetic Material. Ferromagnetic materials which require a small magnetizing force to be
driven to saturation, typically 10 Oe. The area enclosed by the saturation hysteresis curve is
relatively small, and we shall see that this is equivalent to small energy input to magnetize or
demagnetize the material. Soft magnetic materials are used to conduct field lines and as isolators
in induction accelerators.



Modification of Electric and Magnetic Fields by Materials

94

Hard Magnetic Materials . Ferromagnetic materials which require considerable energy to
reorient the domains. The coercive force can be as high as 8000 Oe. The large amount of energy
stored in hard magnetic materials during magnetization means that more energy is available to
produce fields external to the material. Hard magnetic materials are used for permanent magnets.
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Figure 5.13 shows hysteresis curves for carbon steel (a material used for magnet poles and return
flux yokes) and silicon steel (used for pulsed transformer cores).

5.5 MAGNETIC POLES

Figure 5.14 shows a boundary between a magnetic material with permeability µ and vacuum with
µo. A thin volume element encloses the boundarv. The equation��B = 0 implies that the integral
of the normal component ofB on the surfaces of the volume is zero (Fig. 5.14a). The main
contributions to the integral are from the upper and lower faces, so that

Noting that there is no free current enclosed, Eq. (5.12) can be applied around the periphery of
the volume (Fig. 5.14b). The main contributions to the circuital integral are on the faces.

or

For ferromagnetic materials (µ » µo), the parallel component of magnetic field outside the
ferromagnetic material is much smaller than the parallel component inside the material. Thus,
magnetic field lines just outside a ferromagnetic material are almost normal to the surface. This
simple boundary condition means that ferromagnetic materials define surfaces of constant
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magnetic potential Um. Ferromagnetic surfaces can be used to generate magnetostatic field
distributions in the same way that electrodes are used for electrostatic fields. Since both the
electrostatic and magnetic potentials satisfy the Laplace equation, all electrostatic solutions can be
applied to magnetic fields. Ferromagnetic surfaces used to shape magnetic field lines in a vacuum
(or air) region are calledpole pieces. By convention, magnetic field vectors point from the North
to the South pole. Figure 5.15 shows an example of a numeric calculation of magnetic fields for a
synchrotron magnet. Shaping of the pole piece near the gap provides the proper field gradient for
beam focusing.
The boundary condition is not valid when the pole material becomes saturated. In high-field
magnets, regions of high flux may become saturated before rest of the pole piece. This distorts the
magnetic field pattern. The fields of partially saturated magnets are difficult to predict. Note that
local saturation is avoided in the design of Figure 5.15 by proper shaping and avoidance of sharp
edges. This allows the maximum magnetic field without distortion. In the limit of fields well above
the saturation limit (» 2 T), the effective relative permeability decreases to unity and the field
pattern approaches that of the exciting coil only.

The analogy between electrostatic and magnetostatic solutions leads to the magnetic
quadrupole, illustrated in Figure 5.16. The pole pieces follow hyperbolic surfaces of constant
magnetic potential [Eq. (4.26)]. In contrast to the electrostatic quadrupole, thex-y forces on a
beam moving along thez axis are perpendicular to the magnetic field lines. It is usually more
convenient to analyze a magnetic quadrupole in terms ofx-y axes rotated 45� from those used for
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Bx � Boy/a, By � Box/a. (5.17)

E �

Q/A
ε

,

the electric field version. In the coordinate system of Figure 5.16, the magnetic field components
are

5.6 ENERGY DENSITY OF ELECTRIC AND MAGNETIC FIELDS

As mentioned in Section 3.2, the field description summarizes the electromagnetic interactions
between charged particles. Although exchange of energy in a system takes place between charged
particles, it is often more convenient to imagine that energy resides in the fields themselves. In this
section, we shall use two examples to demonstrate the correspondence between the
electromagnetic energy of particles and the concept offield energy density.

The electric field energy density can be determined by considering the parallel plate capacitor
(Fig. 5.6c). Initially, there is no voltage difference between the plates, and hence no stored charge
or energy. Charge is moved slowly from one plate to another by a power supply. The supply must
perform work to move charge against the increasing voltage. If the plates have a voltage
V', the differential energy transfer from the power supply to the capacitor to move an amount of
chargedQ' is ∆U = V'dQ'. Modifying Eq. (3.9) for the presence of the dielectric, the electric field
is related to the total charge moved between the plates by
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U � �

E

0

(E �d) (εAdE�) � (εE 2/2) (Ad). (5.18)

U(E) � εE 2/2 � D�E/2. (J/m3) (5.19)

U � �

B

0

NA
dB�

dt

B1C

Nµo

� AC �

B

0

H dB�. (5.20)

U(B) � �

B

0

H dB� (J/m3). (5.21)

U(B) � B 2/2µ � H�B/2 (J/m3). (5.22)

whereA is the area of the plates. In terms of incremental quantities during the charging cycle,dQ'
= ε dE'A. The voltage is related to the field throughV' = E'd. The total energy stored in the
capacitor proceeding from zero electric field toE is

The total energy can be expressed as the product of an energy density associated with the field
lines times the volume occupied by field (Ad). The electrostatic energy density is thus

The last form is the three-dimensional extension of the derivation.
The magnetic field energy density can be calculated by considering the toroidal core circuit of

Figure 5.11. Because the core is ferromagnetic, we will not assume a linear variation and
well-defined µ. The coil hasN turns around a circumferenceC. A power supply slowly increases
the current in the coil. To do this, it must counteract the inductive voltageV'. The energy
transferred from the power supply to the circuit is� V'Idt. The inductive voltage isV' =
NA(dB'/dt), whereB' is the sum of contributions to the field fromI and the atomic current of the
material. The applied field is related to the circuit current byB1 = µoNI/C. Summarizing the above
considerations,

Recognizing that the volume occupied by fields isAC, the magnetic field energy density is

If the relationship betweenB andH is known, the energy density of the final state can be
evaluated. For instance, with a linear variation (constant µ)

The magnetic field energy density in vacuum is B2/2µo.
The magnetic field energy density can be determined for nonlinear materials given the

appropriateB-H curve. For instance, consider magnetizing a ferromagnetic toroidal core
following the saturation hysteresis curve (Fig. 5.17a). Assume initially that the material is biased
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to -Br and a positive driving current is applied to bring it to+Bs (Fig. 5.17b). BothH anddB are
positive, so work must be performed by the power source. The energy transfer is given by the
shaded area of the graph (Fig. 5.17c) multiplied by the volume of the core. If the power supply is
turned off, the core returns to+Br. During this part of the cycle,H is positive butdB is negative,
so that some energy is returned to the supply as an induced voltage. This energy is denoted by the
darkly shaded portion of the graph; the net energy transfer in a half-cycle is the lightly shaded
remainder. A similar process occurs for negative H. In most inductionaccelerators, a full cycle is
traversed around the saturation hysterests curve for each beam pulse. An amount of energy equal
to the area circumscribed by the hysteresis curve is lost to the core in each full cvcle. This energy
is expended in the irreversible process of domain reorientation. It ultimately appears in the core in
the form of heat. In applications with continued and rapid recycling, it is clearly advantageous to
use a ferromagnetic material with the smallest hysteresis curve area (soft material).

5.7 MAGNETIC CIRCUITS

Magnetic fields used for charged particle transport are usually localized to small regions. This is
the case for a bending magnet where the beam traverses a narrow vacuum region of parallel field
lines. The condition of zero divergence implies that the field lines must curve around outside the
transport region to return to the gap. Thus, most of the volume occupied by magnetic field serves
no purpose for the application. If the surrounding region is vacuum or air (µ/µo = 1), most of the
power input to the magnet is consumed to support the return flux. A more practical geometry for
a bending magnet uses ferromagnetic material in the return flux region. We shall see that in this
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� (B/µ) � dl � NI. (5.23)

Ψ � BgAg � BcAc. (5.24)

Bg (g/µo) � Bc (l/µo) � NI,

Ψ (g/Agµo � l/Acµo) � NI. (5.25)

case magnetic flux outside the gap is supported by the atomic currents in the material, with very
little power required from the external supply.

The bending magnet is a circuit in the sense that the magnetic field lines circulate. Themagnetic
circuit has many analogies with electric circuits in which electrons circulate. The excitation
windings provide the motive force (voltage), the vacuum gap is the load (resistance), and the
ferromagnetic material completes the circuit (conducting wire). The magnetic circuit with iron
is useful primarily when there is a small, well-defined gap. In applications requiring large-volume
extended fields (such as hot plasma confinement devices for fusion reactors), there is little benefit
in using ferromagnetic materials. Furthermore, ferromagnetic materials lose their advantages
above their saturation field (typically 2 T). High-field applications (�6 T) have become practical
through the use of superconductors. There is no energy penalty in supporting return flux lines in
vacuum since the excitation windings draw no power.

Figure 5.18 illustrates the advantage of including ferromagnetic material in ordinary magnetic
circuits. Assume that both the air core and iron core geometries produce the same field,Bg, in
equal gaps. In order to compare the circuits directly, windings are included in the air core circuit
so that the return flux is contained in the same toroidal volume. The magnetic flux in any cross
section is a constant and is the same for both circuits. The gap has cross-sectional areaAg, and the
core (or return flux coil) has areaAc. The length of the gap isg, while the length of the core (coil)
is l. The excitation coils have an ampere turn product given by the number of windings multiplied
by the current input to the windings,NI. The wires that carry the current have resistivity in an
ordinary magnet; the power necessary to support the field is proportional toN (the length of the
wire) and toI2. It is desirable to makeNI as small as possible.

The ampere turn products for the two circuits of Figure 5.18 can be related to the magnetic field
in the circuit through Eq. (5.12):

The constant circuit flux is given by

For the air core circuit, Eq. (5.23) becomes

or
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Ψ (g/Agµo � l/Acµ) � NI. (5.25)

Similarly, the following equation describes the ferromagnetic circuit:

Comparing Eqs. (5.25) and (5.26), the ampere turn product for equal flux is much smaller for the
case with the ferromagnetic core when µ « µo andg « l (a small gap).

An iron core substantially reduces power requirements for a de magnet. An alternate view of the
situation is that the excitation coil need support only the magnetic field in the gap since the second
term in Eq. (5.26) is negligible. The return flux is supported by the atomic currents of the
material. The excitation coils are located at the gap in Figure 5.18a to clarify this statement. In
practice, the coils can be located anywhere in the circuit with about the same result. This follows



Modification of Electric and Magnetic Fields by Materials

102

from the Laplace equation which implies that the field line configuration minimizes the net field
energy of the system. The field energy is a minimum if the flux flows in the ferromagnetic
material. The field lines are thus conducted through the core and cross the gap in a manner
consistent with the boundary condition discussed in Section 5.5, relatively independent of the
location of the exciting coils. Ferromagnetic materials also help in pulsed magnet circuits, such as
those in the betatron. Theduty cycle(time on/time off) of such magnets is usually low. Thus, the
total field energy is of greater concern than the instantaneous power. Energy for pulsed fields is
usually supplied from a switched capacitor bank. A ferromagnetic return flux core reduces the
circuit energy and lowers the cost and size of the capacitor bank.

To summarize, ferromagnetic materials have the following applications in non-superconducting
accelerator magnets:

1.The iron can be shaped near the gap to provide accurate magnetic field gradients.
2.The exciting coil power (or net field energy) is reduced significantly compared to an air
core circuit.
3.The iron conducts flux lines so that the exciting windings need not be located at the gap.

Equation (5.26) has the same form as that for an electric circuit consisting of a power source and
resistive elements with the following substitutions.

Magnetic Flux Ψ. The analogy of current in an electric circuit. Although the magnitude of B may
vary, the flux in any cross section is constant.

Magnetomotive Force.(Ampere turn product, NI.) The driving force for magnetic flux.
Magnetomotive force corresponds to the voltage in an electric
circuit.

Reluctance. Corresponds to the resistance. Equation 5.26 contains two reluctances in series,Rg =
g/Agµo andRc = l/A cµ. The higher the reluctance, the lower the flux for a given magnetomotive
force. The reluctance of the iron return flux core is much smaller than that of the gap (the load),
so it acts in the same way as a low-resistivity wire in an electric circuit.

Permanence.The inverse of reluctance and the analogue of conductance.

The circuit analogy is useful for estimating operating parameters for complex magnets such as
those found in electric motors. To illustrate a magnetic field calculation, consider the
spectrometer magnet illustrated in Figure 5.19a. The components of reluctance already mentioned
can be supplemented by additional paths representing fringing flux (magnetic field lines bulging
out near the gap) and leakage flux (magnetic flux returning across the magnetic yoke without
traversing the gap). These reluctances can be determined by a solution of the Laplace equation for
the magnet. Reluctances are combined in series and in parallel, just as resistances. The equivalent
circuit is illustrated in Figure 5.19b. The effect of leakage flux on the field in the gap can be



Modification of Electric and Magnetic Fields by Materials

103

minimized by placing the excitation coils as close to the gap as possible.
A first-order estimate of driving coil parameters can be derived by neglecting the leakage and

fringing contributions and assuming that the circuit reluctance resides predominantly in the gap. In
this case it is sufficient to use Eq. (5.23), so thatNI � Bgg/µo. For example, production of a field
of 1 T in a gap with a 0.02 in spacing requires 16-kA turns (160 turns of wire if a 100-A supply is
available). For a given supply and excitation coil winding, the field magnitude is inversely
proportional to the spacing of the magnet poles.

5.8 PERMANENT MAGNET CIRCUITS

Permanent magnet circuits have the advantage that a dc magnetic field can be maintained with no
power input. There are two drawbacks of permanent magnet circuits: (1) it is difficult to vary the
field magnitude in the gap and (2) bulky magnets are needed to supply high fields over large areas.
The latter problem has been alleviated by the development of rare-earth samarium cobalt
magnets which have a maximum energy product three times that of conventional Alnico alloys. In
other words, the same field configuration can be produced with a magnet of one-third the volume.
Permanent magnet quadrupole lenses (Section 6.10) are an interesting option for focusing in
accelerators (See K. Halbach,Physical and Optical Properties of Rare Earth Cobalt Magnets,
Nucl. Instrum. Methods187, 109 (1981). In this section, we shall review some of the properties
of permanent magnetic materials and first-order principles for designing magnetic circuits.
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The second quadrant of a hysteresis curve for some common permanent magnet materials is
shown in Figure 5.20. The plot is usually called thedemagnetization curve. The most striking
difference between Figure 5.20 and the hysteresis curve for soft iron (Fig. 5.13) is that the
coercive force is about 100 times larger for the permanent magnets. In other words, it takes
considerably more energy to align the domains and to demagnetize the material. Generation of
magnetic fields in vacuum requires energy; a permanent magnet can produce fields because of the
stored energy received during magnetization.

Figure 5.20 can be used to calculate the field produced in the gap of a magnetic circuit. The
method used to find the operating point on the demagnetization curve is illustrated in Figure 5.21.
In the first part of the figure, the permanent magnet is included in a zero reluctance circuit
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HmLm � HgLg � BgLg/µo. (5.27)

(B 2
g /2µo) (AgLg) � (HmBm/2) (AmLm). (5.28)

containing an ideal iron core (Hs = 0) with no gap. There is no free current. The circuital integral
of H is zero, so thatHm (the magnetic intensity in the permanent magnet) is zero. The magnetic
field in the loop is equal toBm, the remanence field of the permanent magnet. Next, assume that
an air gap is introduced into the circuit, but excitation windings are placed around the gap with
the proper current to produce a field equal toBm (Fig. 5.21b). The current in the windings is in the
same direction as the atomic currents in the ferromagnetic materials. Because the energy for the
vacuum fields is supplied by an external source, the circuit still appears to have zero reluctance.
The operating point of the permanent magnet remains atHm = 0, Bm = Brm.

In the final state (Fig. 5.21c), the current in the excitation coils drops to zero. This is equivalent
to the addition of a negative current to the existing current. The negative current demagnetizes
the permanent magnet, or moves the operating point in Figure 5.20 to the left. Thus, an air gap in
a permanent magnet circuit acts like an excitation winding with a current opposed to the
atomic currents. There is no net applied current in the circuit of Figure 5.21c so that�H�dl = 0.
Neglecting the reluctance of the iron core, the operating point of the permanent magnet is
determined by the gap properties through

where Lm is the length of the permanent magnet.
An important parameter characterizing the performance of a permanent magnet in a circuit is

the energy product.

Energv Product. The product of magnet field times magnetic intensity at the operating point of a
permanent magnet, orHmBm.

Equation (5.27) can be used to demonstrate the significance of the energy product. We again take
the example of a simple circuit with a magnet, zero reluctance core, and air gap. Continuity of
flux implies thatBgAg = BmAm, whereAg andAm are the cross-sectional areas of the gap and
magnet respectively. This condition, combined with Eq. (5.27), yields

The first factor on the left is the magnetic field energy density in the gap, and the second term is
the gap volume. On the right, the first factor is one-half the energy product and the second factor
is the magnet volume. Thus, the magnet volume and the energy product determine the magnetic
field energy in the gap.

Energy product is given in joules per cubic meter (mks units) or in megagauss oersteds
(MG-Oe) in CGS units. The conversion is I MG-Oe = 7940 J/m3. Hyperbolic lines of constant
BmHm are plotted in Figure 5.20. This is a graphic aid to help determine the energy product at
different points of the demagnetization curve. A goal in designing a permanent magnet circuit is to
produce the required gap field with the minimum volume magnet. This occurs at the point on the
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HgLg/BgAg � HmLm/BmAm � Lg/µoAg.

Bm/Hm � Lm/RgAm. (5.29)

demagnetization curve whereBmHm is maximum. In Figure 5.20, parameters of the circuit should
be chosen so thatHm is about 550 Oe.

Two examples will serve to illustrate methods of choosing permanent magnets. Both involve
first-order design of a simple circuit with no leakage or fringing flux; the second-order design
must invoke field calculations, tabulated gap properties or modeling experiments for an accurate
prediction. To begin, suppose that we constrain the gap parameters (Bg = 8 kG,Ag = 10 cm2 and
Lg = 1 cm and the type of magnetic material (Alnico 5). We must now determine the dimensions
of the magnet that will produce the gap field. Using Eq. (5.27) withHg = 8 kOe andHm = 600 Oe,
the length of the magnet must be 13.3 cm. The magnetic field isBm = 8 kG, so that the minimum
magnet cross-sectional is 10 cm2.

In the second example, assume that the dimensions of the gap and magnet are constrained by
the application. The goal is to determine what magnetic material will produce the highest gap flux
and the value of this flux. For the simple circuit, the condition of constant flux can be combined
with Eq. (5.27) to give

The expression on the right-hand side is the reluctance of the gap,Rg. We can then write

With the stated conditions, the quantityBmHm must have a constant ratio. This motivates the
definition of the permanence coefficient.

Permanence Coefficient, or Load Line. Equal to (Bm/Hm). The permanence coefficient is a
function only of the geometries of the magnetic load (system reluctance) and the magnet.

Fiducial points are usually included in demagnetization curves to lay out load lines. Given the load
line, operating points on various permanent magnet materials can be determined. The highest gap
flux will be produced by the material with the highest energy product at the intersection. The gap
flux can then be determined from the magnet operating point.
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6

Electric and Magnetic Field Lenses

The subject of charged particle optics is introduced in this chapter. The concern is the control of
the transverse motion of particles by shaped electric and magnetic fields. These fields bend
charged particle orbits in a manner analogous to the bending of light rays by shaped glass lenses.
Similar equations can be used to describe both processes. Charged particle lenses have extensive
applications in such areas as electron microscopy, cathode ray tubes, and accelerator transport.

In many practical cases, beam particles have small velocity perpendicular to the main direction
of motion. Also, it is often permissible to use special forms for the electric and magnetic fields
near the beam axis. With these approximations, the transverse forces acting on particles are linear;
they increase proportional to distance from the axis. The treatment in this chapter assumes such
forces. This area is calledlinear or Gaussiancharged particle optics.

Sections 6.2 and 6.3 derive electric and magnetic field expressions close to the axis and prove
that any region of linear transverse forces acts as a lens. Quantities that characterize thick lenses
are reviewed in Section 6.4 along with the equations that describe image formation. The bulk of
the chapter treats a variety of static electric and magnetic field focusing devices that are
commonly used for accelerator applications.
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6.1 TRANSVERSE BEAM CONTROL

Particles in beams always have components of velocity perpendicular to the main direction of
motion. These components can arise in the injector; charged particle sources usually operate at
high temperature so that extracted particles have random thermal motions. In addition, the fields
in injectors may have imperfections of shape. After extraction, space charge repulsion can
accelerate particles away from the axis. These effects contribute to expansion of the beam.
Accelerators and transport systems havelimited transverse dimensions. Forces must be applied to
deflect particles back to the axis. In this chapter, the problem of confining beams about the axis
will be treated. When accelerating fields have a time dependence, it is also necessary to consider
longitudinal confinement of particles to regions along the axis. This problem win be treated
in Chapter 13.

Charged particle lenses perform three types of operations. One purpose of lenses is toconfinea
beam, or maintain a constant or slowly varying radius (see Fig. 6.1a). This is important in
high-energy accelerators where particles must travel long distances through a small bore. Velocity
spreads and space-charge repulsion act to increase the beam radius. Expansion can be countered
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by continuous confining forces which balance the outward forces or through a periodic array of
lenses which deflect the particles toward the axis. In the latter case, the beam outer radius (or
envelope) oscillates about a constant value.
A second function of lenses is tofocusbeams or compress them to the smallest possible radius
(Fig. 6.1b). If the particles are initially parallel to the axis, a linear field lens aims them at a
common point. Focusing leads to high particle flux or a highly localized beam spot. Focusing is
important for applications such as scanning electron microscopy, ion microprobes, and
ion-beam-induced inertial fusion.

A third use of charged particle lenses is forming animage. (Fig. 6.1c). When there is a spatial
distribution of beam intensity in a plane, a lens can make a modified copy of the distribution in
another plane along the direction of propagation. An image is formed if all particles that leave a
point in one plane are mapped into another, regardless of their direction. An example of charged
particle image formation is an image intensifier. The initial plane is a photo-cathode, where
electrons are produced proportional to a light image. The electrons are accelerated and deflected
by an electrostatic lens. The energetic electrons produce an enhanced copy of the light image
when they strike a phosphor screen.

The terminology for these processes is not rigid. Transverse confinement is often referred to as
focusing. An array of lenses that preserves the beam envelope may be called a focusing channel.
The processes are, in a sense, interchangeable. Any linear field lens can perform all three
functions.

6.2 PARAXIAL APPROXIMATION FOR ELECTRIC AND MAGNETIC
FIELDS

Many particle beam applications require cylindrical beams. The electric and magnetic fields of
lenses for cylindrical beams are azimuthally symmetric. In this section, analytic expressions are
derived expressions for such fields in the paraxial approximation. The termparaxial comes from
the Greekpara meaning "alongside of." Electric and magnetic fields are calculated at small radii
with the assumption that the field vectors make small angles with the axis. The basis for the
approximation is illustrated for a magnetic field in Figure 6.2. The currents that produce the field
are outside the beam and vary slowly inz over scale lengths comparable to the beam radius.

Cylindrical symmetry allows only componentsBr andBz for static magnetic fields. Longitudinal
currents at small radius are required to produce an azimuthal fieldB

θ
. The assumptions of this

section exclude both particle currents and displacement currents. Similarly, only the electric field
componentsEr andEz are included. In the paraxial approximation,B andE make small angles
with the axis so thatEr « Ez andBr « Bz.
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φ(r,z) � φ(0,z) � Ar (�φ/�z)|o � Br 2 (�2φ/�z2)|o

� Cr 3 (�3φ/�z3)|o � Dr 4 (�4φ/�z4)|o � ...
(6.1)

4B (�2φ/�z2) � 16D r 2 (�4φ/�z4)

� ... � (�2φ/�z2) � B r 2 (�4φ/�z4) � ... � 0.
(6.2)

φ(r,z) � φ(0,z) � (r 2/4) (�2φ/�z2)|o. (6.3)

E(0,z) � �(�φ/�z)|o, Er(r,z) � (r/2) (�2φ/�z2)|o. (6.4)

The following form for electrostatic potential is useful to derive approximations for paraxial
electric fields:

The z derivatives of potential are evaluated on the axis. Note that Eq. (6.1) is an assumed form,
not a Taylor expansion. The form is valid if there is a choice of the coefficientsA, B, C,...,such
thatφ(r, z) satisfies the Laplace equation in the paraxial approximation. The magnitude of terms
decreases with increasing power of r. A term of ordern has the magnitudeφo(∆r/∆z)n, where∆r
and∆z are the radial and axial scale lengths over which the potential varies significantly. In the
paraxial approximation, the quantity∆r/∆z is small.

The electric field must go to zero at the axis since there is no included charge. This implies that
A = 0 in Eq. (6.1). Substituting Eq. (6.1) into (4.19), we find that the coefficients of all odd
powers ofr must be zero. The coefficients of the even power terms are related by

This is consistent ifB = - 1/4 andD = - B/16 = 1/64.To second order in∆r/∆z, φ(r, z) can be
expressed in terms of derivatives evaluated on axis by

The axial and radial fields are
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Er(r,z) � �(r/2) [�Ez(0,z)/�z]. (6.5)

Ez(r,z) � Ez(0,z) � (r 2/4) [�2Ez(0,z)/�z2]. (6.6)

Br(r,z) � �(r/2) [�Bz(0,z)/�z]. (6.7)

This gives the useful result that the radial electric field can be expressed as the derivative of the
longitudinal field on axis:

Equation (6.5) will be applied in deriving the paraxial orbit equation (Chapter 7). This equation
makes it possible to determine charged particle trajectories in cylindrically symmetric fields in
terms of field quantities evaluated on the axis. A major implication of Eq. (6.5) is that all
transverse forces are linear in the paraxial approximation. Finally, Eq. (6.5) can be used to
determine the radial variation ofEz. Combining Eq. (6.5) with the azimuthal curl equation (�Ez/�r
- �Er/�z = 0) gives

The variation ofEz is second order with radius. In the paraxial approximation, the longitudinal
field and electrostatic potential are taken as constant in a plane perpendicular to the axis.
A parallel treatment using the magnetic potential shows that
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Figure 6.3 is an example of a paraxial magnetic field distribution. The fields are produced by two
axicentered circular coils with currents in the same direction. In plasma research, the field
distribution is called amagnetic mirror. It is related to the fields used in cyclotrons and betatrons.
The magnitude ofBz(0, z) is maximum at the coils. The derivative ofBz is positive forz > 0 and
negative forz < 0. Consider a positively charged particle with an axicentered circular orbit that
has a positive azimuthal velocity. If the particle is not midway between the coils, there will be an
axial forceqv

θ
Br. Equation (6.7) implies that this force is in the negativez direction forz > 0 and

the converse whenz < 0. A magnetic mirror can provide radial and axial confinement of rotating
charged particles. An equivalent form of Eq. (6.6) holds for magnetic fields. Because�Bz

2/�z2 is
positive in the mirror, the magnitude ofBz decreases with radius.

6.3 FOCUSING PROPERTIES OF LINEAR FIELDS

In this section, we shall derive the fact that all transverse forces that vary linearly away from an
axis can focus a parallel beam of particles to a common point on the axis. The parallel beam,
shown in Figure 6.4, is a special case oflaminar motion. Laminar flow (fromlamina, or layer)
implies that particle orbits at different radii follow streamlines and do not cross. The ideal laminar
beam has no spread of transverse velocities. Such beams cannot be produced, but in many cases
laminar motion is a valid first approximation. The derivation in this section also shows that linear
forces preserve laminar flow.

The radial force on particles is taken asFr(r) = -A(z,vr) r. Section 6.2 showed that paraxial
electric forces obey this equation. It is not evident that magnetic forces are linear with radius since
particles can gain azimuthal velocity passing through radial magnetic fields. The proof that the
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∆vz/vz � �(vr/vz) (∆vr/vz).

d/dt � vz (d/dz). (6.8)

d 2r/dt 2
� Fr(r,z,vz)/mo.

d(vzr
�)/dt � vzr

�v �

z � v2
z r ��

� Fr/mo,

dr �/dz � Fr(r,z,vz)/mov
2
z � v �

zr
�/vz, r �

� dr/dz. (6.9)

combination of magnetic and centrifugal forces gives a linear radial force variation is deferred to
Section 6.7.

Particle orbits are assumed paraxial; they make small angles with the axis. This means thatvr «
vz. The total velocity of a particle isvo

2 = vr
2 + vz

2. If vo is constant, changes of axial velocity are
related to changes of radial velocity by

Relative changes of axial velocity are proportional to the product of two small quantities in the
paraxial approximation. Therefore, the quantityvz is almost constant in planes normal toz. The
average axial velocity may vary withz because of acceleration inEz fields. If vz is independent of
r, time derivatives can be converted to spatial derivatives according to

The interpretation of Eq. (6.8) is that the transverse impulse on a particle in a time∆t is the same
as that received passing through a length element∆z = vz∆t. This replacement gives differential
equations expressing radius as a function ofz rather thant. In treatments of steady-state beams,
the orbitsr(z) are usually of more interest than the instantaneous position of any particle.

Consider, for example, the nonrelativistic transverse equation of motion for a particle moving in
a plane passing through the axis in the presence of azimuthally symmetric radial forces

Converting time derivatives to axial derivatives according to Eq. 6.8 yields

or

A primed quantity denotes an axial derivative. The quantityr' is the angle between the particle
orbit and the axis. The motion of a charged particle through a lens can be determined by a
numerical solution of Eqs. (6.9). Assume that the particle hasr = r o andr' = 0 at the lens
entrance. Calculation of the final position,rf and angle,rf’ determines the focal properties of
the fields. Further, assume that Fr is linear and thatvz(0, z) is a known function calculated from
Ez(0, z). The region over which lens forces extend is divided into a number of elements of length
∆z. The following numerical algorithm (theEulerian difference method) can be used to find a
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r(z�∆z) � r(z) � r �(z)∆z,

r �(z�∆z) � r �(z) � [A(z,vz)r/mov
2
z � v �

zr �/vz]∆z

r �(z) � [a1(z)r � a2(z)r �] ∆z.

(6.10)

ro � ro, r �

o � 0,

r1 � ro, r �

1 � �a1(0)ro∆z,

r2 � ro�a1(0)ro,

r �

2 � �a1(0)ro∆z � a1(∆z)ro∆z � a2(∆z)a1(0)ro∆z.

(6.11)

particle orbit.

More accurate difference methods will be discussed in Section 7.8.
Applying Eq. (6.10), position and velocity at the first three positions in the lens are

Note that the quantityro appears in all terms; therefore,, the position and angle are proportional to
ro at the three axial locations. By induction, this conclusion holds for the final position and angle,
rf andrf’. Although the final orbit parameters are the sum of a large number of terms (becoming
infinite as∆z approaches zero), each term involves a factor ofro. There are two major results
of this observation.

1. The final radius is proportional to the initial radius for all particles. Therefore, orbits do
not cross. A linear force preserves laminar motion.
2. The final angle is proportional toro; therefore,rf’ is proportional torf. In the paraxial
limit, the orbits of initially parallel particles exiting the lens form similar triangles. All
particles pass through the axis at a point a distancerf/rf’ from the lens exit (Fig. 6.4).

The conclusion is that any region of static, azimuthally symmetric electric fields acts as a lens in
the paraxial approximation. If the radial force has the form+A(z,vz)r, the final radial velocity is
positive. In this case, particle orbits form similar triangles that emanate from a point upstream.
The lens, in this case, is said to have anegative focal length.

6.4 LENS PROPERTIES

The lenses used in light optics can often be approximated as thin lenses. In the thin-lens



Electric and Magnetic Field Lenses

116

approximation, rays are deflected but have little change in radius passing through the lens. This
approximation is often invalid for charged particle optics; the Laplace equation implies that
electric and magnetic fields extend axial distances comparable to the diameter of the lens. The
particle orbits of Figure 6.4 undergo a significant radius change in the field region. Lenses in
which this occurs are calledthick lenses. This section reviews the parameters and equations
describing thick lenses.

A general charged particle lens is illustrated in Figure 6.5. It is an axial region of electric and
magnetic fields that deflects (and may accelerate) particles. Particles drift inballistic orbits(no
acceleration) in field-free regions outside the lens. The upstream field-free region is called the
object spaceand the downstream region is called theimage space. Lenses function with particle
motion in either direction, so that image and object spaces are interchangeable.

Orbits of initially parallel particles exiting the lens form similar triangles (Fig. 6.5). If the exit
orbits are projected backward in a straight line, they intersect the forward projection of entrance
orbits in a plane perpendicular to the axis. This is called theprincipal plane. The location of the
principal plane is denotedH1. The distance fromH1 to the point where orbits intersect is called
the focal length, f1. WhenH1 andf1 are known, the exit orbit of any particle that enters the lens
parallel to the axis can be specified. The exit orbit is the straight line connecting the focal point to
the intersection of the initial orbit with the principal plane. This construction also holds for
negative focal lengths, as shown in Figure 6.6.

There is also a principal plane (H2) and focal length (f2) for particles with negativevz. The focal
lengths need not be equal. This is often the case with electrostatic lenses where the direction
determines if particles are accelerated or decelerated. Two examples off1 � f2 are the aperture
lens (Section 6.5) and the immersion lens (Section 6.6). Athin lensis defined as one where the
axial length is small compared to the focal length. Since the principal planes are contained in the
field region,H1 = H2. A thin lens has only one principal plane. Particles emerge at the same radius
they entered but with a change in direction.
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There are two other common terms applied to lenses, the lens power and thef-number. The
strength of a lens is determined by how much it bends orbits. Shorter focal lengths mean stronger
lenses. The lens powerP is the inverse of the focal length,P = 1/f. If the focal length is measured
in meters, the power is given in m-1 or diopters. Thef-number is the ratio of focal length to the
lens diameter:f-number= f/D . Thef-number is important for describing focusing of nonlaminar
beams. It characterizes different optical systems in terms of the minimum focal spot size and
maximum achievable particle flux.

If the principal planes and focal lengths of a lens are known, the transformation of an orbit
between the lenses entrance and exit can be determined. This holds even for nonparallel entrance
orbits. The conclusion follows from the fact that particle orbits are described by a linear,
second-order differential equation. The relationship between initial and final orbits (r1, r1' � rf, rf’ )
can be expressed as two algebraic equations with four constant coefficients. Given the two initial
conditions and the coefficients (equivalent to the two principal planes and focal lengths), the final
orbit is determined. This statement will be proved in Chapter 8 using the ray transfer matrix
formalism.

Chapter 8 also contains a proof that a linear lens can produce an image. The definition of an
image is indicated in Figure 6.7. Two special planes are defined on either side of the lens: the
object planeand theimage plane(which depends on the lens properties and the location of the
object). An image is produced if all particles that leave a point in the object plane meet at a point
in the image plane, independent of their initial direction. There is a mapping of spatial points from
one plane to another. The image space and object space are interchangeable, depending on the
direction of the particles. The proof of the existence of an image is most easily performed with
matrix algebra. Nonetheless, assuming this property, the principal plane construction gives the
locations of image and object planes relative to the lens and the magnification passing from one to
another.

Figure 6.7 shows image formation by a lens. Orbits in the image and object space are related by
the principal plane construction; the exit orbits are determined by the principal plane and focal
length. These quantities give no detailed information on orbits inside the lens. The arrows
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M21 M12 � 1. (6.12)

D1/y1 � D2/f1, D1/f2 � D2/y2. (6.13)

represent an intensity distribution of particles in the transverse direction. Assume that each
point on the source arrow (of lengthD2) is mapped to a point in the image plane. The mapping
produces an image arrow of lengthD1. Parallel orbits are laminar, and the distance from the axis
to a point on the image is proportional to its position on the source. We want to find the locations
of the image and object planes (d1 andd2) relative to the principal planes, as well as the
magnification,M21 = D1/D2.

The image properties can be found by following two particle orbits leaving the object. Their
intersection in the image space determines the location of the image plane. The orbit with known
properties is the one that enters the lens parallel to the axis. If a parallel particle leaves the tip of
the object arrow, it exits the lens following a path that passes through the intersection with the
principal plane atr = D 2 and the pointf1. This orbit is markeda in Figure 6.7. In order to
determine a second orbit, we can interchange the roles of image and object and follow a parallel
particle that leaves the right-hand arrow in the-z direction. This orbit, markedb, is determined by
the points atH2 andf2. A property of particle dynamics under electric and magnetic forces is time
reversibility. Particles move backward along the same trajectories if-t is substituted fort. Thus, a
particle traveling from the original object to the image plane may also follow orbitb. If the two
arrows are in object and image planes, the orbits must connect as shown in Figure 6.7.

The image magnification for particles traveling from left to right isM21 = Dl/D2. For motion in
the opposite direction, the magnification isM12 = D2/D1. Therefore,

Referring to Figure 6.7, the following equations follow from similar triangles:
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f1/d1 � f2/d2 � 1. (6.14)

1/d1 � 1/d2 � 1/f, (6.15)

These are combined to givef1f2 = yly2. This equation can be rewritten in terms of the distancesd1

andd2 from the principal planes asf1f2 = (d2- f2)(d1 - fl). The result is the thick-lens equation

In light optics, the focal length of a simple lens does not depend on direction. In charged particle
optics, this holds for magnetic lenses orunipotentialelectrostatic lenses where the particle energy
does not change in the lens. In this case, Eq. (6.14) can be written in the familiar form

wheref1 = f 2 = f .
In summary, the following procedure is followed to characterize a linear lens. Measured data or

analytic expressions for the fields of the lens are used to calculate two special particle orbits. The
orbits enter the lens parallel to the axis from opposite axial directions. The orbit calculations are
performed analytically or numerically. They yield the principal planes and focal lengths.
Alternately, if the fields are unknown, lens properties may be determined experimentally. Parallel
particle beams are directed into the lens from opposite directions to determine the lens
parameters. If the lens is linear, all other orbits and the imaging properties are found from two
measurements.

In principle, the derivations of this section can be extended to more complex optical systems.
The equivalent of Eq. (6.14) could be derived for combinations of lenses. On the other hand, it is
much easier to treat optical systems using ray transfer matrices (Chapter 8). Remaining sections of
this chapter are devoted to the calculation of optical parameters for a variety of discrete
electrostatic and magnetostatic charged particle lenses.

6.5 ELECTROSTATIC APERTURE LENS

The electrostatic aperture lens is an axicentered hole in an electrode separating two regions of
axial electric field. The lens is illustrated in Figure 6.8. The fields may be produced by grids with
applied voltage relative to the aperture plate. If the upstream and downstream electric fields differ,
there will be radial components of electric field near the hole which focus or defocus particles. In
Figure 6.8, axial electric fields on both sides of the plate are positive, and the field at the left is
stronger. In this case, the radial fields point outward and the focal length is negative for positively
charged particles traveling in either direction. With reversed field direction (keeping the same
relative field strength) or with stronger field on the right side (keeping the same field polarity), the
lens has positive focal length. The transverse impulse on a particle passing through the hole is
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dvr/dz � qEr/movz � �(q/2movz) r [dEz(0,z)/dz]. (6.16)

vrf / vzf � r �

f � �qr (Ez2 � Ez1)/2movzavzf. (6.17)

proportional to the time spent in the radial electric fields. This is inversely proportional to the
particle velocity which is determined, in part, by the longitudinal fields. Furthermore, the final
axial velocity will depend on the particle direction. These factors contribute to the fact that the
focal length of the aperture lens depends on the transit direction of the particle, orf1 � f2.

Radial electric fields are localized at the aperture. Two assumptions allow a simple estimate of
the focal length: (1) the relative change in radius passing through the aperture is small (or, the
aperture is treated in the thin lens approximation) and (2) the relative change in axial velocity is
small in the vicinity of the aperture. Consider a particle moving in the+z direction withvr = 0.
The change invr for nonrelativistic motion is given by the equation

In Eq. (6.16), the time derivative was converted to a spatial derivative andEr was replaced
according to Eq. (6.5).

With the assumption of constantr andvz in the region of nonzero radial field, Eq. (6.16) can be
integrated directly to yield

wherevza is the particle velocity at the aperture andvrf is the radial velocity after exiting. The
quantityvzf is the final axial velocity; it depends on the final location of the particle and the field
Ez2. The focal length is related to the final radial position (r) and the ratio of the radial velocity to
the final axial velocity byvrf/vzf � r/f. The focal length is
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f � 2movzavzf q (Ez2�Ez1). (6.18)

f � 2mov
2
zf /q(Ez2�Ez1) � 4T/q(Ez2�Ez1). (6.19)

When the particle kinetic energy is large compared to the energy change passing through the
lens,vza� vzf, and we find the usual approximation for the aperture lens focal length

Thecharged particle extractor(illustrated in Fig. 6.9) is a frequently encountered application of
Eq. (6.19). The extractor gap pulls charged particles from a source and accelerates them. The
goal is to form a well-directed low-energy beam. When there is high average beam flux, grids
cannot be used at the downstream electrode and the particles must pass through a hole. The hole
acts as an aperture lens, withE1 > 0 andE2 = 0. The focal length is negative; the beam emerging
will diverge. This is called thenegative lens effectin extractor design. If a parallel or focused
beam is required, a focusing lens can be added downstream or the source can be constructed with
a concave shape so that particle orbits converge approaching the aperture.

6.6 ELECTROSTATIC IMMERSION LENS

The geometry of the electrostatic immersion lens is shown in Figure 6.10. It consists of two tubes
at different potential separated by a gap. Acceleration gaps between drift tubes of a standing-wave
linear accelerator (Chapter 14) have this geometry. The one-dimensional version of this lens
occurs in the gap between the Dees of a cyclotron (Chapter 15). Electric field distributions for a
cylindrical lens are plotted in Figure 6.10.
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∆vr � vrf � � dz [qEr(r,z)/movz]. (6.20)

Following the treatment used for the aperture lens, the change in radial velocity of a particle
passing through the gap is

The radial electric field is symmetric. There is no deflection if the particle radius and axial velocity
are constant. In contrast to the aperture lens, the focusing action of the immersion lens arises from
changes inr andvz. in the gap region. Typical particle orbits are illustrated in Figure 6.11. When
the longitudinal gap field accelerates particles, they are deflected inward on the entrance side of
the lens and outward on the exit side. The outward impulse is smaller because (1) the particles are
closer to the axis and (2) they move faster on the exit side. The converse holds for a deceleratin-
gap. Particles are deflected to larger radii on the entrance side and are therefore more strongly
influenced by the radial fields on the exit side. Furthermore, vz is lower at the exit side enhancing
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focusing. The focal length for either polarity or charge sign is positive.
The orbits in the immersion lens are more complex than those in the aperture lens. The focal

length must be calculated from analytic or numerical solutions for the electrostatic fields and
numerical solutions of particle orbits in the gap. In the paraxial approximation, only two orbits
need be found. The results of such calculations are shown in Figure 6.12 for varying tube diameter
with a narrow gap. It is convenient to reference the tube potentials to the particle source so that
the exit energy is given byTf = qV2. With this convention, the abscissa is the ratio of exit to
entrance kinetic energy. The focal length is short (lens power high) when there is a significant
change in kinetic energy passing through the lens. Theeinzel lensis a variant of the immersion
lens often encountered in low-energy electron guns. It consists of three colinear tubes, with the
middle tube elevated to high potential. The einzel lens consists of two immersion lenses in series;
it is a unipotential lens.

An interesting modification of the immersion lens isfoil or grid focusing. This focusing method,
illustrated in Figure 6.13, has been used in low-energy linear ionaccelerators. A conducting foil or
mesh is placed across the downstream tube of an accelerating gap. The resulting field pattern
looks like half of that for the immersion lens. Only the inward components of radial field are
present. The paraxial approximation no longer applies; the foil geometry has first-order focusing.
Net deflections do not depend on changes ofr andvz as in the immersion lens. Consequently,
focusing is much stronger. Foil focusing demonstrates one of the advantages gained by locating
charges and currents within the beam volume, rather than relying on external electrodes or coils.
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The charges, in this case, are image charges on the foil. An example of internal currents, the
toroidal field magnetic sector lens, is discussed in Section 6.8.

6.7 SOLENOIDAL MAGNETIC LENS

Thesolenoidal magnetic lensis illustrated in Figure 6.14. It consists of a region of cylindrically



Electric and Magnetic Field Lenses

126

γmo (dvr/dt) � �qv
θ
Bz � γmov

2
θ
/r, (6.21)

γmo(dv
θ
/dt) � �qvzBz � γmovrvθ/r. (6.22)

v
θ
� qrBz/2γmo � constant� 0. (6.23)

symmetric radial and axial magnetic fields produced by axicentered coils carrying azimuthal
current. This lens is the only possible magnetic lens geometry consistent with cylindrical paraxial
beams. It is best suited to electron focusing. It is used extensively in cathode ray tubes, image
intensifiers, electron microscopes, and electron accelerators. Since the magnetic field is static,
there is no change of particle energy passing through the lens; therefore, it is possible to perform
relativistic derivations without complex mathematics.

Particles enter the lens through a region of radial magnetic fields. The Lorentz force (evz × Br)
is azimuthal. The resultingv

θ
leads to a radial force when crossed into theBz fields inside the lens.

The net effect is a deflection toward the axis, independent of charge state or transit direction.
Because there is an azimuthal velocity, radial and axial force equations must be solved with the
inclusion of centrifugal and coriolis forces.

The equations of motion (assuming constantγ) are

The axial equation of motion is simply thatvz is constant. We assume thatr is approximately
constant and that the particle orbit has a small net rotation in the lens. With the latter condition,
the Coriolis force can be neglected in Eq. (6.22). If the substitutiondv

θ
/dt � vz (dv

θ
/dz) is made

and Eq. (6.7) is used to expressBr in terms ofdBz(0, z)/dz, Eq. (6.22) can be integrated to give

Equation (6.23) is an expression of conservation of canonical angular momentum (see Section
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(θ�θo) � [qBz(0,z)/2γmovz] (z�zo). (6.24)

r �

f �

vrf

vz

�

�� dz [qBz(0,z)/γmovz]
2 r

4
. (6.25)

f �
�rf

r �

f

�

4

� dz [qBz(0,z)/γmovz]
2

. (6.26)

7.4). It holds even when the assumptions of this calculation are not valid. Equation (6.23) implies
that particles gain no net azimuthal velocity passing completely through the lens. This comes
about because they must cross negatively directed radial magnetic field lines at the exit that cancel
out the azimuthal velocity gained at the entrance. Recognizing thatdθ/dt = v

θ
/r and assuming that

Bz is approximately constant inr, the angular rotation of an orbit passing through the lens is

Rotation is the same for all particles, independent of radius. Substituting Eq. (6.23) and
converting the time derivative to a longitudinal derivative, Eq. (6.21) can be integrated to give

The focal length for a solenoidal magnetic lens is

The quantity in brackets is the reciprocal of a gyroradius [Eq. (3.38)]. Focusing in the solenoidal
lens (as in the immersion lens) is second order; the inward force results from a small azimuthal
velocity crossed into the main component of magnetic field. Focusing power is inversely
proportional to the square of the particle momentum. The magnetic field must increase
proportional to the relativistic mass to maintain a constant lens power. Thus, solenoidal lenses are
effective for focusing low-energy electron beams at moderate field levels but are seldom used for
beams of ions or high-energy electrons.

6.8 MAGNETIC SECTOR LENS

The lenses of Sections 6.5-6.7 exert cylindrically symmetric forces via paraxial electric and
magnetic fields. We now turn attention to devices in which focusing is one dimensional. In other
words, if the plane perpendicular to the axis is resolved into appropriate Cartesian coordinates(x,
y), the action of focusing forces is different and independent in each direction. The three examples
we shall consider are (1) horizontal focusing in a sector magnet (Section 6.8), (2) vertical
focusing at the edge of a sector magnet with an inclined boundary (Section 6.9), and (3)
quadrupole field lenses (Section 6.10).

A sector magnet (Fig. 6.15) consists of a gap with uniform magnetic field extending over a
bounded region. Focusing about an axis results from the location and shape of the field
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boundaries rather than variations of the field properties. To first approximation, the field is
uniform [B = Bx(x, y, z)x = Bo x] inside the magnet and falls off sharply at the boundary. Thex
direction (parallel to the field lines) is usually referred to as the vertical direction. They direction
(perpendicular to the field lines) is the horizontal direction. The beam axis is curved. The axis
corresponds to one possible particle orbit called thecentral orbit. The purpose of focusing
devices is to confine non-ideal orbits about this line. Sector field magnets are used to bend beams
in transport lines and circular accelerators and to separate particles according to momentum in
charged particle spectrometers.

The 180� spectrograph (Fig. 6.16) is an easily visualized example of horizontal focusing in a
sector field. Particles of different momentum enter the field through a slit and follow circular
orbits with gyroradii proportional to momentum. Particles entering at an angle have a displaced
orbit center. Circular orbits have the property that they reconverge after one half revolution
with only a second-order error in position. The sector magnet focuses all particles of the same
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f �
� rg / tan α. (6.27)

momentum to a line, independent of entrance angle.Focusing increases the acceptance of the
spectrometer. A variety of entrance angles can be accepted without degrading the momentum
resolution. The input beam need not be highly collimated so that the flux available for the
measurement is maximized. There is no focusing in the vertical direction; a method for achieving
simultaneous horizontal and vertical focusing is discussed in Section 6.9.

A sector field with angular extent less than 180� can act as a thick lens to produce a horizontal
convergence of particle orbits after exiting the field. This effect is illustrated in Figure 6.17.
Focusing occurs because off-axis particles travel different distances in the field and are bent a
different amount. If the field boundaries are perpendicular to the central orbit, we can show, for
initially parallel orbits, that the difference in bending is linearly proportional to the distance from
the axis.

The orbit of a particle (initially parallel to the axis) displaced a distance∆rl from the axis is
shown in Figure 6.17. The final displacement is related by∆yf = ∆y1 cosα, whereα is the angular
extent of the sector. The particle emerges from the lens at an angle∆θ = -∆yl sinα/rg, whererg, is
the gyroradius in the fieldBo. Given the final position and angle, the distance from the field
boundary to the focal point is

The focal distance is positive forα < 90�; emerging particle orbits are convergent. It is zero atα =
90�; initially parallel particles are focused to a point at the exit of a 90� sector. At 180� the
focusing distance approaches infinity.
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The sector field magnet must usually be treated as a thick lens. This gives us an opportunity to
reconsider the definition of the principal planes, which must be clarified when the beam axis is
curved. The planeH1 is the surface that gives the correct particle orbits in the image space. The
appropriate construction is illustrated in Figure 6.18a. A line parallel to the beam axis in the image
plane is projected backward. The principal plane is perpendicular to this line. The exit orbit
intersects the plane at a distance equal to the entrance distance. If a parallel particle enters the
sector field a distancey1 from the beam axis, its exit orbit is given by the line joining the focal
point with a point on the principal planey1 from the axis. The focal length is the distance from the
principal plane to the focal point. The planeH2 is defined with respect to orbits in the-z direction.

The focal length of a sector can be varied by inclining the boundary with respect to the beam
axis. Figure 18b shows a boundary with a positive inclination angle,β. When the inclination angle
is negative, particles at a larger distance from the central orbit gyrocenter travel longer distances



Electric and Magnetic Field Lenses

131

in the field and are bent more. The focusing power of the lens in the horizontal direction is
increased. Conversely, forβ > 0, horizontal focusing is decreased. We will see in Section 6.9 that
in this case there is vertical focusing by the fringing fields of the inclined boundary.

A geometric variant of the sector field is the toroidal field sector lens. This is shown in Figure
6.19. A number of magnet coils are arrayed about an axis to produce an azimuthal magnetic field.
The fields in the spaces between coils are similar to sector fields. The field boundary is determined
by the coils. It is assumed that there are enough coils so that the fields are almost symmetric in
azimuth. The field is not radially uniform but varies asB

θ
(R,Z) = BoRo/R, whereR is the distance

from the lens axis. Nonetheless, boundaries can still be determined to focus particles to the lens
axis; the boundaries are no longer straight lines. The figure shows a toroidal field sector lens
designed to focus a parallel, annular beam of particles to a point.

The location of the focal point for a toroidal sector lens depends on the particle momentum.
Spectrometers based on the toroidal fields are calledorange spectrometersbecause of the
resemblance of the coils to the sections of an orange when viewed from the axis. They have the
advantage of an extremely large solid angle of acceptance and can be used for measurements at
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∆Px � � dt (qvzBy). (6.28)

low flux levels. The large acceptance outweighs the disadvantage of particle loss on the coils.
The toroidal field sector lens illustrates the advantages gained by locating applied currents

within the volume of the beam. The lens provides first-order focusing with cylindrical symmetry
about an axis, as contrasted to the solenoidal field lens, which has second-order focusing. The
ability to fine tune applied fields in the beam volume allows correction of focusing errors
(aberrations) that are unavoidable in lenses with only external currents.

6.9 EDGE FOCUSING

The term edge focusing refers to the vertical forces exerted on charged particles at a sector
magnet boundary that is inclined with respect to the main orbit. Figure 6.20 shows the fringing
field pattern at the edge of a sector field. The vertical field magnitude decreases away from the
magnet over a scale length comparable to the gap width. Fringing fields were neglected in treating
perpendicular boundaries in Section 6.8. This is justified if the gap width is small compared to the
particle gyroradius. In this case, the net horizontal deflection is about the same whether or not
some field lines bulge out of the gap. With perpendicular boundaries, there is no force in the
vertical direction becauseBy = 0.

In analyzing the inclined boundary, the coordinatez is parallel to the beam axis, and the
coordinateξ is referenced to the sector boundary (Fig. 6.20). When the inclination angleβ is
nonzero, there is a component ofB in they direction which produces a vertical force at the edge
when crossed into the particlevz. The focusing action can be calculated easily if the edge is treated
as a thin lens; in other words, the edge forces are assumed to provide an impulse to the particles.
The momentum change in the vertical direction is
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∆vx � (e/γmo) � dζ B
ζ

tanβ. (6.29)

fx �
γmovz/qBo

tanβ
�

rgo

tanβ
. (6.30)

The integral is taken over the time the particle is in the fringing field. They component of
magnetic field is related to theξ component of the fringing field byBy = Bξ sinβ. The integral of
Eq. (6.28) can be converted to an integral over the particle path noting thatvzdt = dz.Finally, the
differential path element can be related to the incremental quantity dξ by dz = dξ/ cosβ. Equation
(6.28) becomes

This integral can be evaluated by applying the equation�B�ds = 0 to the geometry of Figure 6.21.
The circuital integral extends from the uniform field region inside the sector magnet to the zero
field region outside. This implies that�Bξdξ = Box. Substituting into Eq. (6.29), the vertical
momentum change can be calculated. It is proportional tox, and the focal length can be
determined in the usual manner as

The quantityrgo is the particle gyroradius inside the constant-field sector magnet. Whenβ = 0
(perpendicular boundary), there is no vertical focusing, as expected. Whenβ > 0, there is vertical
focusing, and the horizontal focusing is decreased. Ifβ is positive and not too large, there can still
be a positive horizontal focal length. In this case, the sector magnet can focus in both directions.
This is the principal of the dual-focusing magnetic spectrometer, illustrated in Figure 6.22.
Conditions for producing an image of a point source can be calculated using geometric arguments
similar to those already used. Combined edge and sector focusing has also been used in a
high-energy accelerator, the zero-gradient synchrotron [A. V. Crewe,Proc. Intern. Conf. High
Energv Accelerators, CERN, Geneva, 1959, p. 359] (Section 15.5).
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d 2y/dz2
� (qBo/γmoavz) y, (6.31)

d 2x/dz2
� �(qBo/γmoavz) x. (6.32)

6. 10 MAGNETIC QUADRUPOLE LENS

The magnetic quadrupole field was introduced in Section 5.8. A quadrupole field lens is illustrated
in Figure 5.16. It consists of a magnetic field produced by hyperbolically shaped pole pieces
extending axially a lengthl. In terms of the transverse axes defined in Figure 5.161, the field
components areBx = Boy/a andBy = Box/a. Because the transverse magnetic deflections are
normal to the field components,Fx � x andFy � y. Motions in the transverse directions are
independent, and the forces are linear. We can analyze motion in each direction separately, and we
know (from Section 6.3) that the linear fields will act as one-dimensional focusing (or defocusing)
lenses.
The orbit equations are

The time derivatives were converted to axial derivatives. The solutions for the particle orbits are
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x(z) � x1 cos κmz � x �

1 sin κmz / κm, (6.33)

x �(z) � �x1 κm sin κmz � x �

1 cos κmz. (6.34)

y(z) � y1 cos κmz � y �

1 sin κmz / κm, (6.35)

y �(z) � y1 κm sin κmz � y �

1 cos κmz. (6.36)

wherex1, y1, x1', andy1' are the initial positions and angles. The parameterκm is
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κm � qBo/γmoavz (m�2) (6.37)

κe � qEo/γmoav2
z . (m�2) (6.38)

whereBo is the magnetic field magnitude at the surface of the pole piece closest to the axis and a
is the minimum distance from the axis to the pole surface. A similar expression applies to the
electrostatic quadrupole lens

In the electrostatic case, the x and y axes are defined as in Figure 4.14.
The principal plane and focal length for a magnetic quadrupole lens are shown in Figure 6.23 for

thex andy directions. They are determined from the orbit expressions of Eqs. (6.33) and (6.34).
The lens acts symmetrically for particle motion in either the+z or -z directions. The lens focuses
in thex direction but defocuses in they direction. If the field coils are rotated 90� (exchanging
North and South poles), there is focusing iny but defocusing inx. Quadrupole lenses are used
extensively for beam transport applications. They must be used in combinations to focus a beam
about the axis. Chapter 8 will show that the net effect of equal focusing and defocusing
quadrupole lenses is focusing.
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7

Calculation of Particle Orbits in Focusing
Fields

In this chapter, we shall study methods for calculating particle orbits in extended regions of static
electromagnetic forces. One important application of such calculations is the determination of
electric or magnetic lens properties. Once the fields have been calculated by the Laplace equation,
orbit solutions lead to the four discrete quantities that characterize a linear lens (focal lengths and
principal points). Properties of orbits in complex optical systems with many focusing elements or
in long periodic lens arrays can then be predicted by the combination of the discrete lens
parameters through matrix algebra; this is the subject of Chapter 8. The matrix approach gives
information on orbits only at the lens boundaries. If detailed information on orbits inside the lenses
is required, then the numerical methods of this chapter must be extended through the entire
optical system. The matrix approach is not applicable to some accelerators, such as the betatron,
with focusing forces that are invariant along the direction of beam propagation. In this case, the
best approach is the direct solution of orbits in the extended fields.

Section 7.1 discusses general features of particle orbits in constant transverse forces and
introduces betatron oscillations. Some concepts and parameters fundamental to charged particle
accelerators are introduced in Section 7.2, including beam distribution functions, focusing channel
acceptance, theν value in a circular accelerator, and orbital resonance instabilities. An example of
focusing in continuous fields, particle motion in a magnetic gradient field, is treated in Section 7.3.
This transport method is used in betatrons and cyclotrons.

Methods to solve particle orbits in cylindrically symmetric electric and magnetic fields are
reviewed in the second part of the chapter. The paraxial ray equation is derived in Section 7.5.
This equation has extensive applications in all regimes of particle acceleration, from cathode ray
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γmo (d 2x/dt 2) � Fo (x/xb). (7.1)

(d 2x/dz2) � (Fo/γmov
2
z ) (x/xb) (7.2)

x(z) � xo cos(2πz/λx � φ), (7.3)

λx � 2π γmov
2
z xb/Fo.

tubes to multi-GeV linacs. As a preliminary to the paraxial ray equation, the Busch theorem is
derived in Section 7.4. This theorem demonstrates the conservation of canonical angular
momentum in cylindrically symmetric electric and magnetic fields. Section 7.6 introduces methods
for the numerical solution of the paraxial ray equation. Two examples are included: determination
of the beam envelope in an electrostatic acceleration column and calculation of the focal length of
an electrostatic immersion lens. The numerical methods can also be applied to the
direct solution of three-dimensional equations of particle motion.

7.1 TRANSVERSE ORBITS IN A CONTINUOUS LINEAR FOCUSING
FORCE

In many instances, particle motion transverse to a beam axis is separable along two Cartesian
coordinates. This applies to motion in a magnetic gradient field (Section 7.3) and in an array of
quadrupole lenses (Section 8.7). Consider one-dimensional transverse paraxial particle motion
along thez axis in the presence of a linear force,Fx = Fo(x/xb). The quantityFo is the force at the
edge of the beam,xb. They motion can be treated separately. The axial velocity is approximately
constant (Section 6.3). The equation of motion is (Section 2.10)

In the absence of acceleration, Eq. (7.1) can be expressed as

in the paraxial approximation. Equation (7.2) has the solution

where

Particle motion is harmonic. All particle orbits have the same wavelength; they differ only in
amplitude and phase. Transverse particle motions of this type in accelerators are usually referred
to asbetatron oscillationssince they were first described during the development of the betatron
[D.W. Kerst and R. Serber, Phys. Rev.60, 53 (1941)]. The quantityλx is called thebetatron
wavelength.
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∆x � (vx/vz) d. (7.4)

∆vx/vz � �x / f , (7.5)

dx/dz � vx/vz, dvx/dz � � (vz/fd) x.

Fx � (γmov
2
z /fd) x. (7.6)

It is often useful to replace the action of an array of discrete lenses by an equivalent continuous
transverse focusing force rather than apply the formalisms developed in Chapter 8. This
approximation is used, for example, to compare the defocusing effect of continuous-beam space
charge forces with confinement forces to derive the maximum allowed current in a quadrupole
channel. Orbits in an array of identical, discrete lenses approach the harmonic solution of Eq. (7.3)
when the distance between lenses is small compared to the betatron wavelength, as shown in
Figure 7.1. Consider lenses of focal lengthf and axial spacingd in the limit thatd « f (thin-lens
approximation). We want to calculate the change inx andvx passing through one drift space and
one lens. Ifvx is the transverse velocity in the drift region, then (following Fig. 7.1)

Similarly, by the definition of the focal length.

wherex is the particle position entering the thin lens. Equations (7.4) and (7.5) can be converted
to differential equations by associating∆z with d and letting∆z � 0,

The solution to this equation is again harmonic, withλx = (fd)½ . The condition for the validity of
the continuous approximation,λx » d, is equivalent tod « f. Averaging the transverse force over
many lenses gives
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Equation (7.6) is derived by expressing Eq. (7.5) in terms of time derivatives and multiplying both
sides byγmo. The conclusion is that particle orbits in any periodic linear focusing system approach
harmonic orbits when the betatron wavelength is long compared to the period of the system.

7.2 ACCEPTANCE AND ν VALUE OF A FOCUSING CHANNEL

Perfectly laminar beams cannot be achieved in practice. Imperfections have their origin, in part, in
the particle source. For example, thermonic sources produce spatially extended beams at finite
current density with a random distribution of transverse velocity components resulting from
thermal effects. Laminarity can also be degraded by field errors in beam transport elements. The
result is that the particles that constitute a beam have a spread in position and a spread in velocity
at each position. The capability of a focusing system is parametrized by the range of particle
positions and transverse velocities that can be transported without beam loss. This parameter is
called theacceptance.

In order to understand the significance of acceptance, we must be familiar with the concept of a
particle distribution. The transverse particle distribution of a beam at an axial location is the set of
the positions and velocities of all particles(xi(z), vxi(z), yi(z), vyi(z)). In cylindrical beams, particles
are parametrized by(ri(z), vri(z),θi(z), v

θi(z)). Methods of collective physics have been developed
to organize and to manipulate the large amount of information contained in the distribution. When
motions in two dimensions are independent (as in the betatron or a quadrupole focusing channel),
distributions inx-vx andy-vy can be handled independently.

One-dimensional distributions are visualized graphically by a phase space plot. For motion in the
x direction, the axes arevx (ordinate) andx (abscissa). At a particular axial location, each particle
is represented by a point on the plot(xi(z), vxi(z)). A beam distribution is illustrated in Figure 7.2.
Normally, there are too many particles in a beam to plot each point; instead, contour lines have
been drawn to indicate regions of different densities of particle points. In the specific case shown,
particles in the beam are symmetric about the x axis but asymmetric in velocity. This corresponds
to a beam launched on the axis with an aiming error. The vertical extent of the distribution
indicates that there is a velocity spread at each position. In a laminar beam, all particles at the
same position have the same transverse velocity. The phase space plot for a laminar beam is
therefore a straight line of zero thickness.

Acceptance is the set of all particle orbit parameters(xi, vxi) at the entrance to a focusing system
or optical element that allow particles to propagate through the system without loss. Acceptance
is indicated as a bounded area on a phase space plot. Clearly, the particle distribution at the
entrance to a focusing channel must be enclosed within the acceptance to avoid beam loss. For
example, the acceptance of a one-dimensional aperture isillustrated in Figure 7.3a. All particles
with displacementxi < xo pass through, independent ofvxi. An acceptable particle distribution
boundary is designated as a dashed line.Matchinga beam to a focusing system consists of
operating on the beam distribution so that it is enclosed in the acceptance. For example, matching
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vx � vz (2πxo/λx). (7.7)

vx � vz x2
o /fd. (7.8)

to the aperture is simple. The beam is focused by an upstream lens so that the displacement of the
peripheral particles is less thanxo. As a second example, consider the acceptance of the
continuous linear focusing system discussed in Section 7.1. We assume that there is some
maximum dimension beyond which particles are lost,xmax = xo. This may be the width of the
vacuum chamber. The focusing force and the maximum width define the maximum transverse
velocity for confined particle orbits,

The acceptance of a linear focusing system has boundaries on both axes of anx-vx plot (Fig. 7.3b).
A more detailed analysis shows that the allowed orbit parameters fill an ellipse with major (or
minor) radiixo and(2πxo/λx)vz. The maximum velocity for the discrete lens system (in the
continuous approximation) is

A large acceptance means that the system can transport particles with a wide spread in entrance
position and angle. A transport system with small acceptance places constraints on the size of and
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νx � C/λx, νy � C/λy. (7.9)

current density from a particle source. Generally, low beam flux is associated with small
acceptance. For a given maximum channel dimension, the acceptance grows with increased
focusing force (Fo). This results in shorter betatron wavelength.

The quantityν is defined for circular transport systems, such as betatrons, synchrotrons, or
storage rings. It is the ratio of the circumference of the system (C) to the betatron wavelength.
The betatron wavelength may differ in the two transverse directions, so that
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ν �

frequency of transverse oscillations
frequency of rotation

. (7.10)

The number v is also given by

A short betatron wavelength is equivalent to a high value ofν. Thus, increasedν is associated
with stronger focusing and increased acceptance.

When the quantityν has an integer value, there is the possibility of a resonance instability in a
circular system [E. D. Courant, J. Appl. Phys.20, 611 (1949)]. The physical basis of a resonance
instability atνx = 1 is illustrated in Figure 7.4. Assume that a circularaccelerator has an
imperfection at an azimuthal position, such as a dip in field magnitude of a bending magnet. The
reduced field represents a localized outward force that gives particles an impulse each time they
pass. Ifνx � 1 the impulse acts during different phases of the betatron oscillation. The driving
force is nonresonant, and the resulting oscillation amplitude is finite. Whenνx = 1 the driving force
is in resonance with the particle oscillation. The impulse is correlated with the betatron oscillation
so that the oscillation amplitude increases oneach revolution.

Another view of the situation is that the field perturbation acts to couple periodic motion in the
axial direction (rotation) to periodic motion in the transverse direction (betatron oscillation).
Coupling is strong when the harmonic modes have the same frequency. The distribution of beam
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F(t) � ∆p δ (t � 2mπ/ω) (m � 1,2,3,...).

F(t) �
∆p ω

π
½ � �

�

n�1

cos(nωt) . (7.11)

x(t) � ∆p ω

mπ
cos(nωt)

ω
2
o � (nω)2

. (7.12)

energy is anisotropic; the axial energy is much larger than the transverse energy. Thus,
energy is transferred to the transverse oscillations, ultimately resulting in particle loss. The
conditionνx = 1 or νy = 1 must always be avoided.

The model of Figure 7.5 is an analogy for resonant instabilities. A harmonic oscillator is
deflected by a time-dependent forcing function. We assume the forcing function exerts an impulse
∆p with periodicity 2π/ω:

The Fourier analysis of this function is

The steady-state response of an undamped oscillator with characteristic frequencyωo to a forcing
function with frequencynω is
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x(t) �
∆p ω

mπ

cos(ωt)

ω
2
o � nω2

�

cos(2ωt)

ω
2
o � 4ω2

�

cos(3ωt)

ω
2
o � 9ω2

� ... . (7.13)

x(t) �
∆p ω

mπ
cos(ωt)

ν
2
� 1

�

cos(2ωt)

ν
2
� 4

�

cos(3ωt)

ν
2
� 9

� ... . (7.14)

The response of the linear system to the force of Eq. (7.11) is (by superposition)

The pendulum mass represents a beam particle deflected from the primary orbit. The betatron
oscillation frequency isωo. If we assume thatF(t) represents a system perturbation at a particular
azimuth, thenω is the rotation frequency of the particle. By Eq. (7.10),ν = ωo/ω. Equation (7.13)
can be rewritten

Thus, the steady-state amplitude of particle oscillations diverges whenν has an integer value. A
complete analysis of the time-dependent response of the particles shows that the maximum
growth rate of oscillations occurs for theν = 1 resonance and decreases with higher-order
numbers. Systems with highν and strong focusing are susceptible to resonance instabilities.
Resonance instabilities do not occur in weak focusing systems whereν < 1.

7.3 BETATRON OSCILLATIONS

The most familiar example of focusing in anaccelerator by continuous fields occurs in the
betatron. In this device, electrons are confined for relatively long times as they are inductively
accelerated to high energy. We shall concentrate on transport problems for constant energy
particles in this section. The treatment is generalized to particles with changing energy in Chapter
11.

Section 3.7 showed how a uniform magnetic field confines an energetic charged particle in a
circular orbit normal to the field. Particles can drift freely along the field direction. In a betatron,
particles are enclosed in a toroidal vacuum chamber centered on the main circular orbit. Beams
always have spreads in angle and position of particle orbits about the main orbit. It is necessary to
supplement the uniform field with additional field components so that non-ideal particle orbits
oscillate about the main axis rather than drift away. Coordinates to analyze particle motion are
shown in Figure 7.6. One set(x, z, s)is referenced to the primary orbit:s points along the beam
axis,x is normal toz and the field, whilez is directed along the field. We shall also use polar
coordinates(r, θ, z) centered at the main orbit gyrocenter, which is also the axis of symmetry of
the field.
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To begin, consider motion in a uniform magnetic field,Bo. Orbits viewed normal to the field are
circles, including the orbits of perturbed particles (Fig. 7.7). The particle path shown as a solid
line Figure 7.7 has nonzero radial velocity at the primary orbit. This is equivalent to a
displacement of its gyrocenter from the system axis. Note that excursions away from the primary
orbit are bounded and approximately harmonic. In this sense, there isradial focusingin a uniform
magnetic field. A particle distribution with a spread invx occupies a bounded region inx. This is
not true in thez direction. A spread invz causes the boundary of the particle distribution to
expand indefinitely. In order to confine a beam, we must either add additional focusing lenses
around the torus to supplement the bending field or modify the bending field. We shall consider
the latter option and confine attention to fields with azimuthal symmetry.
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Br � �(r/2) [dBz(0,z)/dz]. (7.15)

The zero-order particle velocity is in theθ direction relative to the field axis. The magnetic field
must have a radial component in order to exert a force in thez direction. Consider, first, the field
distribution from an air core magnet. Figure 7.8a shows a uniform solenoidal field. If extra
windings are added to the ends of the solenoid (Fig. 7.8b), the field magnitude increases away
from the midplane. The bent field lines have a componentBr. In the paraxial approximation

The variation ofBr andBz about the axis of symmetry of the field is sketched in Figure 7.8c. The
axial field is minimum atz = 0; therefore,Br varies approximately linearly withz about this plane
at a constant radius. Directions of the cross products are indicated in Figure 7.8b. The axial force
is in the-z direction forz > 0 and in the+z direction forz < 0. Particles are confined about the
plane of minimumBz. A field with magnitude decreasing away from a plane is defocusing.
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�Bz/�r � �Br/�z. (7.16)

�Bz/�r � � (r/2) [�2Bz(0,z)/�z2]

or Bz(r,z) � Bo � (r 2/4) [�2Bz(0,z)/�z2].
(7.17)

n(r) � � [r/Bz(r,0)] [�Bz(r,0)/�r]. (7.18)

n(r) � [r 2/2Bz(r)] [�2Bz(0,z)/�z2].

The geometry of Figure 7.8b is used for the confinement of hot fusion plasmas. It is called the
magnetic mirrorbecause particles are reflected from the region of increasedBz. In accelerator
applications, particles are confined to a small region aboutz = 0. Following the discussion of
Section 5.7, iron is used to carry the magnetic flux in all other regions to minimize power
requirements. We can easily determine the shape of non-saturated pole pieces that will generate
the same field patterns as Figures 7.8a and b by following the method of Section 5.5. The pole
faces must lie on surfaces of constant magnetic potential normal to the field lines. After choosing
the gap width, the surfaces are determined by connecting a curve everywhere normal to the field
lines (Fig. 7.8d). Most vacuum field patterns generated by distributed coils can be duplicated by
shaped pole pieces.
The equation� × B = 0 implies that

Taking the partial derivative of Eq. (7.15) leads to

The second derivative ofBz is positive at the symmetry plane for a magnetic mirror. Thus,Bz(r, 0)
is not uniform, but has a negative radial gradient. The bending field gradient is usually
parametrized by thefield index. The field index is a function of radius given by

Comparing Eqs. (7.17) and (7.18), the magnitude of the field index increases quadratically with
radius in the symmetry plane of a paraxial magnetic field:

The field index is positive for a mirror field.
We can now derive equations for the orbits of constant energy particles in a bending field with a

gradient. Assume that the spread of particle angles and position is small so that the beam is
localized about an ideal circular orbit withr = r g andz = 0. The bending field and field index
values at the position of the, ideal orbit areBo = Bz(rg,0) andno = -(r g/Bo)[�Bz(0,z)/�r] . The
bending field and radius of the ideal orbit are related byrg = γomovθ

/qBo. Small orbit perturbations
imply thatx = r - r g « rg, z « rg, vx « v

θ
, vz « v

θ
and v

θ
= vo (a constant). The magnetic field
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Br � Br(rg,0) � (�Br/�r) x � (�Br/�z) z, (7.19)

Bz � Bz(rg,0) � (�Bz/�r) x � (�Bz/�z) z. (7.20)

Br � (�Bz/�r) z, (7.21)

Bz � Bo � (�Bz/�r) x, (7.22)

Br � � (noBo/rg) z, (7.23)

Bz � Bo � (noBo/rg) x, (7.24)

γomo (d 2r/dt 2) � γomov
2
θ
/r � qv

θ
Bz, (7.25)

γomo (d 2z/dt 2) � qv
θ
Br. (7.26)

d 2x/dt 2
� v2

θ
/(rg�x) � qv

θ
(Bo�noBox/rg)/γmo

� (v2
θ
/rg) � (v

θ
/rg)

2 x � qv
θ
Bo/γomo � (noqv

θ
Bo/γomorr) x.

(7.27)

components are approximated by a Taylor expansion about the point (rg,0).

The derivatives are taken atr = r g, z= 0. A number of terms can be eliminated. In the symmetry
plane,Bz is a minimum so that�Bz/�z = 0. Inspection of Figure 7.8b shows thatBr(rg,0) = 0.
BecauseBr is zero everywhere in the symmetry plane,�Br/�r = 0. Combining this with the
condition��B = 0 implies that�Bz/�z = 0. Finally, the equations�×B = 0 sets the constraint that
�Br/�z = �Bz/�r. The magnetic field expressions become

Replacing the bending field gradient with the field index, we find that

We can verify by direct substitution that these fields satisfy the paraxial relation of Eq. (6.7).
The next step is to determine the particle equations of motion for smallx andz. The particle

energy is a constant (parametrized byγo) because only static magnetic fields are present. The
relativistic equations of motion are

The radial equation can be simplified by substitutingx = r - r g and the field expression of Eq.
(7.24),

The second expression was derived using the binomial expansion and retaining only first-order
terms in xlr,. The zero-order force terms on the right-hand side cancel. The first-order equation of
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(d 2x/dt 2) � �(v
θ
/rg)

2 (1 � no) x � �ω
2
g (1 � no) x. (7.28)

(d 2z/dt 2) � �ω
2
g no z. (7.29)

x � xo cos[ 1�no ωgt � φ1], (7.30)

z � zo cos[ no ωgt � φ2]. (7.31)

ωx/ωg � 1�no � νx. (7.32)

νz � no. (7.33)

radial motion is

The last form is written in terms of the gyrofrequency of the ideal particle orbit. The equation for
motion along the bending field lines can be rewritten as

Equations (7.28) and (7.29) describe uncoupled harmonic motions and have the solutions

The equations for betatron oscillations have some interesting features. In a uniform field (no =
0), first-order radial particle motion is harmonic about the ideal orbit with frequencyωg. This is
equivalent to a displaced circle, as shown in Figure 7.7. When a field gradient is added, the
transverse oscillation frequency is no longer equal to the rotation frequency. We can write

Whenno is positive (a negative field gradient, or mirror field),νx is less than unity and the
restoring force decreases with radius. Particles moving outward are not reflected to the primary
axis as soon; conversely, particles moving inward are focused back to the axis more strongly. The
result is that the orbits precess, as shown in Figure 7.9. Whenno > 1, the field drops off too
rapidly to restore outward moving particles to the axis. In this case, is imaginary so thatx1�no
grows exponentially. This is an example of anorbital instability.

In thez direction, particle orbits are stable only whenno > 0. Relating the z oscillation frequency
to ωg gives

We conclude that particles can be focused around the primary circular orbit in an azimuthally
symmetric bending magnet if the field has a negative radial gradient such that
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0 < no < 1. (7.34)

Focusing of this type in a circular accelerator is called weak focusing. In the stable regime, bothνx

andνz are less than unity. Therefore, resonant instability is not a critical problem in weak focusing
machines.

7.4 AZIMUTHAL MOTION OF PARTICLES IN CYLINDRICAL BEAMS

In principle, we have collected sufficient techniques to calculate particle orbits in any steady-state
electric or magnetic field. Three equations of motion must be solved simultaneously for the three
dimensions. Three components of electric and magnetic fields must be known throughout the
region of interest. In practice, this is a difficult procedure even with digital computers. It is costly
in either calculational time or memory space to specify field components at all positions.

The paraxial ray equation affords a considerable simplification for the special case of cylindrical
beams where particle orbits have small inclination angles with respect to the axis. Use of paraxial
forms (Section 6.2) means that electric and magnetic fields can be calculated quickly from
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(dP
θ
/dt) � pr (dθ/dt) � q [(dr/dt) Bz�(dz/dt) Br] � qE

θ
. (7.35)

specified quantities on the axis. Symmetry arguments and conservation principles are used to
simplify the particle equations of motion. The result is that only one equation for radial motion
need be solved to determine the beam envelope. The paraxial ray equation is derived in Section
7.5. In this section, we shall determine a result used in the derivation, the conservation of
canonical angular momentum. The method used, the Busch theorem [H. Busch, Z. Phys.81, 974
(1926)] provides more physical insight than the usual approach from the Hamiltonian formulation.

Consider a region of azimuthally symmetric, paraxial electric and magnetic fields where particles
move almost parallel to thez axis. A cylindrical coordinate system(r, θ, z) is referenced to the
beam axis (Fig. 7.10). (Note that this coordinate system differs from the one used in Section 7.3.)
We seek an equation that describes the azimuthal motion of charged particles in terms of on-axis
quantities. The Lorentz force law for azimuthal motion [Eq. (3.34)] is

Inspection of Eq. (7.35) shows that changes inv
θ

arise from either interactions of particle velocity
with static magnetic field components or an azimuthal electric field. In the paraxial approximation,
we will see that such an electric field can arise only from time variations of axial magnetic flux.
We will treat the two terms on the right-hand side of Eq. (7.35) separately and then combine them
to a modified equation for azimuthal motion. In the modified equation,v

θ
depends only on the

quantityBz(0,z).
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∆ψ � Bz(r,z) 2πr ∆r. (7.36)

∆ψ � (πr 2) (�Bz/�r) ∆z � �2πr Br ∆r. (7.37)

dψ/dt � 2πr [Bz (dr/dt) � Br (dz/dt)]. (7.38)

dp
θ
/dt � pr dθ/dt � (dψ/dt)/2πr. (7.39)

dp
θ

dt
� pr

dθ

dt
� γmo r

d 2θ

dt 2
�

dr

dt

dθ

dt
�

dr

dt

dθ

dt
�

1
r

d(γmor
2dθ/dt)

dt
.

d(γmor
2 dθ/dt)/dt � q(dψ/dt)/2π.

To begin, consider a particle moving thorough a region of static field componentsBr andBz (Fig.
7.10). Theflux functionψ is defined as the flux of axial magnetic field enclosed in a circle of
radiusr at z, wherer andz are particle coordinates. (Note that this is a calculational definition; the
particle does not necessarily move in a circle.) The flux function changes as the particle moves
along its orbit. First, assume that the particle moves radially a distance∆r. The change inψ is

Equation (7.36) reflects the fact thatBz is almost constant in the paraxial approximation and that
the area of the circle increases by about2πr∆r. Similarly, axial motion produces a change inψof

The area of the circle is constant, but the magnitude ofBz may change if there is an axial gradient.
The last form is derived by substitution from Eq. (6.7).

The change inψ from a particle motion is obtained by adding Eqs. (7.36) and (7.37). Dividing
both sides of the sum by∆t and taking the limit∆t � 0, we find that

The derivative indicates the change in flux function arising from particle motion when the
magnetic fields are static. The right-hand side of Eq. (7.38) is identical to the right side of Eq.
(7.35) multiplied by 2πr. Substituting, Eq. (7.35) becomes

The left-hand side of Eq. (7.39) can be modified by noting thatp
θ

= γmor(dθ/dt) andpr =
γmo(dr/dt):

The final result is that

or
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γmorvθ
� qψ/2π � qψo/2π. (7.40)

v
θ
� �(q/2πγmor) (ψ�ψo). (7.41)

ψ � �

r

0

(2πr �dr �) [(1/r �)�(r �A
θ
)/�r �] � 2πrA

θ
. (7.42)

P
θ
� γmorvθ

� qrA
θ
� qψo/2π. (7.43)

The quantityψo is a constant equal to the value ofψ whenv
θ

= 0. Solving forv
θ
,

The azimuthal velocity is a function only of r,ψ andψo. Because particles usually have vθ = 0
when they are generated,ψo is taken as the flux in the source plane enclosed in a circle of radius
ro, where ro is the extraction radius. Variation of Bz is second order with radius in the paraxial
approximation, so thatψ � (πr2)Bz(0,z).θ

Equation (7.40) can be cast in the form familiar from Hamiltonian dynamics by substituting Eq.
(4.53) into Eq. (3.25):

A
θ

is the only allowed component of the vector potential in the paraxial approximation. In this
circumstance, the vector potential has a straightforward physical interpretation. It is proportional
to the flux enclosed within a radius divided by2πr. The quantityψ/2π is thus synonymous with
the stream function (Section 4.7). Lines of constant enclosed flux must lie along field lines
because field lines do not cross one another.

To complete the derivation, we must include the effects on azimuthal motion when the magnetic
field changes in time. An azimuthal electrostatic field is not consistent with symmetry inθ because
the existence of such a field implies variation ofφ alongθ. A symmetric azimuthal electric field
can be generated inductively by a changing axial magnetic field. We will derive a modified form
for the termqE

θ
in Eq. (7.35) by neglecting spatial gradients ofBz. By Faraday's law [Eq. (3.26)],

the azimuthal electric field acting on a particle at radiusr is E
θ

= dψ/dt, where the derivative
implies variation ofψ in time neglecting spatial variations. If we add contributions from spatial
and temporal variations ofψ, we arrive at Eq. (7.41) as the general modified equation of
azimuthal motion. The time derivative is interpreted as the change inψ arising from all causes. In
the Hamiltonian formulation of particle dynamics, the canonical angular momentum in the
presence of a magnetic field is constant and is defined as

7.5 THE PARAXIAL RAY EQUATION

The paraxial ray equation is derived by combining the properties of paraxial fields, the
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dθ/dt � � (q/2πγmor
2) (ψ�ψo). (7.44)

d(γmo dr/dt)/dt � γmov
2
θ
/r � q (Er�v

θ
Bz)

� mo dr/dt dγ/dt � γmo d 2r/dt 2
� γmov

2
θ
/r.

(7.45)

(γ�1) mcc
2
� �

z

zo

dz� qEz � qφ. (7.46)

∆γ � qEz∆z/moc
2.

conservation of canonical angular momentum, and the conservation of energy. It can be used to
determine the envelope (outer radius) of a beam as a function of position along the axis in terms
of the electrostatic potential and longitudinal magnetic field on the axis,φ(0, z)andBz(0, z).

The equation is based on the following assumptions.
1.The beam is cylindrically symmetric.
2.Beam properties vary in space but not in time.
3.The fields are cylindrically symmetric, with componentsEr, Ez, Br andBz. This
encompasses all axisymmetric electrostatic lenses and the solenoidal magnetic lens.
4.The fields are static.
5.Particle motion is paraxial.
6. Fields are paraxial and transverse forces are linear.

In the following derivation, it is also assumed that particle orbits are laminar and that there are no
self-fields. Terms can be added to the paraxial ray equation to represent spreads in transverse
velocity and space charge forces.

The laminarity of orbits means that the radial projections of all particle orbits are similar. They
differ only in amplitude. It is thus sufficient to treat only the boundary orbit. The axial velocity is
approximately constant in any plane normal to the axis. Time derivatives are replaced byvz(d/dz)
because we are interested in the steady-state beam envelope as a function of axial position. The
azimuthal equation of motion is (Section 7.4)

The quantity y may vary with axial position since zero-order longitudinal electric fields are
included. The only nontrivial equation of motion is in the radial direction:

Conservation of energy can be expressed as

The quantityzo is the location of the source where particles have zero kinetic energy. The absolute
electrostatic potential is used. A change in position leads to a change inγ:
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dγ/dt � qEzvz/moc
2
� qEzβ/moc. (7.47)

d 2r

dt 2
�

qEzβ(dr/dt)

γmoc
�

qB2
z r

4γ2m2
o

�

q 2ψ
2
o

4π2γ2m2
o

1

r 3
�

qEr

γmo

� 0. (7.48)

r ��
�

γ�r �

β2γ
�

γ��

2β2γ
�

qBz

2βγmoc

2

r �

qψo

2πβγmoc

2
1

r 3
� 0. (7.49)

Dividing both sides by∆t and taking the limit of zero interval, we find that

Equations (7.44) and (7.47) are used to replace dγ/dt and dθ/dt in Eq. (7.45).

The radial electric field is replaced according toEr = (-r/2)(dEz/dz). The derivative is a total
derivative since the fields are assumed static andEz has no first-order radial variation. The final
step is to replace all time derivatives with derivatives inz. For instance, it can be easily shown
from Eq. (7.47) that�Ez/�z = (moc

2/q)(d2
γ/dz2 ). The second time derivative ofr becomes

vz
2(d2r/dz2) + vz(dr/dz)(dvz/dz).When the substitutions are carried out, the paraxial ray equation is

obtained.

The prime symbol denotes a differentiation with respect toz. The quantitiesγ, γ', γ", andBz are
evaluated on the axis. The quantityγ(0, z) and its derivatives are related to the electrostatic
potential [Eq. (7.46)] which is determined via the Laplace equation.

Consider the final term in Eq. (7.49). The quantityψo is the magnetic flux enclosed by the beam
at the source. This is elucidated in Figure 7.11 for an electron beam. The figure shows an
immersed cathode located within the magnetic field. Whenψo is nonzero, the final term in Eq.
(7.49) has a strong radial dependence through the1/r3 factor. The term has a dominant defocusing
effect when the beam is compressed to a small spot. This is a result of the fact that particles
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2φr ��
� φ�r �

�

φ��

2
�

qB2
z

4mo

�

qψ2
o/4π

2mo

r 3
� 0. (7.50)

r ��
� (φ�/2φ) r �

� (φ��/4φ) r � 0. (7.51)

d(r �φ)
dz

�

r 3

4
d(φ�/r 2)

dz
� 0. (7.52)

(dr/dr) � r �
� 0, (7.53)

(dr �/dx) � f(r,r �,z) � 0, (7.54)

produced in a magnetic field have a nonzero canonical angular momentum and are unable to pass
through the axis. Thus, care should be taken to exclude magnetic fields from the cathode of the
electron source in applications calling for fine focusing. Whenψo = 0, the paraxial ray equation
is linear since the remaining terms contain only first powers ofr", r', andr.

The nonrelativistic approximation can be used for beams of ions or low-energy electrons.
Substitutingγ = 1 _ qφ/moc

2 in the limit qφ « moc
2, Eq. (7.49) becomes

If there are only electric fields present, Eq. (7.50) reduces to the familiar form

where, again, the prime symbol indicates an axial derivative. An alternate form for Eq. (7.51) is

7.6 NUMERICAL SOLUTIONS OF PARTICLE ORBITS

The paraxial ray equation is a second-order differential equation that describes a beam envelope
or the radial orbit of a particle. It is possible to solve the equation analytically in special field
geometries, such as the narrow-diameter aperture lens or the solenoidal lens with sharp field
boundaries. In most realistic situations, it is rare to find closed forms for field variations on axis
that permit analytic solutions. Thus, numerical methods are used in almost all final designs of
charged particle optical systems. In this section, we shall briefly consider a computational method
to solve the paraxial ray equation. The method is also applicable to all second-order differential
equations, such as the general particle equations of motion.

A second-order differential equation can be written as two first-order equations by treatingr' as
a variable:

wheref (r, r’, z) is a general function. For instance,f = -(φ’r’/2 φ+φ”r/4 φ) in Eq. (7.51).
Equations (7.53) and (7.54) must be solved simultaneously. In order to illustrate the method of
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(dr/dz) � f(r,z) � 0. (7.55)

r(z�∆z) � r(z) � f(r,z) ∆z. (7.56)

solution, consider the simpler example of the equation

An obvious first approach to solving Eq. (7.55) by finite difference methods would be to
approximate the derivative by (∆r/∆z) to arrive at the algorithm,

Given an initial condition,r(zo), the solutionr(z) can be determined in steps.
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r(z�∆z) � r(z) � �

z�∆z

z

f(r,z�) dz�. (7.57)

Step1: r(z�∆z/2) � r(z) � f(r,z) ∆z/2,

Step2: r(z�∆z) � r(z) � f(r(z�∆z/2),z�∆z/2) ∆z.
(7.58)

Step1: r(z�∆z/2) � r(z) � r �
∆z/2,

r �(z�∆z/2) � r �(z) � f[r(z),r �(z),z] ∆z/2.

Step2: r(z�∆z) � r(z) � r �(z�∆z/2) ∆z,

r �(z�∆z) � r �(z) � f[r(z�∆z/2),r �(z�∆z/2),z�∆z/2) ∆z.

(7.59)

The algorithm of Eq. (7.56) is called theEulerian difference method. The drawback of this
approach is apparent if we express Eq. (7.55) in integral form.

Because we do not knowr(z) over the interval∆z, the essence of a finite difference method is to
find an estimate of the integral that leads to a good approximation for the continuous function.
The estimate of the Eulerian method is�f (r, z') dz'� f (r, z)∆z, as shown in Figure 7.12 a. This
introduces a first-order error, so that the final result will be accurate to only order∆z.

We could get a much better approximation for the integral if we knew the value off (r, z) at z +
∆z/2. The integral is then approximated asf(r,z+∆z/2)∆z. There is cancellation of first-order errors
as shown in Figure 7.12b. The basis of the two-step method is to make an initial estimate of the
value off(r,z+∆z/2)∆z by the Eulerian method and then to use the value to advancer. The
two-step algorithm is

Although this involves two operations to advancer, it saves computation time in the long run
because the error between the finite difference approximation and the actual value is of order∆z2.
The two-step method is an example of aspace-centered(or time-centered) difference method
becuase the integral is estimated symmetrically in the interval. The extension of the algorithm of
Eqs. (7.58) to the case of two coupled first-order differential equations [Eqs. (7.53) and (7.54)] is

The extra work involved in programming a higher-order finite difference scheme is worthwhile
even for simple orbit problems. Figure 7.13 shows results for the calculation of a circular orbit
described by the equations(d2x/dt2) + y = 0, (d2y/dt2) - x = 0. The initial coordinates are(x = 1, y
y = 0). The relative error in final position (∆x/x) after one revolution is plotted as a function of the
number of time steps (∆t = 2π/n). The two-step method achieves 1% accuracy with only 25 steps,
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while the accuracy of the Eulerian method is no better than 20% after 100 steps.
As an example of the solution of the paraxial ray equation, consider ion acceleration in an

electrostatic acceleration column. The nonrelativistic equation with electric fields only [Eq.
(7.51)] can be used. The column, illustrated in Figure 7.14, is found on Van de Graaff
accelerators and on electrostatic injectors for high-energy accelerators. A static potential in the
range 0.1 to 10 MeV exists between the entrance and the extraction plates. The inside of the
column is at high vacuum while the outside is usually immersed in a high-voltage insulating
medium such as sulfur hexafluoride gas or transformer oil. A solid vacuum insulator separates the
two regions. The insulator has greater immunity to vacuum breakdown if it is separated into a
number of short sections by metal grading rings (see Section 9.5). The rings are connected to a
high-resistance voltage divider so that the voltage is evenly distributed between the insulator
sections. Thick grading rings can also play a role in focusing a beam on the axis of the column.
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Er(r,z) � � (βr/2) sin(2πz/d), (7.60)

EZ(r,z) � Vo/d � Vo (βd/2πVo) cos(2πz/d), (7.61)

Consider, first, the field distribution when the rings are thin. If the thin rings extend to a radius
that is large compared to the aperture, then the electric field on the axis is uniform withz. The
quantityφ” is zero; hence the third term in Eq. (7.51) vanishes and there is no radial focusing. The
second term in Eq. (7.51) is nonzero, but it does not lead to beam focusing. This term
corresponds to the decrease indr/dzfrom the increase invz with acceleration. In contrast, there
are focusing forces when the grading rings are thick. In this case equipotential lines are
periodically compressed and expanded along the axis (Fig. 7.15a) leading to radial electric fields.

We express potential relative to the particle source (absolute potential). Assume that ions are
injected into the column with energyqαVo, where-αVo is the absolute potential of the entrance
plate. The potential decreases moving down the column (Fig. 7.14). Radial electric field is taken
in the form

whered is the ring spacing and the origin (z = 0) corresponds to the entrance plate. The form of
Eq. (7.60) is confirmed by a numerical solution of the Laplace equation (Fig. 7.15a), which also
gives the parameterβ. The longitudinal electric field is calculated from Eqs. (6.5) and (7.60) as

where Vo is the voltage between rings. This leads to the following expression and its first two
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φ(0,z) � Vo [�α � z/d � (βd 2/4π2) sin(2πz/d)]. (7.62)

φ(0,z) � [κ�1] [1 � (1�κ) tanh(1.318z/a)/(1�κ)]/2. (7.63)

for the absolute potential:

The derivativesφ' andφ" can be determined from Eq. (7.62).
Substitution of Eq. (7.62) and its derivatives into Eq. (7.51) leads to the results illustrated in

Figure 7.15b for a choice ofβ = 0.27 andα = 1.5. Note that in the region between the symmetry
planes of rings there is a focusing section followed by a defocusing section. The cumulative effect
is focusing because the particle gains axial energy and is less affected by positive radial fields on
the downstream side.

As a final application, consider the immersion lens of Section 6.6. The variation of axial
potential corresponding to Figure 6.10 is plotted in Figure 7.16. An empirical fit to the potential
between two accelerating tubes with a smallgap and radius a is given by [see P. Grivet,Electron
Optics, Vol. I, translated by P. W. Hawkes, (Pergamon, Oxford, 1972) 208].

In Eq. 7.63 a is the tube radius andκ = φ1/φ2 (whereφ1 is the upstream absolute potential andφ2

is the downstream potential). Equation (7.63) was used as input to a two-step paraxial ray
equation program to obtain the orbits of Figure 6.11. The orbit solutions lead to the thin-lens
focal length of Figure 6.12.
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8

Transfer Mattices and Periodic Focusing
Systems

Periodic focusing channels are used to confine high-energy beams in linear and circular
accelerators. Periodic channels consist of a sequence of regions called focusing cells containing
one or more charged particle optical elements. A focusing cell is the smallest unit of periodicity in
the channel. The main application of periodic channels is in high-energy accelerators that utilize
strong focusing. For example, the focusing channel of a linear ion accelerator consists typically of
a series of magnetic quadrupole lenses with alternating north-south pole orientation. Thus, along
either transverse axis, the lenses are alternately focusing and defocusing. We shall see that such a
combination has a net focusing effect that is stronger than a series of solenoid lenses at the same
field strength. A quadrupole focusing channel can therefore be constructed with a much smaller
bore diameter than a solenoid channel of the same acceptance. The associated reduction in the
size and power consumption of focusing magnets has been a key factor in the development of
modern high-energy accelerators. Periodic focusing channels also have application at low beam
energy. Configurations include the electrostatic accelerator column, the electrostatic Einzel lens
array and periodic permanent magnet (PPM) channels used in high-power microwave tubes.

The transfer matrix description of beam transport in near optical elements facilitates the study of
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periodic focusing channels. The matrix description is a mathematical method to organize
information about the transverse motions of particles about the main beam axis. Matrices are
particularly helpful when dealing with systems with a large number of different elements. The
effects on particles of a single element and combinations of elements are described by the familiar
rules of matrix algebra. All the lenses and beam bending devices described in Chapter 6 have
associated transfer matrices.

The transfer matrices for the focusing and defocusing axes of a quadrupole lens are derived in
Section 8.1. Section 8.2 lists transfer matrices for a variety of common optical elements. The rules
for combining matrices to describe complex optical systems are reviewed in Section 8.3. The rules
are applied in Section 8.4 to the quadrupole doublet and triplet lenses. These lenses combine
quadrupole fields to provide focusing along both transverse axes. Periodic systems are introduced
by the example of an array of thin one-dimensional lenses separated by drift spaces (Section 8.5).
The discussion illustrates the concepts of phase advance and orbital stability. Matrix algebra is
used to extend the treatment to general linear focusing systems. Given the transverse matrix for a
focusing cell, the stability limits on beam transport can be derived by studying the mathematical
properties of the matrix power operation (Section 8.6). The chapter concludes with a detailed
look at orbit stability in a long quadrupole channel (Section 8.7).

8.1 TRANSFER MATRIX OF THE QUADRUPOLE LENS

Transfer matrices describe changes in the transverse position and angle of a particle relative to the
main beam axis. We assume paraxial motion and linear fields. The axial velocityvz and the
location of the main axis are assumed known by a previous equilibrium calculation. Ifx andy are
the coordinates normal toz, then a particle orbit at some axial position can be represented by the
four-dimensional vector(x, x', y, y'). In other words, four quantities specify the particle orbit. The
quantitiesx' andy' are angles with respect to the axis; they are equivalent to transverse velocities
if vz is known. We further assume that the charged particle optical system consists of a number of
separable focusing elements. Separable means that boundary planes between the elements can be
identified. We seek information on orbit vectors at the boundary planes and do not inquire about
details of the orbits within the elements. In this sense, an optical element operates on an entrance
orbit vector to generate an output orbit vector. The transfer matrix represents this operation.

Orbits of particles in a magnetic quadrupole lens were discussed in Section 6.10. The same
equations describe the electric quadrupole with a correct choice of transverse axes and the
replacementκm � κe. In the following discussion,κ can represent either type of lens. According to
Eqs. (6.31) and (6.32), motions in thex andy directions are separable. Orbits can therefore be
represented by two independent two-dimensional vectors,u = (x, x') andv = (y, y'). This
separation holds for other useful optical elements, such as the magnetic sector field (Section 6.8)
and the focusing edge (Section 6.9). We shall concentrate initially on analyses of orbits along one
coordinate. Orbit vectors have two components and transfer matrices have dimensions 2 × 2.

Consider motion in thex direction in a quadrupole lens oriented as shown in Figure 5.16. The
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xf � xi cos( κl) � x �

i sin( κl)/ κ, (8.1)

x �

f � �xi κ sin( κl) � x �

i cos( κl). (8.2)

uf � AF ui, (8.3)

AF �

cos( κl) sin( κl)/ κ

� κ sin( κl) cos( κl)
, (8.4)

a11 a12

a21 a22

x

x �
�

a11x � a12x
�

a21x � a22x
�

. (8.5)

AD �

cosh( κl) sinh( κl)/ κ

κ sinh( κl) cosh( κl)
, (8.6)

AF �

1�Γ2/2�Γ4/24�... (Γ�Γ3/6�...)/ κ

� κ(Γ�Γ3/6�...) 1�Γ2/2�Γ4/24�...
, (8.7)

lens is focusing in the x direction. If the lens has a lengthl, the exit parameters are related to the
entrance parameters by

The lens converts the orbit vectorui = (xi, xi') into the vectoruf = (xf, xf'). The components ofuf

are linear combinations of the components ofui. The operation can be written in matrix notation
as

if AF is taken as

where the subscriptF denotes the focusing direction. For review, the rule for multiplication of a 2
× 2 matrix times a vector is

If the poles in Figure 5.16 are rotated 90�, the lens defocuses in the x direction. The transfer
matrix in this case is

Quadrupole lenses are usually used in the limit . In this case, the trigonometric andκ l � 1
hyperbolic functions of Eqs. (8.4) and (8.6) can be expanded in a power series. For reference, the
power series forms for the transfer matrices are
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AD �

1�Γ2/2�Γ4/24�... (Γ�Γ3/6�...)/ κ

κ(Γ�Γ3/6�...) 1�Γ2/2�Γ4/24�...
, (8.8)

O O G G

O O G G

G G O O

G G O O

.

xf � xi,

x �

f � x �

i � x/f,
(8.9)

and

where . The example of the quadrupole illustrates the method for finding the transferΓ � κl
matrix for a linear optical element. Numerical or analytic orbit calculations lead to the
identification of the four matrix components. The transfer matrix contains complete information
on the properties of the lens as an orbit operator.

When the action of a focusing system is not decoupled inx andy, the full four-dimensional
vector must be used and the transfer matrices have the form

A focusing system consisting of quadrupole lenses mixed with axisymmetric elements (such as
solenoid lens) has coupling of x and y motions. The transfer matrix for this system has coupling
components represented by the open boxes above. Sometimes, in the design of particle
spectrometers (where beam energy spread is of prime concern), an extra dimension is added to the
orbit vector to represent chromaticity, or the variations of orbit parameters with energy [see P.
Dahl, Introduction to Electron and Ion Optics (Academic Press, New York, 1973) Chapter 2]
In this case, the orbit vector is represented asu = (x, x', y, y', T).

8 .2 TRANSFER MATRICES FOR COMMON OPTICAL ELEMENTS

The following examples illustrate the concept of ray transfer matrices and indicate how they are
derived. The simplest case is the thin one-dimensional lens, illustrated in Figure 8.1. Only the
angle of the orbit changes when a particle passes through the lens. Following Section 6.4, the
transformation of orbit variables is
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A �

1 0

�1/f 1)
. (8.11)

A �

1 d

0 1)
. (8.12)

wheref is the focal length. This can be written in the form of Eq. (8.3) with the transfer matrix,

The matrix for a diverging lens is the same except for the terma21 which equals+1/f. In general,
the sign ofa21 indicates whether the optical element (or combination of elements) is focusing or
defocusing.

An optical element is defined as any region in a focusing system that operates on an orbit vector
to change the orbit parameters. Thus, there is a transfer matrix associated with translation in
field-free space along the z axis (Fig. 8.2). In this case, the distance from the axis changes
according to , whered is the length of the drift space. The angle is unchanged.xf � xi � x �

i d
The transfer matrix is
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x � A cos[ 1�no (z/rg) � φ], (8.12)

x � dx/dz � �[ 1�no/rg] A sin[ 1�no (z/rg) � φ]. (8.13)

xf � xi cos( 1�no d / rg), (8.14)

x �

f � �xi ( 1�no/rg) sin( 1�no d / rg), (8.15)

We have already studied the magnetic sector lens with uniform field (Section 6.8). A gradient can
be added to the sector field to change the focal properties by varying the width of the gap, as
shown in Figure 8.3. Consider the following special case. The magnet has boundaries
perpendicular to the main orbit so that there is no edge focusing. Furthermore, the field gradient is
parallel to the radius of curvature of the main orbit. With these assumptions, the sector field of
Figure 8.3 is a pie-shaped segment of the betatron field studied in Section 7.3. The field variation
near the main radius is characterized by the field indexno [Eq. (7.18)]. Motions about the main
axis in the horizontal and vertical direction are decoupled and are described by independent 2 × 2
matrices. Applying Eq. (7.30), motion in the horizontal plane is given by

The initial position and angle are related to the amplitude and phase byxi = Acosφ and
. In order to determine the net effect of a sector (with transit distancex �

i � � 1�no A sinφ/rg
) on horizontal motion, we consider two special input vectors,(xi, 0) and(0, xi'). In the�d � αrg

first caseφ = 0 and in the secondφ = π/2. According to Eqs. (8.12) and (8.13), the final orbit
parameters for a particle entering parallel to the main axis are

and

Similarly, if the particle enters on the main axis at an angle, the final orbit parameters are
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xf � x �

i rg sin( 1�no d / rg) / 1�no , (8.16)

x �

f � x �

i cos( 1�no d / rg). (8.17)

AH �

cos( 1�no α) rgsin( 1�no α)/ 1�no

� 1�no sin( 1�no α)/rg cos( 1�no α)
. (8.18)

AV �

cos( no α) rgsin( no α)/ no

� no sin( no α)/rg cos( no α)
. (8.19)

f �
� rg/tan( 1�no α) (8.20)

f �
� rg/tan( no α) (8.21)

and

The factord/rg is equal toα, the angle subtended by the sector. Combining the results of Eqs.
(8.14)-(8.17), the transfer matrix is

Similarly, for the vertical direction,

Following the development of Section 6.8, initially parallel beams are focused in the horizontal
direction. The focal point is located a distance

beyond the sector exit. This should be compared to Eq. (6.27). Whenno is negative (a positive
field gradient moving out along the radius of curvature), horizontal focusing is strengthened.
Conversely, a positive field index decreases the horizontal focusing. There is also vertical focusing
when the field index is positive. The distance to the vertical focal point is

If no = +0.5, horizontal and vertical focal lengths are equal and the sector lens can produce a
two-dimensional image. The dual-focusing property of the gradient field is used in charged
particle spectrometers.

Particles may travel in either direction through a sector magnet field, so there are two transfer
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A �

a11 a12

a21 a22

A �

1
detA

a22 �a12

�a21 a11

. (8.22)

detA � a11a22 � a12a21. (8.23)

A �1
H �

cos( 1�no α) �rgsin( 1�no α)/ 1�no

1�no sin( 1�no α)/rg cos( 1�no α)
. (8.24)

matrices for the device. The matrix for negatively directed particles can be calculated directly. The
transfer matrix for particles moving backward in the sector field is theinverseof the matrix for
forward motion. The inverse of a 2 × 2 matrix

is

The quantitydetA is the determinant of the matrixA, defined by

The determinant of the sector field transfer matrix in the horizontal direction is equal to 1. The
inverse is

Equation (8.24) is equal to Eq. (8.18) with the replacementα � -α. The negative angle
corresponds to motion in the-z direction. The effect of the element is independent of the
direction. The same holds true for any optical element in which the energy of the charged particle
is unchanged. We can verify that in this casedetA = 1.

Acceleration gaps in linear accelerators have the geometry of theimmersion lens (Figure 6.10).
This lens does not have the same focal properties for particle motion in different directions.
Assume the focal length for motion of nonrelativistic particles in the accelerating direction,fa, is
known. This is a function of the lens geometry as well as the absolute potentials of each of the
tubes. The upstream potential isφlwhile the downstream potential isφ2. The quantityξ is defined
as the ratio of the exit velocity to the entrance velocity and is equal toξ = . In theφ2/φ1
thin-lens approximation, a particle's position is constant but the transverse angle is changed. If the
particle entered parallel to the axis in the accelerating direction, it would emerge at an angle
-xi/fa. Similarly, a particle with an entrance vector(0, xi') emerges at an anglexi’/ξ. The traverse
velocity is the same, but the longitudinal velocity increases. The general form for the transfer
matrix of a thin electrostatic lens with acceleration is



Transfer Matrices and Periodic Focusing Systems

173

A �

1 0

�1/fa 1/ξ
. (8.25)

A �

1 0

�ξ/fa ξ
. (8.26)

The determinant has the value . The transfer matrix for a decelerating lens is thedetA � 1/ξ � 1
inverse ofA. Applying Eq. (8.22) and inverting signs so that the particle travels in the+z
direction,

In the thin-lens limit, theaccelerating and decelerating focal lengths are related byfd � fa/ξ.
To conclude the discussion of transfer matrices, we consider how the four components of

transfer matrices are related to the focal lengths and principal planes of Gaussian optics (Chapter
6). Consider the uniform sector field of Figure 8.4. This acts as a thick lens with a curved main
axis. An orbit vector(1, 0) is incident from the left. The relationship between the emerging orbit
and the matrix components as well as the focal length and principal planeH1 are indicated on the
figure. Applying the law of similar triangles, the focal length is given byf1 = -l/a11. The principal
plane is located a distancez1 = (1 - a11)/a21 from the boundary. Thus, the componentsa11 anda2l

are related tof1 andH1. When the matrix is inverted, the componentsa12 anda22 move to the first
column. They are related tof2 andH2 for particles traveling from right to left. The matrix and
Gaussian descriptions of linear lenses are equivalent. Lens properties are completely determined
by four quantities.

8.3 COMBINING OPTICAL ELEMENTS
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u1 � A u0, u2 � B u1 � B (A u0),

or

u2 � C u0.

C �

c11 c12

c21 c22

�

b11 b12

b21 b22

a11 a12

a21 a22

, (8.27)

c11 � b11a11 � b12a21, c12 � b11a12 � b12a22,

c21 � b21a11 � b22a21, c22 � b21a21 � b22a22.

Matrix algebra makes it relatively easy to find the cumulative effect of a series of transport
devices. A single optical element operates on an entrance orbit vector,u0, changing it to an exit
vector,u1. This vector may be the entrance vector to another element, which subsequently
changes it tou2. By the superposition property of linear systems, the combined action of the two
elements can be represented by a single matrix that transformsu0 directly tou2.

If A is the transfer matrix for the first element andB for the second, the process can be written
symbolically,

The matrixC is a function ofA andB. The functional dependence is calledmatrix multiplication
and is denotedC = BA. The rule for multiplication of two 2 × 2 matrices is

where

We shall verify the validity of Eq. (8.27) for the example illustrated in Figure 8.5. The optical
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x2 � x0 � (x �

0 � x0/f) d � x0 (1 � d/f) � x �

od, (8.28)

x �

2 � x �

0 � x0/f. (8.29)

C �

1�d/f d

�1/f 1
�

1 d

0 1

1 0

�1/f 1
. (8.30)

C � An An�1 ... A2 A1. (8.31)

system consists of two one-dimensional elements, a thin lens with focal lengthf followed by a
drift spaced. The particle entrance orbit is(x0, x0'). The position and angle emerging from the
lens arex1 = x0 andx1' = x0' - x0/f. Traveling through the drift space, the orbit angle remains
constant but the displacement changes by an amount∆x = x1'd. The total transformation is

Inspection of Eqs. (8.28) and (8.29) yields the 2 × 2 transformation matrix,

We can easily verify thatC is the matrix product of Eq. (8.11) by Eq. (8.10).
It is important to note that the mathematic order of matrix multiplication must replicate the

geometric order in which the elements are encountered. Matrix multiplication is not commutative,
so thatAB � BA. The inequality can be demonstrated by calculating the transfer matrix for a drift
space followed by a lens. The effect of this combination is not the same as a lens followed by a
drift space. Consider a parallel orbit entering the two systems. In the drift-lens geometry, the
particle emerges at the same position it entered. In the second combination, the final position will
be different. Multiplying transfer matrices in the improper order is a frequent source of error. To
reiterate, if a particle travels in sequence through elements represented byA1, A2, ... , An-1, An,
then the combination of these elements is a matrix given by

The astigmatic focusing property of quadrupole doublets (Section 8.4) is an important
consequence of the noncommutative property of matrix multiplication.

We can use matrix algebra to investigate the imaging property of a one-dimensional thin lens.
The proof that a thin lens can form an image has been deferred from Section 6.4. The optical
system consists of a drift space of lengthd2, a lens with focal lengthf and another drift spaced1

(see Fig. 6.7). The vectors (x0, x0') and (x3, x3') represent the orbits in the planesσ1 andσ2. The
planes are object and image planes if all rays that leave a point inσ1 pass through a corresponding
point inσ2, regardless of the orbit angle. An equivalent statement is that x3 is a function of x0 with
no dependence on x0'. The transfer matrix for the system is
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C �

1 d1

0 1

1 0

�1/f 1

1 d2

0 1

�

1�d1/f d1�d2�d1d2/f

�1/f 1�d2/f
.

(8.32)

The position of the output vector in component form is An image is formed ifx3 � c11x0 � c12x
�

0.
c12 = 0. This is equivalent to This is the thin-lens formula of Eq. (6.15).1/f � (1/d1) � (1/d2).
When the image condition holds,M � x2/x1 � c11.

8.4 QUADRUPOLE DOUBLET AND TRIPLET LENSES

A quadrupole lens focuses in one coordinate direction and defocuses in the other. A single lens
cannot be used to focus a beam to a point or to produce a two-dimensional image.
Two-dimensional focusing can be accomplished with combinations of quadrupole lenses. We will
study the focal properties of two (doublets) and three quadrupole lenses (triplets). Quadrupole
lens combinations form the basis for most high-energy particle transport systems. They occur as
extended arrays or as discrete lenses for final focus to a target. Quadrupole lens combinations are
convenient to describe since transverse motions are separable inx andy if the poles (electrodes)
are aligned with the axes as shown in Figures 4.14 (for the electrostatic lens) and 5.16 (for the
magnetic lens). A 2 × 2 matrix analysis can be applied to each direction.

The magnetic quadrupole doublet is illustrated in Figure 8.6. We shall consider identical lenses
in close proximity, neglecting the effects of gaps and edge fields. It is not difficult to extend the
treatment to a geometry with a drift space between the quadrupoles. Relative to thex direction,
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CFD �

cosΓcoshΓ�sinΓsinhΓ (coshΓsinΓ�cosΓsinhΓ)/ κ

κ(cosΓsinhΓ�coshΓsinΓ) cosΓcoshΓ�sinΓsinhΓ
. (8.33)

CDF �

cosΓcoshΓ�sinΓsinhΓ (coshΓsinΓ�cosΓsinhΓ)/ κ

κ(cosΓsinhΓ�coshΓsinΓ) cosΓcoshΓ�sinΓsinhΓ
. (8.34)

the first element is focusing and the second is defocusing. This is represented symbolically as

F D

where particles move from left to right. Conversely, in the y direction the doublet is denoted

D F

The transfer matrices for the combination of the two elements can be found by matrix
multiplication of Eqs. (8.4) and (8.6). The multiplication must be performed in the proper order.
The result for anFD channel is

where Similarly, for aDF channel,Γ � κl.

Equations (8.33) and (8.34) have two main implications. First, the combination of equal
defocusing and focusing elements leads to net focusing, and, second, focusing is different in thex
andy directions. As we found in the previous section, the termc21 of the transfer matrix
determines whether the lens is focusing or defocusing. In this case,

We can verify by direct computation that c21 = 0 atc21 � κ (cos κlsinh κl�cosh κlsin κl).
and it is a monotonically decreasing function for all positive values of . The reasonκl � 0 κl

for this is illustrated in Figure 8.7, which shows orbits in the quadrupoles for theFD andDF
directions. In both cases, the orbit displacement is larger in the focusing section than in the
defocusing section; therefore, the focusing action is stronger. Figure 8.7 also shows that the focal
points in thex andy directions are not equal. An initially parallel beam is compressed to a line
rather than a point in the image planes. A lens with this property is calledastigmatic. The term
comes from the Latin wordstigma, meaning a small mark. A lens that focuses equally in both
directions can focus to a point or produce a two-dimensional image. Such a lens is called
stigmatic. The term anastigmatic is also used. Astigmatism in the doublet arises from the
displacement term c11. Although initially parallel orbits emerge fromFD andDF doublets with the
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A �

1�l/2f l�l 2/4f

�1/f 1�l/2f
. (8.35)

CDF �

1�κl 2 2l

�2κ2l 3/3 1�κl 2
. (8.36)

CFD �

1�κl 2 2l

�2κ2l 3/3 1�κl 2
. (8.37)

same angle, the displacement is increased in theDF combination, and decreased in theFD.
The transfer matrix for a three-element optical system consisting of a drift space of lengthl/2, a

thin lens with focal lengthf, and another drift space is

Comparison of Eq. (8.35) with Eqs. (8.7) and (8.8) shows a correspondence if we take
Thus, to order , quadrupole elements can be replaced by a drift space of lengthlf � ±1/κl. ( κl)2

with a thin lens at the center. This construction often helps to visualize the effect of a series of
quadrupole lenses. A similar power series approximation can be found for the total ray transfer
matrix of a doublet. Combining Eqs. (8.7) and (8.8) by matrix multiplication

Equations (8.36) and (8.37) are correct to order .( κl)4

Stigmatism can be achieved with quadrupoles in a configuration called the triplet. This consists
of three quadrupole sections. The entrance and exit sections have the same length (l/2) and pole
orientation, while the middle section is rotated 90� and has lengthl. Orbits in thex andy planes of
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Ctriplet �
1 2l

�κ2l 3/6 1
. (8.38)

the triplet are illustrated in Figure 8.8. An exact treatment (using the trigonometric-hyperbolic
forms of the transfer matrices) shows that the exit displacements are identical in both planes for
equal entrance displacements. The power series expansions [Eqs. (8.7) and (8.8)] can be used to
show that the exit angles are approximately equal. When the calculation is carried out, it is found
that all terms of order mutually cancel from the total matrix. The following result holds for( κl)2

both theFDF andDFD combinations:

Equation (8.38) is accurate to order .( κl)4

8.5 FOCUSING IN A THIN-LENS ARRAY

As an introduction to periodic focusing, we shall study the thin-lens array illustrated in Figure 8.9.
Orbits in this geometry can be determined easily. The focusing cell boundaries can have any
location as long as they define a periodic collection of identical elements. We will take the
boundary at the exit of a lens. A focusing cell consists of a drift space followed by a lens, as
shown in Figure 8.9.

The goal is to determine the positions and angles of particle orbits at cell boundaries. The
following equations describe the evolution of the orbit parameters traveling through the focusing
cell labeled(n+1) in the series [see Eqs. (8.10) and (8.11)]. The subscriptn denotes the orbit
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xn�1 � xn � dx�

n, (8.39)

x �

n�1 � x �

n � xn�1/f. (8.39)

x �

n � (xn�1�xn)/d. (8.41)

x �

n�1 � [(1�d/f) xn�1 � xn]/d. (8.42)

x �

n�1 � (xn�2�xn�1)/d. (8.43)

parameter at the exit of thenth focusing cell:

Equation (8.39) can be solved for xn’

Equation (8.41) can be substituted in Eq. (8.40) to yield

Finally, an equation similar to Eq. (8.41) can be written for the transition through focusing cell
(n+2)

Setting Eqs. (8.42) and (8.43) equal gives the difference equation
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xn�2 � 2 (1�d/2f) xn�1 � xn � 0. (8.44)

xn � xo exp(jnµ). (8.45)

exp[j(n�2)µ] � 2b exp[j(n�1)µ] � exp(jnµ) � 0, or

exp(2jµ) � 2b exp(jµ) � 1 � 0.
(8.46)

exp(jµ) � b ± j 1�b 2. (8.47)

exp(jµ) � cosµ � j sinµ � cosµ � j 1�cos2µ . (8.48)

µ � ±cos�1b � ±cos�1(1�d/2f). (8.49)

xn � x0 cos(nµ�φ). (8.50)

This is the finite difference equivalent of a second-order differential equation. We found in Section
4.2 that the finite difference approximation to the second derivative of a function involves the
values of the function at three adjacent mesh points.

We seek a mathematical solution of Eq. (8.44) in the form

Defining b = 1 - d/2f and substituting in Eq. (8.44),

Applying the quadratic formula, the solution of Eq. (8.46) is

The complex exponential can be rewritten as

Comparing Eqs. (8.47) and (8.48), we find that

The solution of Eq. (8.47) is harmonic when . The particle displacement at the cell|b| � 1
boundaries is given by the real part of Equation 8.45,

Equation (8.50) gives the displacement measured at a cell boundary. It does not imply that
particle orbits between boundaries are harmonic. In the thin-lens array, it is easy to see that orbits
are straight lines that connect the points of Eq. (8.45). The quantity µ is called thephase advance
in a focusing cell. The meaning of the phase advance is illustrated in Figure 8.10. The case shown
has Particle orbits between cell boundaries in other focusing systems areµ � 2π/7 � 51.4�.
generally not straight lines. Orbits in quadrupole lens arrays are more complex, as we will see in
Section 8.7.
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x �

n � (xo/d) exp[j(n�1)µ] � exp(jnµ) � (xo/d) exp(jnµ) [exp(jµ)�1]. (8.51)

x �

n � Re([jx0µ/d] [exp(jnµ)]) � �(x0µ/d) sin(nµz/d). (8.52)

|b| � |1�d/2f| � 1. (8.53)

The orbit angle at cell boundaries can be determined by substituting Eq. (8.45)in Eq. (8.41).
The result is

Note that when µ� 0, particle orbits approach the continuous envelope function
In this limit, the last factor in Eq. (8.51) is approximatelyjµ so that thex(z) � x0 cos(µz/d�φ).

orbit angle becomes

An important result of the thin-lens array derivation is that there are parameters for which all
particle orbits are unstable. Orbits are no longer harmonic but have an exponentially growing
displacment when
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f � d/4 (stability). (8.54)

Setting1 - d/2fequal to -1 gives the following stability condition for transport in a thin-lens array,

There is a maximum usable lens strength for a given cell length. The physical interpretation of this
instability can be visualized by reference to Figure 8.11. The lens system hasf = d/4 so that the
particle orbit is marginally stable. In this case,b = -1 and µ = 180�. The orbit crosses the
boundary with a displacement of equal magnitude but opposite sign. If the focusing strength of
the lens is increased slightly (f < d/4), then the particle has an increased magnitude of
displacement at each cell boundary as shown by the dotted line. The amplitude of displacement
increases without limit.

8.6 RAISING A MATRIX TO A POWER

We want to generalize the treatment of the previous section to investigate orbits and stability
properties for any linear focusing system. Focusing cells may be complex in high-energy
accelerators. They may include quadrupole lenses, bending magnets, gradient fields, and edge
focusing. Nonetheless, the net effect of a focusing cell can be represented by a single 4 × 4
transfer matrix no matter how many sequential elements it contains. When transverse motions
along Cartesian coordinates are decoupled, each direction is separately characterized by a 2 × 2
matrix.

A periodic focusing system consists of a series of identical cells. We shall restrict consideration
to transport in the absence of acceleration. This applies directly to storage rings, beamlines, and
electron confinement in a microwave tube. It is also a good approximation for accelerators if the
betatron wavelength is short compared to the distance over which a particle's energy is doubled.

If a particle enters a periodic channel with an orbit vectoru0, then the vector at the boundary
between the first and second focusing cells isu1 = Cu0. The quantityC is the transfer matrix for a
cell. After traversingn cells, the orbit vector is
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un � C n u0. (8.55)

C �

c11 c12

c21 c22

,

detC � c11c22 � c12c21 (8.56)

Tr C � c11 � c22. (8.57)

C νi � λi νi. (8.58)

The quantityCn denotes the matrix multiplication ofC by itselfn times. The behavior of particle
orbits in periodic focusing systems is determined by the matrix power operation. In particular, if
all components ofCn are bounded asn� �, then particle orbits are stable.

Analytic expressions for even small powers of a matrix can rapidly become unwieldy. The
involved terms encountered in matrix multiplication are evident in Eqs. (8.33) and (8.34). We
must use new methods of analysis to investigate the matrix power operation. We will concentrate
on 2 × 2 matrices; the extension to higher-order matrices involves more algebra but is
conceptually straightforward. We have already encountered the determinant of a matrix in Section
8.2. The determinant of a transfer matrix is always equal to unity when there is no acceleration.
Another useful quantity is thetraceof a matrix, defined as the sum of diagonal elements. To
summarize, if

then

and

Transfer matrices haveeigenvaluesandeigenvectors. These quantities are defined in the
following way. For most square matrices, there are orbit vectors and numerical constants that
satisfy the equation

The vectors for which Eq. (8.58) is true are called eigenvectors (characteristic vectors) of the
matrix. The numerical constants (which may be complex numbers) associated with the vectors are
called eigenvalues.

The following results are quoted without proof from the theory of linear algebra. The order of a
square matrix is the number of rows (or columns). A square matrix of orderm with nonzero
determinant hasm eigenvectors andm different eigenvalues. The eigenvectors have the property
of orthogonality. Any m-dimensional orbit vector can be represented as a linear combination of
eigenvectors. In the case of a 2 × 2 transfer matrix, there are two eigenvectors. Any orbit vector
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u0 � a1 ν1 � a2 ν2. (8.59)

u0 � C n u0 � a1 λ
n
1 ν1 � a2 λ

n
2 ν2. (8.60)

(c11�λ) ν � c12 ν
�
� 0, (8.61)

c21 ν � (c22�λ) ν
�
� 0. (8.62)

(c11�λ) (c22�λ) � c12c21

(c22�λ)
ν � 0. (8.63)

(c11�λ) (c22�λ) � c12c21 � 0. (8.64)

λ
2
� λ TrC � detC � 0. (8.65)

λ1,λ2 � (TrC/2) ± (TrC/2)2
�1. (8.66)

at the entrance to a periodic focusing system can be written in the form

If the orbit given by the input vector of Eq. (8.59) passes throughn focusing cells of a periodic
system, it is transformed to

Equation (8.60) demonstrates the significance of the eigenvector expansion for determining the
power of a matrix. The problem of determining the orbit after a large number of focusing cells is
reduced to finding the power of two numbers rather than the power of a matrix. Ifλ1

n andλ2
n are

bounded quantities forn » 1, then orbits are stable in the focusing system characterized by the
transfer matrixC.

The eigenvalues for a 2 x 2 matrix can be calculated directly. Writing Eq. (8.58) in component
form for a general eigenvector(ν,ν’) ,

Multiplying Eq. (8.62) byc12/(c22-λ) and subtracting from Eq. (8.61), we find that

Equation (8.63) has a nonzero solution when

This is a quadratic equation that yields two values ofλ. The values can be substituted into Eq.
(8.61) or (8.62) to giveν1' in terms ofν1 andν2' in terms ofν2. Equation (8.64) can be rewritten

The solution to Eq. (8.65) can be found from the quadratic formula using the fact thatdetC = 1.
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λ1 λ2 � (TrC/2)2
� [(TrC/2)2

�1] � 1. (8.67)

λ1,λ2 � (TrC/2) ± j 1�(TrC/2)2. (8.68)

TrC/2 � cosµ, (8.69)

λ1,λ2 � cosµ ± j sinµ � exp(±jµ).. (8.70)

|TrC/2| � 1 (stability). (8.71)

C �

1 d

�1/f 1�d/f
. (8.72)

The product of the two eigenvalues of Eq. (8.66) is

The fact that the product of the eigenvalues of a transfer matrix is identically equal to unity leads
to a general condition for orbital stability. We know that the eigenvalues are different ifdetC and
TrC are nonzero. If both eigenvalues are real numbers, then one of the eigenvalues must have a
magnitude greater than unity if the product of eigenvalues equals 1. Assume, for instance, that
λ1 > 1. The termλ1 will dominate in Eq. (8.60). The magnitude of the orbit displacement will
diverge for a large number of cells so that orbits are unstable. Inspecting Eq. (8.65), the condition
for real eigenvalues and instability is .|TrC/2| > 1

When , the square root quantity is negative in Eq. (8.65) so that the eigenvalues are|TrC/2| � 1
complex. In this case, Eq. 8.66 can be rewritten

If we make the formal substitution

then Eq. (8.68) becomes

Euler's formula was applied to derive the final form. The eigenvalues to thenth power are
exp(±njµ). This is a periodic trigonometric function. The magnitude of both eigenvalues is
bounded for all powers ofn. Thus, the orbit displacement remains finite for n� � and the orbits
are stable. To reiterate, if the action of a cell of a periodic focusing system is represented by a
transfer matrixC, then orbits are stable if

This simple rule holds for any linear focusing cell.
We have concentrated mainly on mathematics in this section. We can now go back and consider

the implications of the results. The example of the drift space and thin lens will be used to
illustrate application of the results. The transfer matrix is
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|1�d/2f| � 1, (8.73)

un � a1ν1 exp(jnµ) � a2ν2 exp(�jnµ). (8.74)

ν
�
� (λ�c11) ν / c12. (8.75)

ν1 � ( 1,[exp(jµ)�1]/d ), (8.76)

ν2 � ( 1,[exp(�jµ)�1]/d ), (8.77).

uo � x0 ν1. (8.78)

xn � x0 Re[exp(jnµ)] � x0 cos(nµ). (8.79)

x �

n � x0 exp(jnµ) [exp(jµ)�1]/d. (8.80)

The determinant is equal to unity. The trace of the matrix is Applying Eq. (8.71),TrC � 2�d/f.
the condition for stable orbits is

as we found before. Similarly, . Thus, the parameter µ has the same value as Eq.cosµ � 1�d/2f
(8.49) and is associated with the phase advance per cell. This holds in general for linear systems.
When the orbits are stable and the eigenvalues are given by Eq. (8.70), the orbit vector at the cell
boundaries of any linear focusing cell is

The solution is periodic; orbits repeat after passing through cells.N � 2π/µ
The eigenvectors for the transfer matrix [Eq. (8.72)] can be found by substituting the

eigenvalues in Eq. (8.61). The choice ofν is arbitrary. This stands to reason since all orbits in a
linear focusing system are similar, independent of magnitude, and the eigenvectors can be
multiplied by a constant without changing the results. Given a choice of the displacement, the
angle is

The eigenvectors for the thin-lens array are

Suppose we wanted to treat the same orbit considered in Section 8.5 [Eq. (8.45)]. The particle
enters the first cell parallel to the axis with a displacement equal tox0. The following linear
combination of eigenvectors is used.

The displacement after passing through n cells is

as we found from the finite difference solution. The angle aftern cells is
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C �

cosΓcoshΓ�sinΓsinhΓ (cosΓsinhΓ�sinΓcoshΓ)/ κ

κ(cosΓsinhΓ�sinΓcoshΓ) cosΓcoshΓ�sinΓsinhΓ
. (8.81)

The expression is identical to Eq. (8.51). Both models lead to the same conclusion. We can now
proceed to consider the more complex but practical case ofFD quadrupole focusing cells.

8.7 QUADRUPOLE FOCUSING CHANNELS

Consider the focusing channel illustrated in Figure 8.12. It consists of a series of identical,
adjacent quadrupole lenses with an alternating 90' rotation. The cell boundary is chosen so that
the cell consists of a defocusing section followed by focusing section (DF) for motion in thex
direction. The cell is therefore represented asFD in they direction. Note that individual lenses do
not comprise a focusing cell. The smallest element of periodicity contains both a focusing and a
defocusing lens. The choice of cell boundary is arbitrary. We could have equally well chosen the
boundary at the entrance to anF lens so that the cell was anFD combination in thex direction.
Another valid choice is to locate the boundary in the middle of theF lens so that focusing cells are
quadrupole triplets,FDF. Conclusions related to orbital stability do not depend on the choice of
cell boundary.

The transfer matrix for a cell is the product of matricesC = AFAD. The individual matrices are
given by Eqs. (8.4) and (8.6). Carrying out the multiplication,

where . Taking the condition for stable orbits isΓ � κl |TrC/2| < 1
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�1 � cosΓ coshΓ � �1. (8.82)

0 � Γ � 1.86. (8.83)

Figure 8.13 shows a plot of versusΓ. Only positive values ofΓ havef(Γ) � cosΓ coshΓ
physical meaning. Orbits are stable forΓ in the range

A stable orbit (calculated by direct solution of the equation of motion in the lens fields) is plotted
in Figure 8.14a. The orbit hasΓ = 1, so that µ = 0.584 = 33.5�. Higher values ofΓ correspond to
increased lens strength for the same cell length. Orbits are subject to the same type of overshoot
instability found for the thin-lens array [Eq. (8.53)]. An unstable orbit withΓ = 1.9 is plotted in
Figure 8.14b. At higher values ofΓ, there are regions ofΓ in which stable propagation can occur.
Figure 8.14c illustrates a stable orbit withΓ = 4.7 (µ = 270�). Orbits such as those of Figure
8.14c strike a fragile balance between focusing and defocusing in a narrow range ofΓ.
Higher-order stability bands are never used in real transport systems. For practical purposes,
Γ must be in the range indicated by Eq. (8.83). The same result applies to motion in they
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fF � �1/κl, fD � �1/κl,

fFD � 3/2κ2l 3
� 3| fF fD |/2l � 1/d 3. (8.84)

direction. The matrix coefficients are different from those of Eq. (8.81), but the quantityTrC/2 is
the same.

Given a range ofΓ for stable operation, it remains to determine an optimum value. Small phase
advance (µ « 1) has advantages. The effect of any one lens is small so that orbits approach the
continuous focusing limit (Section 7.1). Beam envelope oscillations in a cell are small, and particle
orbits are less affected by errors and misalignments of the lenses. Small µ is an effective choice for
an array of lenses with positive focal length, such as the thin-lens array discussed in Section 8.5.
The thin-lens array is a good model for a series of solenoidal magnetic lenses or unipotential
electrostatic lenses. In such lens arrays, we can show that to first order the focusing strength is
independent of µ for given applied fields. The focusing strength is proportional to the average
transverse force that the lenses exert on the particles [Eq. (7.6)]. Neglecting edge fields, the focal
length of a solenoidal lens is inversely proportional to the length of the lens,d. Thus, the product
fd in Eq. (7.6) does not depend on the number of individual lenses per unit axial length. In other
words, given a series of solenoids with phase advance µ, focal lengthf, and lens lengthd, the
acceptance would be unchanged if the lens length and phase advance were halved and the focal
length were doubled. Thus, it is generally best to use small phase advance and a fine division of
cells in channels with only focusing lenses. The minimum practical cell length is determined by
ease of mechanical construction and the onset of nonlinearities associated with the edge fields
between lenses.

This conclusion does not apply toFD-type focusing channels. In order to investigate scaling in
this case, consider the quadrupole doublet treated using the expansions for small [Eqs. (8.7),κl
(8.8), and (8.35)]. In this approximation, the doublet consists of two lenses with focal lengths

separated by a distancel. As with the solenoidal lens, the focal lengths of the individual lenses are
inversely proportional to the lengths of the lens. The net positive focal length of the combination
from Eqs. (8.36) and (8.37) is

whered = 2l is the cell length.
If we divide the quadrupole doublet system into smaller units with the same applied field, the

scaling behavior is different from that of the solenoid channel. The average focusing force
decreases, because the productfFDd is proportional tod-2 . This scaling reflects the fact that the
action of anFD combination arises from the difference in average radius of the orbits in theF
andD sections. Dividing the lenses into smaller units not only decreases the focusing strength of
theF andD sections but also reduces the relative difference in transverse displacement. The
conclusion is thatFD focusing channels should be designed for the highest acceptable value of
phase advance. The value used in practice is well below the stability limit. Orbits in channels
with high µ are sensitive to misalignments and field errors. A phase advance of µ = 60� is usually
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C �

cosΓ1 sinΓ1/ κ1

� κ1sinΓ1 cosΓ1

coshΓ1 sinhΓ1/ κ1

κ1sinhΓ1 coshΓ1

. (8.85)

cosµDF � cosΓ1 coshΓ2 �
sinΓ1 sinhΓ2

2

Γ2l1

Γ1l2

�

Γ1l2

Γ2l1

. (8.86)

used.
In many strong focusing systems, alternate cells may not have the same length or focusing

strength. This is often true in circular accelerators. This case is not difficult to analyze. Defining
and , the transfer matrix for motion in theDF direction isΓ1 � κ1 l1 Γ2 � κ2 l2

Performing the matrix multiplication and takingTrC/2 gives the following phase advance:
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cosµFD � coshΓ1 cosΓ2 �
sinhΓ1 sinΓ2

2

Γ1l2

Γ2l1

�

Γ2l1

Γ1l2

. (8.87)

Because the two lenses of the cell have unequal effects, there is a different phase advance for the
FD direction, given by

There is little difficulty deriving formulas such as Eqs. (8.86) and (8.87). Most of the problem is
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�1 � cosµFD � �1, (8.88)

�1 � cosµDF � �1. (8.89)

centered on plotting and interpreting the results. There are conditions in two directions that must
be satisfied simultaneously for stable orbits:

The stability results are usually plotted in terms ofΓ1
2 andΓ2

2 in a diagram such as Figure 8.15.
This region of parameter space with stable orbits is shaded. Figure 8.15 is usually called a
"necktie" diagram because of the resemblance of the stable region to a necktie, circa 1952. The
shape of the region depends on the relative lengths of the focusing and defocusing lenses. The
special case we studied with equal lens properties is a 45� line on the11 = 12 diagram. The
maximum value ofΓ2 is (1.86)2 . An accelerator designer must ensure that orbits remain well
within the stable region for all regimes of operation. This is a particular concern in a synchrotron
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λz � (2πd/µ), (8.90)

λz �
2πd

cos�1(cosΓcoshΓ)
. (8.91)

µDF � 2πn (d/C) (8.92)

µFD � 2πn (d/C) (8.93)

where the energy of particles and strength of the focusing field varies during the acceleration
cycle.

The betatron wavelength for orbits in a quadrupole channel is

whered is the cell length andd = 21. WhenF andD cells have the same parameters, Eq. (8.90)
can be written

The quantity is plotted in Figure 8.16 as a function ofΓ. The betatron wavelength isλz/l
Important in circular machines. Particles may suffer resonance instabilities when the circumference
of the accelerator or storage ring is an integral multiple of the betatron wavelength (Section 7.3).
If we include the possibility of different focusing properties in the horizontal and verticle
directions, resonance instabilities can occur when

or

with n = 1,2,3,4,... . Equations (8.92) and (8.93) define lines of constant cosµDF or cosµFD, some
of which are inside the region of general orbital stability. These lines, are included in the necktie
diagram of Figure 8.17. They have the same general orientation as the lines cosµDF = -1 or
cosµFD= +1. The main result is that particle orbits in a circular machine with linearFD forces must
remain within a quadrilateral region ofΓ1-Γ2 space. If this is not true over the entire acceleration
cycle, orbital resonance instabilities may occur with large attendant particle losses.
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9

Electrostatic Accelerators and Pulsed High
Voltage

In this chapter we begin the study of charged particle acceleration. Subsequent chapters describe
methods for generating high,-energy charged particle beams. The kinetic energy of a charged
particle is increased by electric fields according to [Eq. (3.16)], where the∆T � � E(x,t) � dx
integral is taken along the particle orbit. This equation applies to all accelerators. The types of
accelerators discussed in the next six chapters differ by the origin and characteristics of the
electric field. In the most general case,E varies in time and position. In this chapter, we limit
consideration to the special case of static electric fields.

Static electric fields can be derived from a potential function with no contribution from
time-varying magnetic flux. An electrostatic accelerator consists basically of two conducting
surfaces with a large voltage differenceVo. A particle with chargeq gains a kinetic energyqVo. In
this chapter, we shall concentrate mainly on methods for generating high voltage. The description
of voltage sources, particularly pulsed voltage generators, relies heavily on passive circuit
analysis. Section 9.1 reviews the properties of resistors, capacitors, and inductors. A discussion of
circuits to generate dc voltage follows in Section 9.2. The equations to describe ideal transformers
are emphasized. A thorough knowledge of the transformer is essential to understand linear
induction accelerators (Chapter 10) and betatrons (Chapter 11).

Section 9.4 introduces the Van de Graaff voltage generator. This device is used extensively in
low-energy nuclear;physics. It also provides preacceleration for beams on many high-energy
accelerators. The principles of dc accelerators are easily understood - the main difficulties
associated with these machines are related to technology, which is largely an empirical field.
Properties of insulators are discussed in Section 9.3 and Paschen’s law for spark breakdown of an
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insulating gas is derived. The important subject of vacuum breakdown is reviewed in Section 9.5.
The remainder of the chapter is devoted to techniques of pulsed voltage generation.

Acceleration by pulsed voltage accelerators is well described by the electrostatic approximation
because the transit time of particles and the propagation time for electromagnetic waves in
acceleration gaps are small compared to typical voltage pulslengths (∆t � 50 ns). Although the
static approximation describes the acceleration gap, the operation of many pulsed power circuits,
such as the transmission line, involves electromagnetic wave propagation. Pulsed voltage
generators have widespread use in accelerators characterized by cyclic operation. In some
instances they provide the primary power, such as in high-current relativistic electron beam
generators and in the linear induction accelerator. In other cases, they are used for power
conditioning, such as klystron drivers in high-gradient rf electron linear accelerators. Finally,
pulsed voltage modulators are necessary to drive pulsed extraction and injection fields for
synchrotrons and storage rings.

Pulsed voltage circuits must not only produce a high voltage but must also shape the voltage in
time. Sections 9.5-9.14 introduce many of the circuits and techniques used. Material is included
on critically damped circuits (Section 9.6) inpulse generators (Section 9.7), transmission line
modulators (Section 9.9), the Blumlein transmission line (Section 9.10), pulse forming networks
(Section 9.11), power compression systems (Section 9.12), and saturable core magnetic switching
(Section 9.13). The equations for electromagnetic wave propagation in a transmission line are
derived in Section 9.8. This section introduces the principles of interacting electric and magnetic
fields that vary in time. The results will be useful when we study electromagnetic wave
phenomena in rf accelerators. Material is also included on basic methods to measure fast-pulsed
voltage and current (Section 9.14).

9.1 RESISTORS, CAPACITORS AND INDUCTORS

High-voltage circuits can usually be analyzed in terms of five elements: resistors, capacitors,
inductors, ideal diodes, and ideal switches. These elements are two-terminal passive components.
Two conductors enter the device, and two quantities characterize it. These are the current
through the device and the voltage between the terminals. The action of the circuit element is
described by the relationship between voltage and current. Standard symbols and polarity
conventions are shown in Figure 9.1.

A. Voltage-Current Relationships

The ideal diode has zero voltage across the terminals when the current is positive and passes
zero current when the voltage is negative. Diodes are used for rectification, the conversion of a
bipolar voltage waveform into a dc voltage. A switch is either an open circuit (zero current at any
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I � V/R, (9.1)

P (watts) � VI � V2/R � I 2R. (9.2)

voltage) or a closed circuit (zero voltage at any current). In pulsed voltage circuits, a closing
switch is an open circuit for timest < 0 and a short circuit fort > 0. An opening switch has the
inverse properties. The spontaneous breakdown gap used on some pulse power generators and
pulse sharpening circuits is an example of a two-terminal closing switch. Triggered switches such
as the thyratron and silicon-controlled rectifier are more common; they are three terminal,
two-state devices.

In this section, we consider the properties of resistors, capacitors, and inductors in the
time-domain. This means that time variations of the total voltage are related to time variations of
the total current. Relationships are expressed as differential equations. It is also possible to treat
circuits in thefrequency-domain. This approach is useful for oscillating harmonic circuits, and
will be applied to rf cavities in Chapter 12. In the frequency-domain analysis, time variations are
Fourier analyzed in terms of the angular frequencyω. Each harmonic component is treated
separately. In the frequency-domain analysis, voltage and current in individual elements and
multielement circuits are related simply by V = a(ω)I, where a(ω) may be a complex number.

A resistor contains material that impedes the flow of electrons via collisions. The flow of
current is proportional to the driving voltage

whereI is in amperes,V in volts, andR is the resistance in ohms (Ω). Energy is transferred from
flowing electrons to the resistive material. With the polarity shown in Figure 9.1, electrons flow
into the bottom of the resistor. Each electron absorbs an energyeVo from the driving circuit
during its transit through the resistor. This energy acts to accelerate the electrons between
collisions. They emerge from the top of the resistor with low velocity because most of the energy
gained was transferred to the material as heat. The number of electrons passing through the
resistor per second isI/e. The power deposited is

As we saw in Section 5.2, the basic capacitor geometry has two conducting plates separated by a
dielectric (Figure 5.6c). The voltage between the plates is proportional to the stored charge on the
plates and the geometry of the capacitor:
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V � Q/C. (9.3)

C �

ε0 (ε/ε0) A

δ
(F), (9.4)

I � C (dV/dt). (9.5)

V � L (di/dt), (9.6)

The quantityV is in volts,Q is in coulombs, andC is in farads (F). Neglecting fringing fields, the
capacitance of the parallel plate geometry can be determined from Eq. (3.9):

whereεo = 8.85 x 10-12 andε/εo is the relative dielectric constant of the material between the
plates,A is the plate area in square meters, andδ is the plate spacing in meters. Small capacitors in
the pF range (10-12 F) look much like Figure 5.6c with a dielectric such as Mylar (ε/εo � 2-3).
High values of capacitance are achieved by combining convoluted reentrant geometries (for large
A) with high dielectric constant materials. The current through a capacitor is the time rate of
change of the stored charge. The derivative of Eq. (9.3) gives

The capacitor contains a region of electric field. The inductor is configured to produce magnetic
field. The most common geometry is the solenoidal winding (Fig. 4.18). The magnetic flux linking
the windings is proportional to the current in the winding. The voltage across the terminals is
proportional to the time-rate of change of magnetic flux. Therefore,

whereL is a constant dependent on inductor geometry. Inductance is measured in Henries (H) in
the mks system.

B. Electrical Energy Storage

A resistor converts electrical to thermal energy. There is no stored electrical energy that remains
in a resistor when the voltage supply is turned off. Capacitors and inductors, on the other hand,
store electrical energy in the form of electric and magnetic fields. Electrical energy can be
extracted at a latter time to perform work. Capacitors and inductors are calledreactiveelements
(i.e., the energy can act again).

We can prove that there is no average energy lost to a reactive element from any periodic
voltage waveform input. Voltage and current through the element can be resolved into Fourier
components. Equations (9.5) and (9.6) imply that the voltage and current of any harmonic
component are 90� out of phase. In other words, if the voltage varies asVocos(ωt), the current
varies as Extending the arguments leading to Eq. (9.2) to reactive elements, the total±Iosin(ωt).
energy change in an element is
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∆U � � Pdt � I0V0 � sin(ωt) cos(ωt).

Uc � ½ [ε0 (ε/ε0) (V/δ)2] Aδ. (9.7)

Uc � ½ CV2. (9.8)

Uc � ½ LI 2. (9.9)

Er � Q/2πεrd. (9.10)

V0 � (Q/2πεd) ln(Ro/Ri). (9.11)

C � 2πεd / ln(Ro/Ri). (9.12)

Although the energy content of a reactive element may change over an oscillation period, the
average over many periods is zero.

Energy is stored in a capacitor in the form of electric fields. Multiplying Eq. (5.19) by the
volume of a parallel-plate capacitor, the stored energy is

Comparing Eq. (9.7) to (9.4),

The magnetic energy stored in an inductor is

C. Common Capacitor and Inductor Geometries

The coaxial capacitor (Fig. 9.2a) is often used as an energy storage device for high-voltage pulsed
power generators. The electrodes are cylinders of lengthd with radii Ro andRi . The cylinders
have. a voltage differenceVo, and there is a medium with relative dielectric constant (ε/εo)
between them. Neglecting fringing fields at the ends, the electric field in the dielectric region is

The integral of Eq. (9.10) fromRi to Ro equalsVo or

Comparing Eq. (9.11) with (9.3) shows the capacitance is

All current-carrying elements produce magnetic fields and thus have an inductance. There is a
magnetic field between the cylinders of Figure 9.2b if current flows along the center conductor.
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B
θ
(r) � µ0I/2πr (9.13)

Um � d � dr (2πr) (B 2
θ
/2µ0) � (µ0/2π) (I 2/2) (d ln(Ro/Ri)). (9.14)

L � (µ0/2π) d ln(Ro/Ri). (9.15)

An equal and opposite current must return along the outer conductor to complete the circuit;
therefore, there is no magnetic field forr > Ro. Equation (4.40) specifies that the field between the
cylinders is

if there is no ferromagnetic material in the intercylinder volume. The total magnetic field energy is

SettingUm equal toLI2/2 implies that

Equation (9.15) should be multiplied by µ/µo if the coaxial region contains a ferromagnetic
material with an approximately linear response.

Coaxial inductors generally have between 0.1 and 1 µH per meter. Higher inductances are
produced with the solenoidal geometry discussed in Section 4.6.We shall make the following
assumptions to calculate the inductance of a solenoid: edge fields and curvature effects are
neglected, the winding is completely filled with a linear ferromagnetic material, andN series
windings of cross-sectional areaA are uniformly spaced along a distanced. The magnetic
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Bz � µI (N/d) (9.16)

V � NA (dBz/dt). (9.17)

L � µ0 (µ/µ0) N2A/d. (9.18)

C (dV/dt) � V/R � 0. (9.19)

field inside the winding for a series currentI is

according to Eq. (4.42). Faraday's law implies that a time variation of magnetic field linking the
windings produces a voltage

We can identify the inductance by combining Eqs. (9.16) and (9.17):

Compact solenoids can assume a wide range of inductance values because of the strong scaling
with N.

D. Introductory Circuits

Figure 9.3 shows a familiar circuit combining resistance, capacitance, and a switch. This is the
simplest model for a pulsed voltage circuit; electrical energy is stored in a capacitor and then
dumped into a load resistor via a switch. Continuity of current around the circuit combined with
Eqs. (9.1) and (9.5) implies the following differential equation for the load voltage after
switching:

The solution (plotted in Fig. 9.3) for switching att = 0 isV(t) = Voexp( -t/RC)with Vo the initial
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Vout � � Vs(t) dt / RC. (9.20)

� V dt / L � V/R � 0. (9.21)

charge voltage. TheRC time(∆t = RC) is the characteristic time for the transfer of energy from a
capacitor to a resistor in the absence of inductance.

The passive integrator (Fig. 9.4) is a useful variant of theRCcircuit. The circuit can integrate
fast signals in the nanosecond range. It is often used with the fast diagnostics described in Section
9.14. Assume that voltage from a diagnostic, V(t) is incident from a terminated transmission line
(Section 9.10). The signal has duration∆t. When , the voltage across the capacitor is∆T « RC
small compared to the voltage across the resistor. Thus, current flowing into the circuit is limited
mainly by the resistor and is given by Applying Eq. (9.5), the output voltage isI � Vs(t)/R.

The passive integrator is fast, resistant to noise, and simple to build compared to a corresponding
circuit with an operational amplifier. The main disadvantage is that there is a droop of the signal.
For instance, ifVs is a square pulse, the signal at the end of the pulse is low by a factor

An accurate signal integration requires that This condition means that1 � ∆t/RC. RC » ∆t.
the output signal is reduced greatly, but this is usually not a concern for the large signals available
from fast diagnostics.

A circuit with an inductor, resistor, voltage source, and switch is shown in Figure 9.5. This
circuit models the output region of a pulsed voltage generator when the inductance of the leads
and the load is significant. Usually, we want a rapid risetime for power into the load. The time for
initiation of current flow to the load is limited by the undesirable (or parasitic) inductance.
Continuity of current and the V-I relations of the components [Eqs. (9.1) and (9.6)] give the
following differential equation for the load voltage:

The time variation for load voltage, plotted in Figure 9.5, is
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V(t) � V0 [1 � exp(�t/(L/R)]. (9.22)

P(t) � V2(t)/R � (V2
0 /R) [1 � exp(�t/(L/R)]2. (9.23)

TheL/R timedetermines how fast current and voltage can be induced in the load. The 10-90%
risetime for the voltage pulse is 2.2(L/R). The load power varies as

The 10-90 time for the power pulse is 2.6(L/R). As an example, if we had a 50-ns pulse generator
to drive a 25Ω load, the total inductance of the load circuit must be less than 0.12 µH if the
risetime is to be less than 25% of the pulsewidth.

9.2 HIGH-VOLTAGE SUPPLIES

The transformer is a prime component in all high-voltage supplies. It utilizes magnetic coupling to
convert a low-voltage ac input to a high-voltage ac output at reduced current. The transformer
does not produce energy. The product of voltage times current at the output is equal to or less
than that at the input. T'he output can be rectified for dc voltage.

We will first consider the air core transformer illustrated in Figure 9.6. Insulated wire is wound
uniformly on a toroidal insulating mandrel with µ�µ0. There are two overlapped windings, the
primary and the secondary. Power is introduced in the primary and extracted from the secondary.
There is no direct connection between them; coupling is inductive via the shared magnetic flux in
the torus. Assume that the windings have cross-sectional areaAt and average radiusrt. The
primary winding hasN1 turns, and the secondary winding hasN2 turns. The symbol for the
transformer with polarity conventions in indicated in Figure 9.6. The windings are oriented so that
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N1i1 � N2i2. (9.24)

positivei1 and positivei2 produce magnetic fields in opposite directions.
We will determineV2 andi2 in terms ofV1 andi1 and find a simple model for a transformer in

terms of the circuit elements of Section 9.1. First, note that energy entering the transformer on the
primary can have two destinations. It can be transferred to the secondary or it can produce
magnetic fields in the torus. The ideal transformer transfers all input energy to a load connected to
the secondary; therefore, the second process is undesirable. We will consider each of the
destinations separately and then make a combined circuit model.

To begin, assume that the secondary is connected to an open circuit so thati2 = 0, no energy is
transferred to the secondary. At the primary, the transformer appears to be an inductor with

All the input energy is converted to magnetic fields; the load is reactive. TheL1 � µ0N
2
1 At /2πrt.

equivalent circuit is shown in Figure 9.7a.
Next, suppose the secondary is connected to a resistive load and that there is a way to makeL1

infinitely large. In this case, there is no magnetic field energy and all energy is transferred to the
load. Infinite inductance means there are no magnetic fields in the torus with finite driving voltage.
The field produced by current flow in the primary is exactly canceled by the secondary field. This
means that
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N1 (dΦ/dt) � V1,

N2 (dΦ/dt) � V2.
(9.25)

V2 � V1 (N2/N1). (9.26)

Equation (9.24) holds, if the transformer is perfectly wound so that the primary and secondary
windings enclose the same area. This situation is calledideal coupling. With ideal coupling, the
windings enclose equal magnetic flux so that

and hence,

Equations (9.24)-(9.26) indicate that energy exchange between the windings is through a
changing magnetic flux and that there is a voltage step-up whenN2 > N1. In the case of infiniteL1
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V1i1 � V2i2. (9.27)

the combination of Equations 9.24 and 9.26 gives the condition for conservation of energy,

When the secondary is connected to a load resistorR2, the primary voltage is proportional to
current via . Thus, when viewed from the primary, the circuit is thatV1 � i1R2 (N1/N2)

2

illustrated in Figure 9.7b with a transformed load resistance.
We have found voltage-current relationships for the two energy paths with the alternate path

assumed to be an open circuit. The total circuit (Fig. 9.7c) is the parallel combination of the two.
The model shown determines the primary current in terms of the input voltage when the
secondary is connected to a resistive load. The input current is expended partly to produce
magnetic field in the transformer (i leak) with the remainder coupled to the secondary (i load). The
secondary voltage is given by Eq. (9.26). The secondary current is given by Eq. (9.27) withi load

substituted fori1. The conclusion is that if the primary inductance is low, a significant fraction of
the primary current flows in the reactance; therefore .i1 > (N2/N1) i1

The reactive current component is generally undesirable in a power circuit. The extra current
increases resistive losses in the transformer windings and the ac voltage source. If the transformer
is used to amplify the voltage of a square pulse from a pulsed voltage generator (a common
accelerator application), then leakage currents contribute to droop of the output voltage
waveform. Consider applying a square voltage pulse of duration∆t from a voltage generator with
an output impedance . The equivalent circuit has resistanceR1 in series withR1 � R2 (N1/N2)

2

the primary (Fig. 9.7d). We will see in Section 9.10 that this is a good model for the output of a
charged transmission line. The output pulse shape is plotted in Figure 9.8 as a function of the ratio
of the circuit time to the pulselength∆t . The output pulse is a square pulseL/[R2(N1/N2)

2]
when If this condition is not met, the pulse droops. Energy remains in transformerL/R1 » ∆t.
magnetic fields at the end of the main pulse; this energy appears as a negative post-pulse.
Although no energy is lost in the ideal transformer, the negative post-pulse is generally useless.
Therefore, pulse transformers with low primary inductance have poor energy transfer efficiency
and a variable voltage output waveform. Drooping waveforms are often unacceptable for
accelerator applications.

Leakage current is reduced by increasing the primary inductance. This is accomplished by
constructing the toroidal mandrel from ferromagnetic material. The primary inductance is
increased by a factor of µ/µ0. Depending on the operating regime of the transformer, this factor
may be as high as 10,000. Another way to understand the role of iron in a transformer is to note
that a certain flux change is necessary to couple the primary voltage to the secondary. In an air
core transformer, the flux change arises from the difference in the ampere turns between the
primary and secondary; the flux change is generated by the leakage current. When a ferromagnetic
material is added, atomic currents contribute to the flux change so that the leakage current can be
much smaller.
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The energy transfer efficiency of real transformers falls short of that for the ideal transformer of
Figure 9.7c. One reason for power loss is that ferromagnetic materials are not ideal inductors.
Eddy current losses and hysteresis losses in iron transformer cores for fast pulses are discussed in
Section 10.2. Another problem is that ideal coupling between the primary and secondary cannot
be achieved. There is a region between the windings in which there is magnetic field that is not
canceled when both windings have the same ampere turns; the effect of this region is represented
as a series inductance in the primary or secondary. Minimizing the effects of nonideal coupling is
one of the motivations for using an iron core to increase the primary inductance of the transformer
rather than simply increasing the number of turns in the pnmary and secondary windings of an air
core transformer.

There are limitations on the primary voltage waveforms that can be handled by pulse
transformers with ferromagnetic cores. The rate of change of flux enclosed by the primary is given
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[B(t) � B(0)] N1A1 � � V(t)dt. (9.28)

V0/f (volt�s) � 2πN1A1Bs. (9.29)

by Eq. (9.25a). The flux enclosed in a transformer with a toroidal core areaA1 is A1B(t). Inserting
this into Eq. (9.25a) and integrating, we find that

Equation (9.28) constrains the input voltage in terms of the core geometry and magnetic
properties of the core material. An input signal at high voltage or low frequency may drive the
core to saturation. If saturation occurs, the primary inductance drops to the air core value. In this
case, the primary impedance drops, terminating energy transfer to the load. Referring to the
hysteresis curve of Figure 5.12, the maximum change in magnetic field is2Bs. If the primary
input is an ac signal, , then Eq. (9.28) implies thatV1(t) � V0 sin(2πft)

Transformers are usually run well below the limit of Eq. (9.29) to minimize hysteresis losses.
The basic circuit for a high-voltage dc supply is shown in Figure 9.9. The configuration is a

half-wave rectifier; the diode is oriented to pass current only on the positive cycle of the
transformer output. A capacitor is included to reduce ripple in the voltage. The fractional drop in
voltage during the negative half-cycle is on, the order(1/2f)/RC, whereR is the load resistance.
Output voltage is controlled by a variable autotransformer in the primary.

Because of the core volume and insulation required, transformers are inconvenient to use at
voltages above 100 kV. The ladder network illustrated in Figure 9.10a can supply voltages in the
1-MV range. It is the basis of the Cockcroft-Walton accelerator [J. D. Cockcroft and E. T. S.

Walton, Proc. Roy. Soc. (London)A136, 619 (1932)] which is utilized as a preinjector for many
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high-energy accelerators. We can understand operation of the circuit by considering the voltage
waveforms at the input (0) and, at the three points indicated in Figure 9.10b (1, 2, 3). The input
voltage is a bipolar ac signal. In order to simplify the discussion, we assume an ideal ac voltage
source that turns on instantaneously and can supply infinite current; in reality, a series resistor
extends charging over many cycles to prevent damage to the transformer. On the first positive
half-cycle, current flows through the diodes to charge all the points to +Vo. On the negative
half-cycle, the voltage at point 1 is maintained positive because current cannot flow backward in
diodeD1. The voltage at point 2 is maintained positive by conductance fromC1 to C2 through
diodeD2. At the time of maximum negative voltage at the input, there is a voltage difference
greater thanVo across capacitorC2. In the steady state, the voltage difference approaches 2Vo. On
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the second positive cycle, the voltage at point 2 is boosted to 3Vo. The voltage at point 3 also
approaches 3Vo because of charging throughD3. The reasoning can be extended to higher
points on the ladder, leading to the unloaded steady-state voltages indicated in Figure 9.10.

At the same voltage, a ladder network requires about the same number of diodes and capacitors
as a power supply based on a transformer and rectifier stack. The main advantages of a ladder
network is that it utilizes a smaller transformer core and it is easier to insulate. Insulation of the
secondary of a transformer is difficult at high voltage because the secondary winding must
encircle the transformer core. A large core must be used with oil-impregnated insulation. In
contrast, the ladder network is extended in space with natural voltage grading along the column.
It is possible to operate Cockcroft-Walton-type accelerators at megavolt levels with air insulation
at atmospheric pressure by locating the capacitor-diode stack in a large shielded room.

9.3 INSULATION

Insulation is the prevention of current flow. It is the major technological problem of high-voltage
electrostatic acceleration. At low values of electric field stress, current flow through materials
such as glass, polyethylene, transformer oil, or dry air is negligible. Problems arise at high voltage
because there is sufficient energy to induce ionization in materials. Portions of the material can be
converted from a good insulator to a conducting ionized gas (plasma). When this happens, the
high-voltage supply is shorted. Plasma breakdowns can occur in the solid, liquid, or gaseous
insulation of high-voltage supplies and cables. Breakdown may also occur in vacuum along the
surface of solid insulators. Vacuum breakdown is discussed in the Section 9.5.

There is no simple theory of breakdown in solids and liquids. Knowledge of insulating
properties is mainly empirical. These properties vary considerably with the chemical purity and
geometry of the insulating material. Thedielectric strengthand relative dielectric constant of
insulators commonly used in high-voltage circuits are given in Table 9.1. The dielectric strength is
the maximum electric field stress before breakdown. The actual breakdown level can differ
considerably from those given; therefore, it is best to leave a wide safety factor in designing
high-voltage components. The dielectric strength values of Table 9.1 hold for voltage pulses of
submicrosecond duration. Steady-state values are tabulated in most physical handbooks.

Measurements show that for voltage pulses in the submicrosecond range the dielectric strength
of liquids can be considerably higher than the dc value. The following empirical formulas describe
breakdown levels in transformer oil and purified water [see R. B. Miller,Intense Charged
Particle Beams, (Plenum, New York, 1982), 16] two media used extensively in high-power pulse
modulators. The pulsed voltage dielectric strength of transformer oil is approximately
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Emax � 0.5/t 0.33
p A 0.1. (9.30)

Emax � 0.6/t 0.33
p A 0.1 (negative) (9.31)

Emax � 0.3/t 0.33
p A 0.1 (positive). (9.32)

The quantityEmax (in megavolts per centimeter) is the highest value of electric field in the insulator
at the peak of the voltage pulse. The quantitytp is the time during which the voltage is above 63%
of the maximum value (in microseconds), andA is the surface area of the high voltage electrode in
centimeters squared. The breakdown level of water has the same scaling as Eq. (9.30) but is
polarity dependent. The dielectric strength of water for a negative high-voltage electrode is given
by

in the same units as Eq. (9.30). With a positive polarity, the breakdown level is
approximately

The polarity dependence of Eqs. (9.31) and (9.32) is important for designing optimum pulsed
power systems. For example, a charged coaxial transmission line filled with water can store four
times the electrostatic energy density if the center conductor is negative with respect to the outer
conductor rather than positive.

The enhanced dielectric strength of liquids for fast pulsed voltages can be attributed to the finite
time for a breakdown streamer to propagate through the medium to short the electrodes. Section
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9.12 will show how pulse-charge overvolting is used to increase the electrostatic energy density
of a pulse modulator for high output power. This process can be applied in liquid insulators
because they areself-healing. On the other hand, the damage caused by streamers is cumulative in
solids. Solid insulators cannot be used above the steadv-state levels.

Gas insulation is used in most steady-state high-voltage electrostatic accelerators. Gases have
; therefore, gas insulators do not store a high density of electrostatic energy. Gases, likeε/ε0 � 1

liquids, are self-healing after spark breakdowns. The major advantage of gas insulationb is
cleanliness. A fault, or leak in an accelerator column with oil insulation usually leads to a major
cleanup operation. Although the gas itself is relatively inexpensive, the total gas insulation system
is costly if the gas must be pressurized. Pressurization requires a large sealed vessel.

We shall study the theory of spark breakdown in gas in some detail. The topic is essential for
the description of most types of fast high-voltage switches and it is relevant to insulation in most
high-voltage electrostatic, accelerators. Consider the one-dimensional gas-filled voltage gap of
Figure 9.11. The electrodes have separationd and the applied voltage isVo. There is negligible
transfer of charge between the electrodes whenVo is small. We will determine how a large
interelectrode current can be initiated at high voltage.

Assume that a few electrons are produced on the negative electrode. They may be generated by
photoemission accompanying cosmic ray or ultraviolet bombardment. The small source current
density leaving the electrode is represented. byjo. The electrons are accelerated by the applied
field and move between the widely spaced gas molecules, as shown in Figure 9.12a. In a collision
with a molecule, an electron is strongly deflected and much of its kinetic energy is absorbed. To
construct a simple model, we assume that electrons are accelerated between molecules and lose all
their directed energy in a collision. The parameterλ is the mean free path, the average distance
between collisions. The mean free path is inversely proportional to the density of gas molecules.
The density is, in turn, proportional to the pressure,p, so that .λ � 1/p
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∆T � λeE � λeV0/d. (9.33)

α �

number of ionizations induced by an electron
cm of pathlength

. (9.34)

dN � α n(x) dA ∆x.

dn(x)/dx � α n(x). (9.35)

The average energy gained by an electron between collisions is

An election may ionize a molecule in a collision if∆T is high enough (∆T > 30 eV). In the
ionization process, the excess kinetic energy of the electron drives an electron out of the
molecule, leaving a positive ion. The two electrons move forward under the influence of the field,
producing further electrons. The current density increases geometrically along the electron drift
direction. The ions drift in the opposite direction and do not contribute to ionization in the gas.
The motion of drifting ions is dominated by collisions; generally, they cannot reach high enough
velocity to eject electrons in a collision with a molecule.

Electron multiplication in a gas with an applied electric field is characterized byα, the first
Townsend coefficient [J. S. Townsend,Electricity in Gases, Phil. Trans.A193, 129 (1900)]. This
parameter is defined by

Consider an element of length∆x at the positionx. The quantityn(x) is the density of electrons at
x. According to the definition ofα, the total number of additional electrons produced in a volume
with cross-sectional areadA and length∆x is

Dividing both sides of the equation bydA∆x, and taking the limit of small∆x, we find that
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j(x) � j0 exp(αx). (9.36)

ja � j0 exp(αd). (9.37)

j i � j a � jc, (9.38)

jc � j o � γ (ja�jc). (9.39)

The solution of Eq. (9.35) implies an exponential electron density variation. Expressed in terms of
the current density of electrons (assuming that the average electron drift velocity is independent of
x), Eq. (9.35) implies that

if the negative electrode is located at x = 0. The current density arriving at the positive electrode
is

Although the amplification factor may be high, Eq. (9.37) does not imply that there is an
insulation breakdown. The current terminates if the source term is removed. A breakdown occurs
when current flow is self-sustaining, or independent of the assumed properties of the source. In
the breakdown mode, the current density rapidly multiplies until the voltage supply is shorted
(discharged). Ion interactions at the negative electrode introduce a mechanism by which a
self-sustained discharge can be maintained. Although the positive ions do not gain enough energy
to ionize gas molecules during their transit, they may generate electrons at the negative electrode
through secondary emission (Fig. 9.12b). This process is parametrized by the secondary emission
coeficientγ. The coefficient is high at hiph ion energy (> 100 keV). The large value of reflects the
fact that ions have a short stoppmg range in solid matter and deposit their energy near the surface.
Ions in a gas-filled gap have low average energy. The secondary-emission coefficient has a
nonzero value for slow ions because there is available energy from recombination of the ion with
an electron at the surface. The secondary emission coefficient for a zero-velocity ion is in the
rangeγ � 0.02.

With ion interactions, the total electron current density leaving the negative electrode consists
of the source term plus a contribution from secondary emission. We define the following current
densities:jo is the source,jc is the net current density leaving the negative electrode,j i is the ion
current density arriving at the negative electrode, andja is the total electron flux arriving at
the positive electrode. Each ionizing collision creates one electron and one ion. By conservation
of charge, the ion current is given by

Equation (9.38) states that ions and electrons leave, the gap at the same rate in the steady state.
The portion of the electron current density from the negative electrode associated with secondary
emission is thus,

Equation (9.39) implies that



Electrostatic Accelerators and Pulsed High Voltage

216

j c � (j0 � γja)/(1�γ). (9.40)

j a � jc exp(αd). (9.41)

ja

jo

�

exp(αd)
1 � γ [exp(αd)�1]

. (9.42)

exp(αd) � (1/γ) � 1 � 1/γ. (9.43)

P(x) � exp(�x/λ), (9.44)

By the definition ofα

Combining Eqs. (9.40) and (9.41) gives

Comparing Eq. (9.42) with (9.37), the effects of ion feedback appear in the denominator. The
current density amplification becomes infinite when the denominator equals zero. When the
conditions are such that the denominator of Eq. (9.42) is zero, a small charge at the negative
electrode can initiate a self-sustained discharge. The discharge current grows rapidly over a time
scale on the order of the ion drift time, heating and ionizing the gas. The end result is aspark. A
spark is a high-current-density plasma channel. The condition for spark formation is

The discharge continues until the electrode voltage is depleted.
Calculation of the absolute value ofα as a function of the gap parameters involves complex

atomic physics. Instead, we will develop a simple scaling relationship forα as a function of gas
pressure and electric field. Such a relationship helps to organize experimental data and predict
breakdown properties in parameter regimes where data is unavailable. The ionization coefficient
is proportional to the number of collisions between an electron and gas atoms per centimeter
traveled, or The ionization coefficient also depends on the average electron drift energy,α � 1/λ.
Eλ. The ionization rate is proportional to the fraction of collisions in which an electron enters with
kinetic energy greater than the ionization energy of the atom,I. The problem of a particle
traveling through a random distribution of collision centers is treated in texts on nuclear
physics. The familiar result is that the distance traveled between collisions is a random variable
that follows a Poisson distribution, or

whereλ is the mean free path. The energy of a colliding electron is, by definition,T = xeVo/d. The
fraction of collisions in which an electron hasT > I is given by the integral of Eq. (9.44) from x =
Id/eVo to �.

The result of these considerations is thatα is well described by the scaling law
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α � (A �/λ) exp(�B �d/Voλ) � (Ap) exp(�Bpd/Vo). (9.45)

ln(1/γ) � (Apd) exp(�Bpd/Vs).

Vs � BPd / ln
Apd

ln(1/γ)
. (9.46)

The quantitiesA andB are determined from experiments or detailed collision theory The gap
voltage for sparking is found by substituting Eq. (9.45) into (9.43):

Solving forVs,

Equation. (9.46) is Paschen's law [F.Paschen, Wied. Ann.37, 69 (1889)] for gas breakdown. The
sparking voltage is a function of the productpd and constants that depend on the gas properties.
The values ofA andB are relatively constant over a wide voltage range when the average electron
energy is less thanI. Furthermore,Vs is insensitive toγ; therefore, the results are almost
independent of the electrode material.

Figure 9.13 is a normalized lot ofVs versuspd. The sparking voltage reaches a minimum value
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Vs �
Vs,min [pd/(pd)min]

ln[2.72 pd/(pd)min]
. (9.47)

Vs,min at a value(pd)min. Voltage hold-off increases at both low and high values ofpd. Voltage
hold-off is high at low pd because there is a small probability that an electron will strike a
molecule while traveling between electrodes. Paschen's law does not hold at very low vacuum
because the assumption of a Poisson distribution of mean free paths is invalid.
At high values ofpd, . In this regime, electrons undergo many collisions, but the meanVs � (pd)
free path is short. Few electrons gain enough energy to produce an ionization.

Equation (9.46) can be rewritten,

Table 9.2 gives a table of spark parameters for some common gases. Note that the minimum
sparking voltage is high for electronegative gases like oxygen and low for gases with little
probability of electron capture like helium and argon. In electronegative gases, there is a high
probability that electrons are captured to form negative ions. The heavy negative ions cannot
produce further ionization, so that the electron is removed from the current multiplication
process. The result is that gaps with electronegative-gases can sustain high voltage without
breakdown. Sulfur hexafluoride an extremely electronegative gas, is often mixed with air or used
alone to provide strong gas insulation at high pressure. The expense of the gas is offset by cost
savings in the pressure vessel surrounding the high-voltage system. The addition of 8% (by
volume) SF6 to air increasesVs by a factor of 1.7. Pure SF6 hasVs 2.2 times that of air for the
samepd. Vacuum insulation is seldom used in power supplies and high-voltage generators
because of technological difficulties in maintaining high vacuum and the possibility of long
breakdown paths. Vacuum insulation in accelerator columns is discussed in Section 9.5.

Our discussion of gas breakdown has been limited to a one-dimensional geometry.
Two-dimensional geometries are difficult to treat analytically because a variety of electron
trajectories are possible and the electric field varies along the electron paths. Breakdown voltages,
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are tabulated for special electrode geometries such as two spheres. In some circumstances (such as
gas lasers), a stable, uniform discharge must be sustained over a large area, as shown in Figure
9.14. The interelectrode voltage must be less thanVs to prevent a localized spark; therefore, a
source current is required to sustain the discharge. The source is often provided by injections of a
high-energy electron beam through a foil on the negative electrode. Demands on the source are
minimized if there is a large multiplication factor, exp(αd); therefore, the main gap is operated as
close toVs as possible. In this case, care must be taken with shaping of the electrodes. If the
electrode has a simple radius (Fig. 9.15a), then the field stress is higher at the edges than in the
body of the discharge, leading to sparks. The problem is solved by special shaping of the edges.
Qne possibility is the Rogowski profile [W. Rogowski and H. Rengier, Arch. Elekt.16, 73 (1926)]
illustrated in Figure 9.15b. This shape, derived by conformal mapping, has the property that the
field stress on the electrodes decreases monotonically moving away from the axis of symmetry.
The shape for two symmetric profiled electrodes is described by the parametric equations
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x � dφ/π,

y � (d/π) [π/2 � exp(φ)].
(9.48)

Edc � Vs,min (pdc/(pd)min) / ln[2.72(pdc/(pd)min)] (9.49)

whered is the minimum separation between electrodes. As indicated in Figure 9.15b,x is the
transverse distance from the center of the electrodes, and±y is the distance from the midplane
(between electrodes) to the electrode surfaces.

Corona dischargesappear in gases when electrodes have strong two-dimensional variations
(Figure 9.16). Corona (crown in Latin) is a pattern of bright sparks near a pointed electrode. In
such a region, the electric field is enhanced above the breakdown limit so that spark discharges
occur. Taking the dimension of the corona region asd, the approximate condition for breakdown
is

where is the average electric field in the corona region. A self-sustained breakdown cannot beE
maintained by the low electric field in the bulk of the gap. Current in the low-field region is
conducted by a Townsend (or dark) discharge, with the corona providing the source currentjo.
The system is stabilized by the high resistivity of the dark discharge. A relatively constant
current flows, even though the sparks of the corona fluctuate, extinguish, and reform rapidly.
Inspection of Eq. (9.49) shows that for constant geometry, the size of the corona region grows
with increasing electrode voltage. The voltage drop in the highly ionized corona is low; therefore,
the voltage drop is concentrated in the dark discharge region. At some voltage, bulk breakdown
occurs and the electrodes are shorted.
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9.4VAN DE GRAAFF ACCELERATOR

Two types of voltage generators are used for low current electrostatic accelerators in the megavolt
range, the Cockcroft-Walton and Van de Graaff generators. We have already discussed the
principle of the ladder network voltage used in the Cockcroft-Walton accelerator in Section 9.2.
Cockcroft-Walton accelerators are used mainly for injectors with voltage of approximately 1 MV.
In this section, we shall discuss the Van de Graaff generator, which can sustain steady-stale
voltages up to 15 MV.
A Van de Graaf [R. J. Van de Graaff, Phys. Rev.38, 1919 (1931)] acelerator for electrons is

illustrated in Figure 9.17. The principle of operation is easily understood. A corona discharge from
an array of needles in gas is used as a convenient source of electrons. The electrons drift toward
the positive electrode and are deposited on a moving belt. The belt composed of an insulating
material with high dielectric strength, is immersed in insulating gas at high pressure. The attached
charge is carried mechanically against the potential gradient into a high-voltage metal terminal. The
terminal acts as a Faraday cage; there is no electric field inside the terminal other than that from the
charge on the belt. The charge flows off the belt when it comes in contact with a metal brush and is
deposited on the terminal.

The energy to charge the high-voltage terminal is supplied by the belt motor. The current
available to drive a load (such as an accelerated beam) is controlled by either the corona discharge
current or the belt speed. Typical currents are in the range of 10 µA. Power for ion sources or
thermonic electron sources at high voltage can be supplied by a generator attached to the belt
pulley inside the high-voltage terminal. The horizontal support of long belts and accelerator
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columns is difficult; therefore, many high-voltage Van de Graaff accelerators are constructed
vertically, as in Figure 9.17.

Van de Graaff accelerators are excellent research tools because they provide a steady-state beam
with good energy regulation. Continuous low-current beams are well suited to standard nuclear
diagnostics that detect individual reaction products. Although the primary use of Van de Graaff
accelerators has been in low-energy nuclear physics, they are finding increased use for high-energy
electron microscopes and ion microprobes. The output beam energy of a Van de Graaff accelerator
can be extended a factor of 2 (up to the 30 MeV range) through the tandem configuration
illustrated in Figure 9.19. Negative ions produced by a source at ground potential areaccelerated
to a positive high-voltage terminal and pass through a stripping cell. Collisions in the cell remove
electrons, and some of the initial negative ions are converted to positive ions. They are further
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accelerated traveling from the high-voltage terminal back to ground.
Voltage hold-off is maximized when there are no regions of enhanced electric field. In other

words, the electric field stress should be made as uniform as possible in the region of gas
insulation. High-voltage terminals are usually constructed as large, smooth spheres to minimize
peak electric field stress. We can show that, given the geometry of the surrounding grounded
pressure vessel, there is an optimum size for the high-voltage terrminal. Consider the geometry
of Figure 9.19a. The high-voltage terminal is a sphere of radiusRo inside a grounded sphere of
radiusR2. Perturbing effects of the belt and accelerator column are not included. The solution to
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φ(r) �
V0R0 (R2/r�1)

R2 � R0

. (9.50)

Er(r) � �	φ/	r �

V0R0 (R2/r
2)

R2 � R0

. (9.51)

Er,max �
(V0/R2) (R2/R0)

1 � R0/R2

. (9.52)

R0/R2 � ½. (9.53)

the Laplace equation in spherical coordinates gives the radial variation of potential between the
spheres

Equation (9.50) satisfies the boundary conditions and . The radial electricφ(R0) � V0 φ(R2) � 0
field is

The electric field is maximum on the inner sphere,

We assumeR2 is a fixed quantity, and determine the value ofR0/R2 that will minimize the peak
electric field. Setting , we find that	Er,max/	(R0/R2) � 0

A similar calculation can be carried out for concentric cylinders. In this case, the optimum, ratio of
inner to outer cylinder radii is
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R0/R2 � 1/e � 0.368. (9.54)

A better electric field distribution can be obtained through the use of equipotential shields.
Equipotential shields are biased electrodes located between the high-voltage terminal aid ground,
as in Figure 9.17. Voltage on the shields is maintained at specific intermediate values by a
high-voltage resistive divider circuit. The simplified geometry of three nested spheres (Fig. 9.19b)
will help in understanding the principle of equipotential shields. The quantitiesR2 andV0 are
constrained by the space available and the desired operating voltage. We are free to chooseR0, Rl,
andV1 (the potential of the shield) for optimum voltage hold-off. The electric fields on outer
surfaces of the nested spheres, and are simultaneously minimized.E1(r�R�

1 ) E0(r�R�

0 )
The fields on the outer surfaces of the electrodes are
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E0 �
(V0�V1)/R0

1 � R0/R1

, (9.55)

E1 �
V�1/R1

1 � R1/R1

. (9.56)

∆E0 � (	E0/	V1) ∆V1 � (	E0/	R1) ∆R1 � (	E0/	R0) ∆R0 � 0, (9.57)

∆E1 � (	E1/	V1) ∆V1 � (	E1/	R1) ∆R1 � (	E1/	R0) ∆R0 � 0, (9.58)

R0 � R1/2 R1 � 5R2/8, V1 � 3V0/5. (9.59)

E0 � 4V0/R2. (9.60)

E0 � E1 � (192/75) V0/R2 � 2.56 V0/R2. (9.61)

The following equations are satisfied when the surface fields are minimized:

The final term in Eq. (9.58) is zero since there is no explicit dependence ofE1 on R0. The previous
study of two nested spheres implies thatE0 is minimized with the choiceR0 = R1/2 givenV1 andR1.
In this case, the last term in Eq. (9.57) is independently equal to zero. In order to solve the reduced
Eqs. (9.57) and (9.58), an additional equation is necessary to specify the relationship between∆R1

and∆V1. Such a relationship can be determined from Eqs. (9.55) and (9.56) with the choiceE0 =
El. After evaluating the derivatives and substituting into Eqs. (9.57) and (9.58), the result is two
simultaneous equations forR1 andV1. After considerable algebra, the optimum parameters are
found to be

Addition of a third electrode lowers the maximum electric field stress in the system. To compare,
the optimized two electrode solution (withR0 = R2/2) has

The peak field for the three electrode case is

Larger numbers of nested shells reduce the peak field further. The intent is to counter the
geometric variation of fields in spherical and cylindrical geometries to provide more uniform
voltage grading. For a given terminal and pressure vessel size, multiple shells have approximately
equal voltage increments if they are uniformly spaced.
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jef � E 2 exp(�B/E), (9.62)

9.5 VACUUM BREAKDOWN

A column for electron beam acceleration in an electrostatic accelerator is shown in Figure 7.14. It
consists of insulating disks separated by metal grading rings. The disks and rings are sealed to hold
high vacuum, either by low vapor pressure epoxy or by a direct metal to ceramic bond. We have
already discussed the role grading rin s play in focusing particle beams through long columns
(Section 7.7). We shall now consider how rings also improve the voltage hold-off capability of
solid insulators in vacuum. High-vacuum sparking is determined by complex phenomena occurring
on solid surfaces under high-field stress. Effects on both conductors and insulators can contribute
to breakdown.

When a metal is exposed to a strong electric field, electrons may be produced by field emission.
Field emission is a quantum mechanical tunneling process. Strong electric fields lower the energy
barrier at the metal surface, resulting in electron emission. Field emission is described by the
Fowler-Nordheim equation [see J. Thewlis (Ed.),Encyclopaedic Dictionary of Physics, Vol. 3,
(Macmillan, New York,1962), 120]. which has the scaling

whereE is the electric field. Typical current density predicted by Eq. (9.62) in a gap, with an
electric field of 25 MV is on the order of 10 nA/cm2.

Equation (9.62) implies that a plot of ln(jef/E
2) versus 1/E is a straight line. The scaling is

observed in experiments on clean metal surfaces, but the slope of the plot indicates that the field
magnitude on the surface is 10-100 times the macroscopic field (voltage divided by gap spacing).
The discrepancy is explained by the presence of whiskers on the metal surface [see P. A.
Chatterton,Vacuum Breakdown, in Electrical Breakdown in Gases, edited by J. M. Meek and J.
D. Craggs (Wiley, New York, 1978)]. Whiskers are small-scale protrusions found on all ordinary
metal surfaces. The electric field is enhanced near whiskers, as shown in Figure 9.20a. Although
the high-field regions account for a small fraction of the surface area, there is a significant
enhancement of emitted current because of the strong scaling of Eq. (9.62) withE.

The area-averaged whisker-enhanced current density from a metal surface at 10 MV/m is only
1-100 µA/cm2. The leakage current by this process is not a significant concern in high-voltage
systems. The main problem is that whiskers may be vaporized by the high-current density at the
tips, ejecting bursts of material into highly stressed vacuum regions. Vaporization of even a small
amount of solid material (at a density of 1022 cm-3) on the tip of the whisker can eject a significant
gas pulse into the vacuum. A conventional gas spark can then occur. Vaporization occurs at field
stress exceeding 10 MV/m (100 kV/cm). kV/cm) for machined metal surfaces. The level can be
increased by careful chemical preparation of the surface or by conditioning. In conditioning, a
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metal surface is slowly raised to the final electric field operating level. Controlled vaporization of
whiskers often smooths the surface, allowing higher operating field.

Whisker vaporization probably accounts formicroburstsin steady-state electrostatic
accelerators. Microbursts are random pulses of current observed in highly stressed accelerator
columns. Whisker vaporizaton is used to advantage in pulsed electron accelerators. In this
application, a rapidly pulsed electric field is applied to the cathode surface. Many whiskers
vaporize simultaneously, covering the cathode with a dense, cold plasma. The plasma has zero
work function; electrons can be extracted at current density exceeding 1 kA/cm2. The main
problem withcold cathodesis that the plasma expands into the acceleration gap (plasma closure),
causing deterioration of the beam optics and ultimately shorting the gap. The expansion rate of the
plasma, theclosure velocity, is enhanced by electron flow through the plasma. Beam plasma
instabilities rapidly beat the plasma. Closure velocities as high as 10 cm/µs have been observed.
Depending on the acceleration gap width, cold cathodes are useful only for pulses in the 1-µs
range.

Breakdowns occur on insulator surfaces in a vacuum at lower field levels than those that cause
whisker vaporization on metals. Steady-state operating levels for insulators are in the 2 MV/m (20
kV/cm) range. Therefore, vacuum insulators are the weak point in any high-voltage electrostatic
accelerator. The mechanisms of breakdown are not well understood. The following qualitative
observations lead to useful procedures for optimizing insulator hold-off

1. There are two main differences between insulators and metals that affect vacuum
breakdown. First, electric fields parallel to surfaces can exist near insulators. Second,
regions of space charge can build up on insulators. These charges produce local distortions
of electric fields.

2. A full-scale breakdown on an insulator is a complex process. Fortunately, it is usually
sufficient to understand the low-current initiation processes that precede breakdown to
predict failure levels.

3. Discharges on insulators are not initiated by whisker explosion because current cannot
flow through the material. If the electric field is below the bulk dielectric strength of the
insulator, discharge initiation is probably caused by processes on nearby metal surfaces.

4. When voltage pulses are short (< 50 ns), current flow from field emission on nearby
electrodes is too small to cause serious charge accumulation on an insulator. In this case,
the onset of insulator breakdown is probably associated with charge from whisker
explosions on the metal electrodes. This is consistent with experiments; short-pulse
breakdown levels on insulators between metal plates are in the 10-15 MV/m range.

5. Electrons produced in a whisker explosion move away from a metal electrode because
the electric field is normal to the surface. In contrast, electrons can be accelerated parallel
to the surface of an insulator. High-energy electrons striking the insulator can lead to
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ejection of surface material. A microburst between metal electrodes in vacuum has a slow
growth of discharge current (over many ion transit times) and may actually quench. In
contrast, a discharge initiated along an insulator has a rapid growth of current and usually
leads to a complete system short.

6. For long voltage pulses, field emission from nearby metal electrodes leads to
accumulated space charge on insulator surfaces and field distortion (Fig.9.20b). Secondary
emission coefficients on insulators are generally above unity in the energy range from 100
eV to a few keV. The impact of field-emitted electrons results in a net positive surface
charge. This charge attracts more electrons, so that the electric field distortion increases.
The nonuniform surface electric field fosters breakdown at levels well below that for
whisker explosion on surrounding electrodes (�2 MV/m).

There are some steps that can be taken to maximize voltage hold-off along an insulator surface:

1. Thetriple point is the location where metal and insulator surfaces meet in a vacuum. In
high-voltage pulsed systems, whisker explosions near the triple points at both ends of the
insulator can spray charge on the insulator surface. Electrostatic shielding of the triple point
to prevent whisker explosions, as shown in Figure 9.20c, improves voltage hold-off.

2. Electrons from whisker explosions are the most dangerous particles because they travel
rapidly and have a secondary emission coefficient about two orders of magnitude higher
than ions in the keV range. Voltage hold-off is high if the insulator is shaped so that
electrons emitted from the negative electrode travel directly to the positive electrode
without striking the insulator surface. A
common insulator configuration is illustrated in Figure 9.20d. Insulator sections with
angled surfaces are separated by grading rings. With the angle shown, all electrons emitted
from either metal or insulator surfaces are collected on the rings. The hold-off level in both
pulsed and dc columns may be doubled with the proper choice of insulator angle. A graph
of breakdown level for pulsed voltages as a function of insulator angle is shown in Figure
9.21.

3. Space-charge-induced field distortions in dc columns are minimized if the insulator is
divided into a number of short sections separated by metal grading rings. The potential
drop between rings is evenly distributed by a divider network outside the vacuum. Current
flowing through the divider
relieves charge accumulate on the rings from field emission currents.

4. Many pulsed voltage insulating columns are constructed with grading rings in the
configuration shown in Figure 9.20d,, although the utility of rings is uncertain. Capacitive
grading is usually sufficient to prevent field distortion for fast pulses, especially if the
medium outside the vacuum insulator has a high dielectric constant. Vacuum insulators in
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pulsed voltage systems usually have a breakdown level proportional to their length along
the field.

Insulator hold-off in dc accelerator columns may be reduced with the introduction of a beam.
Peripheral beam particles may strike the insulator directly or the beam may produce secondary
particles. Beam induced ions are dangerous if they reach energy in the range > 100 keV. These
ions have a high coefficient of secondary emission (> 10) and deposit large energy in a narrow
layer near the surface when they collide with an insulator. Figure 9.22 illustrates a section of a Van
de Graaff accelerator column designed to minimize insulator bombardment. Grading rings are
closely spaced and extend inward a good distance for shielding. Furthermore, the gradient along
the rings is purposely varied. As we saw in studying the paraxial ray equation (Section 7.5),
variation ofEz has an electrostatic lens effect on low-energy particle orbits. Secondary electrons,
ions, and negative ions are overfocused and collected on the rings before they are able to
accelerate to high energy along the column.

9.6 LRC CIRCUITS

This section initiates our study of pulsed voltage generators. All pulsed voltage circuits have an
energy storage element where electrical energy is contained in the form of electric or magnetic
fields. The energy is transferred by a fast switch to a load. The speed of transfer (or the maximum
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power attainable) is limited by parasitic inductance or capacitance in the circuit. The voltage pulse
waveform is determined by the configuration of the energy storage element and the nature of the
load. In the next sections we shall concentrate on simple resistive loads. The combination of energy
storage element and switch is usually called avoltage modulator. The circuit produces a
modulation, or variation in time, of the voltage.

There are four main accelerator applications of pulsed voltage circuits.

1. High electric field can often be sustained in small systems for short times because of
time-dependent processes controlling breakdowns. Sparking on vacuum insulators is one
example. Therefore, pulsed voltage modulators can be used to generate rapidly pulsed
high-energy beams in compact systems.

2. Pulsed accelerators are often required for the study of fast physical processes.
Applications include pulsed X-ray radiography, material response at high pressure and
temperatures, and inertial fusion.



Electrostatic Accelerators and Pulsed High Voltage

233

VC � �V0 � � i dt/C,

VL � L di/dt.

VR � iR.

L (d 2i/dt 2) � R (di/dt) � i/C � 0. (9.63)

3. Some beam applications require power at the multimegawatt level. Such systems are
usually run at low-duty cycle. A system capable of supplying such power on a steady-state
basis would require extensive ancillary power and cooling equipment. In contrast, a pulsed
power modulator stores energy over a long time and releases it in a short pulse. This
process is calledpower compression. High-energy electron linacs (Section 14.1) illustrate
this process. Strong accelaccelerating gradient is obtained by injecting pulsed
electromagnetic energy into a slow-wave structure. Klystron tubes powered by modulated
dc generate the rf power.

4. Accelerators that utilize inductive isolation by ferromagnetic cores, such as the
induction linac and the betatron, must operate in a pulsed mode.

The simplest electrical energy storage device. is a single capacitor. The voltage modulator of
Figure 9.23 consists of a capacitor (charged to voltageV0) and a shorting switch to transfer the
energy. The energy is deposited in a load resistor,R. The flow of current involved in the transfer
generates magnetic fields, so we must include the effect of a series inductanceL in the circuit.

The time-dependent voltage across the circuit elements is related to the current by

Setting the loop voltage equal to zero gives

Equation (9.63) is solved with the boundary conditionsi(0+) = 0 anddi/dt(0+) = V0/L, wheret = 0
is the switching time. The second condition follows from the fact that immediately after switching
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ω0 � 1/ LC, (9.64)

β � R/2L, (9.65)

ω1 � ω
2
0 � β2,

ω2 � β2
� ω

2
0,

δ � tan�1(β/ω1).

the total capacitor voltage appears across the inductor rather than the resistor (see Section 9.1).
The solution of Eq. (9.63) is usually written in three different forms, depending on the values of

the following parameters:

and

The solution with is illustrated in Figure 9.24a. The circuit behavior is oscillatory. Energyβ < ω0
is transferred back and forth between the inductor and capacitor at approximately the characteristic
frequency,ω0. There is a small energy loss each oscillation, determined by the damping parameter
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i(t) � (CV0/cosδ) exp(�βt) [ω1 sin(ω1t�δ) � β cos(ω1t�δ)]

� CV0ω0 exp(�βt) sinω0t) (β «ω0).
(9.66)

i(t) � [CV0 (β2
�ω

2
2)/2ω2] [exp(ω2t) � exp(�ω2t)] exp(�βt). (9.67)

Rc � 2 L/C. (9.68)

i(t) � βCV0 (βt) exp(�βt). (9.69)

The circuit isunderdamped. We shall study the underdamped LRC circuit in more detail when we
consider rf accelerators. The time dependent current is

The voltage on the load resistor isi(t)R.
The opposite extreme,overdamping, occurs when . As indicated in Figure 9.24b, theβ > ω0

circuit is dominated by the resistance and does not oscillate. The monopolar voltage pulse on the
load rises in a time of approximatelyL/R and decays exponentially over a timeRC. The current
following switching in an overdamped circuit is

An LRC circuit is critically damped when orβ � ω0

The current for a critically damped circuit is

The time-dependent load voltage is plotted in Figure 9.24c.
The waveforms in Figures 9.24a, b, and c have the same values ofL andC with different choices

of R. Note that the transfer of energy from the capacitor to the load resistor is accomplished most
rapidly for the critically damped circuit. Thus, the power extracted from a pulsed voltage
modulator is maximum whenR = Rc. The quantity , which has units of ohms, is called the2 L/C
characteristic impedance of the voltage modulator. Energy transfer is optimized when the load
resistance is matched to the modulator impedance, as specified by Eq. (9.68). The peak power
flow in a critically damped circuit occurs at a timet = 1/β. The maximum voltage at this time is
Vmax = 0.736V0, the maximum current is , and the maximum power in the load is0.368V0/ L/C

. The maximum power from this simple pulsed power generator is limited by the0.271V2
0 / L/C

parasitic inductance of the circuit.
It is possible, in principle, to use an inductor for energy storage in a pulsed power circuit. A

magnetic energy storage circuit is illustrated in Figure 9.25. In this case, a normally closed switch
must be opened to transfer the energy to a load. We could also include the effects of parasitic
capacitance in the circuit. Charging of this capacitance limits the current risetime in the load,
analogous to the inductance in the capacitive storage circuit. The main advantage of magnetic



Electrostatic Accelerators and Pulsed High Voltage

236

energy storage for, pulsed power applications is that a much higher energy density can be stored.
Consider, for instance, a Mylar insulated capacitor with and a field stress of 200 kV/cm.ε/ε0 � 3
Applying Eq. (5.19), the electrical energy density is only 104 J/m3 (0.01 J/cm3). In contrast, the
energy density in a vacuum inductor with a field of 2 T (20 kG) is 1.6 × 106 J/m3 (1.6 J/cm3). The
reason magnetic storage is not regularly used is the lack of a suitable fast opening switch. It is
relatively easy to make a fast closing switch that conducts no current until a self-sustained
discharge is initiated, but it is difficult to interrupt a large current and hold off the subsequent
inductive voltage spike.

9.7 IMPULSE GENERATORS

The single-capacitor modulator is suitable for voltages less than 100 kV, but is seldom used at
higher voltages. Transformer-based power supplies for direct charging are very large above 100
kV. Furthermore, it is difficult to obtain commercial high -energy-density capacitors at high
voltage. Impulse generators are usually used for pulsed high voltage in the 0.1-10 MV range.
These generators consist of a number of capacitors charged in parallel to moderate voltage levels
(�50 kV). The capacitors are switched to a series configuration by simultaneously triggered
shorting switches. The voltages of the capacitors add in the series configuration.

We will consider two widely used circuits, theMarx generator[E. Marx, Electrotech. Z.45,652
(1925)] and theLC generator. Impulse generators that produce submicrosecond pulses require less
insulation than a single capacitor with a steady-state charge at the full output voltage. The peak
voltage is applied for only a short time, and breakdown paths do not have time to form in the liquid
or gas insulation. High-field stress means that compact systems can be designed. Small systems
have lower parasitic inductance and can therefore achieve higher output power.
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A typical configuration for a Marx generator is illustrated in Figure 9.26. Positive and negative
power supplies (±V0) are used, charging the capacitors as shown in Figure 9.26a. Charging current
is carried to the capacitors through isolation resistors (or inductors) that act as open circuits during
the fast output pulse. The capacitor stack is interrupted by high-voltage shorting switches.
Gas-filled distortion spark gaps are ideal for this application. The trigger enters at the midplane of
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Vout � (2NV0) [1 � cos( 2/lc t)]. (9.70)

the switch and is referenced to dc ground.
The circuit configuration immediately after switch shorting is shown in Figure 9.26b. The voltage

across the load rapidly increases from 0 to 2NV0, whereN is the number of switches andV0 is the
magnitude of charge voltage on each capacitor. The series inductance shown arises mainly from
the narrow discharge channels in the spark gaps. If we ignore voltage variations on time scales less
than the dimension of the generator divided by the speed of light in the insulating medium, the
inductances and capacitors can be lumped together as shown in Figure 9.26c. The Marx generator
in the high-voltage phase is equivalent to the single capacitor modulator. Output to a resistive load
is described by the equations of Section 9.6.

The total series inductance is proportional to the number of switches, while the series
capacitance isC0/2N. Therefore, the characteristic generator impedance is proportional toN. This
implies that it is difficult to design high-voltage Marx generators with low characteristic
impedance. High-energy density capacitors and short connections help lower the inductance, but
the main limitation arises from the fact that the discharge current must flow through the
inductive spark gap switches.

One favorable feature of the Marx generator is that it is unnecessary to trigger all the switches
actively. If some of the spark gaps at the low-voltage end of the stack are shorted, there is
overvoltage on the remaining gaps. Furthermore, the trigger electrodes of the spark gaps can. be
connected by circuit elements so that a trigger wave propagates rapidly through the genera-
tor. Using these techniques, pulsed voltages exceeding 10 MV have been generated in Marx
generators with over 100 synchronous switches.

TheLC generator, illustrated in Figure 9.27, is more difficult to trigger than the Marx generator,
but it has lower characteristic impedance for the same output voltage. As in the Marx generator, a
stack of capacitors is charged slowly in a parallel configuration by a positive-negative voltage
supply (Fig. 9/27a). The main difference is that the switches are external to the main power flow
circuit. Transition from a parallel to a series configuration is accomplished in the following way.
Half of the capacitors are connected to external switched circuits with a series inductance. When
the switches are triggered, eachLC circuit begins a harmonic oscillation. After one half-cycle, the
polarity on the switched capacitors is reversed. At this time, the voltages of all capacitors add
in series, as shown in Figure 9.27b. The voltage at the output varies as

whereC is the capacitance of a single capacitor,N is the number of switches, andV0 is the
magnitude of the charge voltage.

The load must be isolated from the generator by a high-voltage switch during the mode change
from parallel to series. The isolation switch is usually a low-inductance spark gap. It can be
actively triggered or it can be adjusted for self-breakdown near the peak output voltage. Energy
transfer to the load should take place at so that no energy remains in the externalt � LC/2
inductors. The transfer must be rapid compared to the mode change time or energy will return to
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the inductors, reducing the generator efficiency. Typically, anLC generator may have a mode
change time of 6 µs and a transfer time to the load of 0.3 µs.

The equivalent circuit for the LC generator in the series state is the same as that for the Marx
generator (Fig. 9.26c). The main difference is that the series inductances are reduced by
elimination of the switches. The main disadvantages of the LC generator compared to the Marx
generator are that the switching sequence is more complex, a low-inductance output switch is
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required, and the circuit remains at high voltage for a longer time. Triggering one reversmg circuit
does not result in an overvoltage on the spark gaps of other sections. Therefore, all the switches in
an LC generator must be actively fired with strong, synchronized trigger pulses.

9.8 TRANSMISSION LINE EQUATIONS IN THE TIME DOMAIN

Most accelerator applications for pulse modulators require a constant-voltage pulse. The critically
damped waveform is the closest a modulator with a single capacitor and inductor can approach
constant voltage. Better waveforms can be generated by modulators with multiple elements. Such
circuits are calledpulse-forming networks(PFNs). The transmission line is the continuous limit of
a PFN. We shall approach the analysis of transmission lines in this section by a lumped element
description rather than the direct solution of the Maxwell equations. Application of transmission
lines as modulators is discussed in the following section. Discrete element PFNs are treated in
Section 9.11.

We will derive the transmission line equations in the time domain. The goal is to find total
voltage and current on the line as functions of time and position in response to specified inputs.
The input functions have arbitrary time dependence, and may contain a number of frequency
components. The frequency-domain analysis will be used in the study of rf accelerators which
operate at a single frequency (Section 12.6). In the frequency-domain analysis, each harmonic
component is treated separately. Voltage and current along the transmission line are described by
algebraic equations instead of differential equations.

We will concentrate on the coaxial transmission line, illustrated in Figure 9.28. Properties of
other common geometries are listed in Table 9.3. The coaxial line consists of an inner conducting
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cylinder (of radiusRi) and a grounded outer cylinder (Ro) separated by a medium with dielectric
constantε. We assume a linear magnetic permeability, µ. Figure 9.29a shows a sectional view of a
line divided into differential elements of length (∆z). Each element has a capacitance between the
center and outer conductors proportional to the length of the element . Ifc is the capacitance per
length, the capacitance of an element isc∆z. Magnetic fields are produced by current flow along
the center conductor, Each differential element also has a series inductance,l∆x wherel is the
inductance per unit length. The circuit model of Figure 9.29b can be applied as a model of the
transmission line. The quantitiesc andl for cylindrical geometry are given by
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c � 2πε / ln(Ro/Ri) (F/m), (9.71)

l � (µ/2π) ln(Ro/Ri) (H/m). (9.72)

Before solving the circuit of Figure 9.29b, we should consider carefully the physical basis for the
correspondence between the circuit model and the coaxial line. The following observations about
the nature of electric and magnetic fields in the line are illustrated in Figure 9.29a.

1. Fast-pulsed magnetic fields cannot penetrate into a good conducting material. We shall
study this effect, the magnetic skin depth, in Section 10.2. Because there is no magnetic
field inside the center conductor, the longitudinal current must flow on the outer surface.

2. The outer conductor is thick compared to the magnetic skin depth. Therefore, magnetic
fields resulting from current flow on the inner conductor are not observed outside the line.
Real current flowing on the outside of the inner conductor is balanced by negative current
flow on the inside of the outer conductor. Magnetic fields are confined between the two
cylinders.
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� dt (In�1 � In) / (c∆z) � Vn. (9.73)

3. To an external observer, the outer conductor is an equipotential surface. There is no
electrostatic voltage gradient along the conductor, and there is no inductively generated
voltage since there are no magnetic fields outside the conductor. Furthermore, the inside
surface of the outer conductor is at the same potential as the outside surface since there are
no magnetic fields in the volume between the surfaces.

4. If the distance over which current on the inner conductor varies is large compared to
(Ro - Ri), then the only component of magnetic field is toroidal,B

θ
.

5. Similarly, if the voltage on the inner conductor varies over a long distance scale, then
there is only a radial component of electric field.

Observations 1, 2, and 3 imply that we can treat the outer conductor as an ideal ground; voltage
variations occur along the inner conductor. The two quantities of interest that determine the fields
in the line are the current flow along the inner conductor and the voltage of the inner conductor
with respect to the grounded outer conductor. Observations 4 and 5 define conditions under which
electromagnetic effects can be described by the simple lumped capacitor and inductor model. The
condition is that , whereω is the highest frequency component of the signal andω « v/(Ro�Ri)

. At higher frequency, complex electromagnetic modes can occur that are not wellv � 1/ εµ
described by a single capacitor and inductor in a length elemental

Voltage differences along the center conductor are inductive. They are supported by changes in
magnetic flux in the region between the two cylinders. Differences in current along the center
conductor result from displacement current between the inner and outer conductors. The
interaction of voltage, real current, and displacement current isillustrated in Figure 9.30a. The
figure indicates the motion of a step input in voltage and current down a transmision line. The
magnetic field behind the front is constant; the flux change to support the voltage differences
between the inner and outer conductors comes about from the motion of the front. There is a rapid
change of voltage at the pulse front. This supports a radial displacement current equal to the
current of the pulse Current returns along the. other conductor to complete the circuit. T'he
balance between these effects determines the relationship between voltage and current and the
propagation velocity of the pulse.

Referring to Figure 9.29b, the voltage at pointn is equal to the total current that has flowed into
the point divided by the capacitance. Using the sign convention shown, this statement is expressed
by

Taking the derivative,
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�c∆z (	Vn/	t) � I n � In�1. (9.74)

l∆z (	In/	t) � Vn � Vn�1. (9.75)

The relationship is a partial differential equation because we are viewing the change in voltage with
time at a constant position. The difference in voltage between two points is the inductive voltage
between them, or

If ∆z becomes small, the discrete voltages approach a continuous function,V(z, t). The voltage
difference between two points can be approximated in terms of this function as
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Vn�1 � Vn � [	V(zn,t)/	z] ∆z. (9.76)

In�1 � In � [	I(zn,t)/	z] ∆z. (9.77)

	V/	z � �l (	I/	t), (9.78)

	I/	z � �c (	V/	t). (9.79)

	
2V/	z2

� (lc) (	2V/	t 2). (9.80)

V(z,t) � F(t ± z/v) (9.81)

v � 1/ lc. (9.82)

I(z,t) � G(t ± z/v). (9.83)

Similarly,

Substituting the results of Eqs. (9.76) and (9.77) into Eqs. (9.74) and (9.75) gives the continuous
partial differential equations

Equations (9.78) and (9.79) are called thetelegraphist's equations. They can be combined to give
wave equations forV andI of the form

Equation (9.80) is a mathematical expression of the properties of a transmisSion line. It has the
following implications:

1. It can easily be verified that any function of the form

is a solution of Eq. (9.80) if

The spatial variation of voltage along the line can be measured at a particular timet by an array of
probes. A measurement at a timet + ∆t would show the same voltage variation but translated a
distancev∆t either upstream or downstream. This property is illustrated in Figure 9.30b. Another
way to phrase this result is that a voltage pulse propagates in the transmission line at velocityv
without a change in shape. Pulses can travel in either the +z or -z directions, depending on the
input conditions.

2. The current in the center conductor is also described by Eq. (9.80) so that

Measurements of current distribution show the same velocity of propagation.
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v � 1/ εµ � c/ (ε/εo)(µ/µo). (9.84)

V � I Zo, (9.85)

Zo � l/c � µ/ε ln(Ro/Ri)/2π. (9.86)

Zo �
60 ln(Ro/Ri) µ/µo

ε/εo

(Ω). (9.87)

3. The velocity of propagation in the coaxial transmission line can be found by substituting Eqs.
(9.71) and (9.72) into Eq. (9.82):

This velocity is the speed of light in the medium. The geometric factors inc andl cancel for all
transmission lines so that the propagation velocity is determined only by the properties of the
medium filling the line.

4. Inspection of Eqs. (9.78) and (9.79) shows that voltage is linearly proportional to the current
at all points in the line, independent of the functional form of the pulse shape. In other words,

whereZo is a real number. The quantity Zo is called thecharacteristic impedanceof the line. Its
value depends on the geometry of the line. The characteristic impedance for a coaxial transmission
line is

Rewriting Eq. (9.86) in practical units, we find that

5. Polarities of voltage and current often cause confusion. Conventions are illustrated in Figure
9.30c. A positive current is directed in the +z direction; a negative current moves in the -z
direction. A positive-going current waveform creates a magnetic flux change that results in a
positive voltage on the center conductor.

9.9 TRANSMISSION LINES AS PULSED POWER

A transmission line is a distributed capacitor. Energy is stored in the line when the center
conductor is charged to high voltage. Transmission lines have the property that they can produce a
constant-voltage output pulse when discharged into a resistive load. In order to understand this,
we shall first consider the properties of signal propagation on finite length fines with resistive loads
at an end. A load at the end of a transmission line is called atermination.
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Figure 9.31 shows a transmission line extending fromz = 0 to infinity driven by a voltage
generator. The generator determines the entrance boundary condition on the line:Vg(z = 0, t). The
generator supplies a currentVg/Z0. The assumption of an infinite line means, that there are no
negatively-directed waves. There is a positively-directed wave produced by the generator. A
voltage probe a distanceL from the generator measures a signal . Similarly aVs(t

�) � Vg(t
�
�L/v)

current probe gives a signal .Is(t
�) � Vg(t

�
�L/v)/Zo

Assume that the line is split at the pointL and he pieces are connected together with a good
coaxial connector. This change makes no difference in wave propagation on the line or the signals
observed atL. Proceeding another step, the infinite length. of line beyond the split could be
replaced with a resistor with valueR = Zo. The important point is that, in term of observations atL,
wave propagation with the resistive termination is indistinguishable from that with the infinite line.
The boundary condition at the connection point is the same,V(L, t) = I(L, t)Zo. In both cases, the
energy of the pulse passes through the connector and does not return. In the case of the line, pulses
propagate to infinity. With the resistor, the pulse energy is dissipated. T'he resistor with R =Zo is
a matched termination.

We must consider the properties of two other terminations in order to understand the
transmission line as an energy storage element. One of them is an open circuit, illustrated in Figure
9.12a. Assume the voltage generator produces a sharp rising step pulse with voltage +Vo and
current +Io. When the step function reaches the open circuit, it can propagate no further. The
open-circuit condition requires that a probe at positionz = L measures zero current. This occurs if
the boundary reflects the original wave as shown, giving a pulse propagating in the negativez
direction with positive voltage and negative current. When this pulse is added to the positive-going
pulse from the generator, the net current is zero and the net voltage is + 2Vo.

Similar considerations apply to the short-circuit termination (Fig. 9.32b). A voltage probe atz =
L always measures zero voltage. The interaction of the inconung wave with a short-circuit
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termination generates a negative-going wave with negative voltage and positive current. In other
words, the termination acts as an inverting transformer. These reflection properties can be
confirmed by a direct numerical solution of Eqs. (9.78) and (9.79) with appropriate boundary
conditions.

The circuit for a transmission line pulsed voltage modulator is shown in Figure 9.33. The center
conductor of a line of lengthL is charged to high voltage by a power supply. The supply is
connected through a large resistance or inductance; the connection can be considered an open
circuit during the output pulse. The other end of the line is connected through a shorting switch to
the load. We assume the load is a matched termination,R = Zo.

Consider, first, the state of the charged line before switching. The center conductor has voltage
Vo. There is no net current flow. Reference to Figure 9.33 shows that the standing voltage
waveform of this state can be decomposed into two oppositely directed propagating pulses. The
pulses are square voltage pulses with lengthL and magnitude ½Vo. The positively-directed pulse
reflects from the switch open-circuit termination to generate a negatively-directed pulse that fills in
behind the original negative-going pulse. The same process occurs at the other open-circuit
termination; therefore, the properties of the line are static.

The resolution of a static charge into two traveling pulses helps in determining the
time-dependent behavior of the circuit following switching. We are free to choose the boundaries
of the positive and negative pulses at any location; let us assume that they are atz = 0 andz = L at
the time of switching,t = 0. Following switching, the positive-going pulse travels into the
termination while the negative pulse moves away from it. The positive pulse produces a flat-top
voltage waveform of duration and magnitude ½Vo in the load. At the same time, the∆t � L/v
negative-gomg pulse reflects from the open circuit at the charging end and becomes a
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∆tp � 2L/v. (9.88)

C � ∆t/Zo. (9.89)

L � Zo∆t. (9.90)

positive-going pulse following immediately behind the original The negative pulse deposits its
energy in the load during the time . In summary, the discharge of a transmissionL/v � t � 2L/v
line through a shorting switch into a matched resistive load produces a constant-voltage pulse. The
magnitude of the pulse is ½Vo and the duration is

where v is the pulse propagation velocity.
The total capacitance of a transmission line of lengthL can be expressed in terms of the single

transit time for electromagnetic pulses ( ) and the characteristic impedance as∆t � L/v

It is easily demonstrated that energy is conserved when the line is discharged into a matched
termination by comparingCVo

2 to the time integral of power into the load. The total series
inductance of a transmission line is

Transformer oil is a common insulator for high-voltage transmission lines. It has a relative
dielectric constant of 3.4. The velocity of electromagnetic pulses in oil is about 0.16 m/ns. Voltage



Electrostatic Accelerators and Pulsed High Voltage

250

hold-off in a coaxial transmission line is maximized when . For oil this translates into aRi/Ro � 1/e
33Ω characteristic impedance [Eq. (9.87)). Purified water is used as a transmission line energy
storage medium in high-power density pulsed modulators because of its high relative dielectric
constant ( ). Water is conductive, so that water lines must be pulse charged. Inε/εo � 81
comparison with oil, a water line with a l/e radius ratio can drive a 6.8Ω load. For the same charge
voltage, the energy density in a water line is 24 times higher than in an oil line.

9.10 SERIES TRANSMISSION LINE CIRCUITS

Two features of the transmission line pulse modulator are often inconvenient for high-voltage
work. First, the matched pulse has an amplitude only half that of the charge voltage. Second, the
power transfer switch must be located between the high-voltage center conductor and the load.
The switch is boosted to high voltage; this makes trigger isolation difficult. The problems are
solved by the Blumlein transmission line configuration [A. D. Blumlein, U.S. Patent No. 2,465,840
(1948)]. The circuit consists of two (or more) coupled transmission lines. Fast-shorting switches
cause voltage reversal in half the lines for a time equal to the double transit time of electromagnetic
pulses. The result is that output pulses are produced at or above the dc charge voltage, depending
on the number of stages. The Blumlein line circuit is the distributed element equivalent of the LC
generator.

We shall analyze the two-stage transmission line driving a matched resistive load. A circuit with
nested coaxial transmission lines is illustrated in Figure 9.34a. The three cylinders are labeledOC
(outer conductor),IC (intermediate conductor), andCC (center conductor) . The diameters of the
cylinders are usually chosen go that the characteristic impedance of the inner line is equal to that of
the outer line. This holds when . We neglect end effects and assume that bothROC/RIC � RICRCC
lines have the same electromagnetic transit time.

A high-voltage feed penetrates the outer cylinder to charge the intermediate cylinder. The center
conductor is connected to ground through an isolation element. The isolator acts as a short circuit
over long times but approximates an open circuit during the output pulse. It is usually a simple
inductor, although we shall investigate a more complex isolator when we study linear induction
accelerators (Section 10.5). A shorting switch between theIC andOC is located at the end
opposite the load.

The equivalent circuit of the two-stage Blumlein line is shown in Figure 9.34b. In order to
analyze the pulse output of the circuit, we make the following assumptions:

1. The middle conductor is taken as a reference to analyze traveling voltage pulses.

2. The isolation element is an ideal open circuit during the pulse output.
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3.The load resistance is , whereZo is the characteristic impedance of theZ1 � 2Zo
individual nested lines.

4. An imaginary connection is attached from the intermediate conductor to the midpoint of
the load during the output pulse. This connection is indicated by dotted lines in Figure
9.34b.

In the steady state, the intermediate conductor is charged to -Vo. The other two electrodes have
positive voltage relative to the intermediate conductor. The static charge can be represented in the
inner and outer lines as two oppositely-directed positive voltage pulses of lengthL and magnitude
½Vo. Pulses arriving at the end connected to the load are partially reflected and partially
transmitted to the other line. Transmission is the same in both directions so that a steady state is
maintained. Assume that the boundaries of positive and negative pulses are aligned as shown in
Figure 9.35a at switching timet = 0-.

The following events take place when the shorting switch is activated:
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1. There is a time lag before information about the shorting is communicated the load. During this
time, the +z-directed pulse in the outer line and the -z-directed pulse in the inner line continue to
move toward the load. The balance of transmission and reflection causes a positive-polarity
reflected pulse to move backward in each line as though the midpoint were an open circuit (Fig.
9.35b).

2. The +z-directed pulse in the inner line moves to the open-circuit end opposite the load and is
reflected with positive polarity. The major activity in the circuit is associated with the -z-directed
pulse on the outer fine. This pulse encounters the short circuit and reflects with negative polarity.
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3. The negative-polarity pulse arrives at the load at . We make the imaginary∆t � L/v
connection at this time. Power from the positive pulse in the inner line and the negative pulse in the
outer line is deposited in the two matched loads (Fig. 9.35c). The voltages on the loads have
magnitude ½Vo and the same polarity; therefore, there is a net voltage ofVo between the
connection points of the center and outer conductors to the load.

4. The situation of Figure 9.35c holds for . During this time, the other pulse∆t < t < 2∆t
components in the two lines reflect from the boundaries opposite the load. The polarity of the
reflected wave is positive in the inner line and negative in the outer line.

5. The pulses that originally moved away from the load deposit their energy during the time
(Fig. 9.35d).2∆t < t < 3∆t

6. Inspection of Figures 9.35c and d shows that currents from the two lines are equal and opposite
in the imaginary conductor during the output pulse. Because the connection carries no current, we
can remove it without changing the circuit behavior.

The above model resolves the Blumlein line into two independent transmission lines driving a
series load. The voltage in one line is reversed by reflection at a short circuit. Voltages that cancel
in the static state add in the switched mode. In summary, the Blumlein line circuit has the following
characteristics:

1. An output voltage pulse ofVo is applied to a matched load between the center conductor and the
outer conductor for the double transit time of an individual line, 2L/v.

2.The voltage pulse is delayed from the switch time by an intervalL/v.

3.The matched impedance for a two-stage Blumlein line is 2Zo.

4.A negatively charged intermediate conductor results in a positive output pulse when the switch is
located between the intermediate and outer conductors. The output pulse is negative if a shorting
switch is located between the intermediate and center conductors.

The Blumlein line configuration is more difficult to construct than a simple transmission line.
Furthermore, the Blumlein line has no advantage with respect to energy storage density.
Neglecting the thickness of the middle conductor and its voltage grading structures, it is easy to
show that the output impedance, stored energy density, pulselength, and output voltage are the
same as that for an equal volume transmission line (withRi = RCC andRo = ROC) charged to 2Vo.
The main advantage of the Blumlein line is that requirements on the charging circuit are relaxed. It
is much less costly to build a 1-MV Marx generator than 2-MV generator with the same stored
energy. Furthermore, in the geometry of Figure 9.34, the switch can be a trigatron with the
triggered electrode on the ground side. This removes the problem of trigger line isolation.
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Zo � L/C. (9.91)

9.11. PULSE-FORMING NETWORKS

Transmission lines are well suited for output pulselengths in the range 5 ns <∆tp < 200 ns, but they
are impractical for pulselengths above 1 µs. Discrete element circuits are usually used for long
pulselengths. They achieve better output waveforms than the critically damped circuit by using
more capacitors and inductors. Discrete element circuits that provide a shaped waveform are called
pulse-forming networks.

The derivations of Section 9.8 suggest that the circuit of Figure 9.36 can provide a pulse with an
approximately constant voltage. A transmission line is simulated by a finite numberN of
inductor-capacitor units. Following the derivation of Section 9.8, the resistance of a matched load
is

The quantities L andC are the inductance and capacitance of discrete elements. We shall callZo

the impedance of the PFN. The single transit time of an electromagnetic pulse through the network
is approximately . The output voltage pulse has average magnitude ½Vo and durationN LC

.∆tp � 2N LC
The output pulse of a five-element network into a matched resistive load is shown in Figure 9.37.

Although the general features are as expected, there is substantial overshoot at the beginning of the
pulse and an undershoot at the end. In addition, there are voltage oscillations during the pulse. In
some applications, these imperfections are not tolerable. For instance, the pulse modulator may be
used to drive an ion injector where the beam optics depends critically on the voltage.

A Fourier analysis of the circuit of Figure 9.36 indicates the basis for the poor pulse shaping. The
circuit generatesN Fourier components with relative amplitudes optimized to replicate a
sharp-edged square voltage pulse. In the Fourier series expansion of a square pulse, the
magnitudes of the terms of ordern decrease only as the inverse of the first power ofn, .an � 1/n
Thus, many terms are needed for an accurate representation. In other words, a large number of
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i(t) � 2Io �
n

4
nπ

sin(nπa)
nπa

sin
nπt
∆tp

. (9.92)

elements is needed in the circuit of Figure 9.36 for a relatively constant output voltage. Such a
division increases the size and cost of the modulator.

A different approach to the PFN, developed by Guillemin [E.A. Guillemin,Communications
Networks, Vol. II , (Wiley, New York, 1935)] provides much better pulse shaping with fewer
elements. He recognized that the slow convergence of the network of Figure 9.36 is a consequence
of approximating a discontinuous waveform. In most applications, the main concern is a good
voltage flat-top, and gradual voltage variation on the rise and fall of the pulse can be tolerated The
key is to work in reverse from a smooth waveform to derive a generating circuit.

We can utilize a Fourier series analysis if we apply the following procedure. Consider first an
ideal transmission line discharged into a short-circuit load (Fig. 9.38a). The current oscillates
between +2Io and -2Io, whereIo is the output current when the line is discharged into a matched
load, . The periodic bipolar waveform can be analyzed by a Fourier series. When theIo � Vo/2Zo
circuit is connected to a matched load, there is a single square pulse (Fig. 9.38b). By analogy, if we
could determine a circuit that produced a different bipolar current waveform with peak amplitude
2Io, such as the trapezoidal pulse of Figure 9.38c, then we expect that it would produce a
trapezoidal pulse (Fig 9.38d) of amplitudeIo when connected to a resistance . WeR � Vo/2Io
shall verify this analogy by direct computation.

It remains to determine a circuit that will produce the waveform of Figure 9.38c.when
discharged into a short. The Fourier series representation of a trapezoidal current pulse with
magnitude 2Io, total length∆tp and rise and fall timesa∆tp is
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i n(t) � in0 sin t

LnCn

(9.93)

Consider the circuit of Figure 9.39. It consists of a number of parallelLC sections. If the PFN is
dischared into a short circuit, the current flow through each of the sections is independent of the
others. This occurs because the voltage across each section is zero. The current in a particular
section after switching is

We choose the inductance and capacitance of sections so that their free harmonic oscillations are at
the frequency of the Fourier components in Eq. (9.92). In other words,
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L1C1 � ∆tp/π, L2C2 � ∆tp/2π, L3C3 � ∆tp/3π, .... (9.94)

in0 � V0/ Ln/Cn. (9.95)

Vo/ Ln/Cn � (Vo/Zo) (4/nπ) [sin(nπa)/nπa], (9.96)

Ln � (Zo∆tp/4) / [sin(nπa)/nπa], Cn � (4∆tp/n
2π2Zo) / [sin(nπa)/nπa]. (9.97)

We know from our study of the undampedLC circuit (Section 9.6) that the magnitude of the
current flowing through any one of the sections after switching is

If Zo is the desired characteristic impedance, the magnitude are matched to the Fourier series if

where we have substituted . Equations (9.94) and (9.96) can be solved to give theVo/Zo � 2I o
appropriate component values of the PFN:

Figure 9.40 shows a voltage pulse on a matched resistor (R = Zo) for three and five-element
Guillemin networks using the circuit values determined from Eqs. (9.97). Note the improvement
compared to the pulse shape of Figure 9.37. Equation (9.92) shows that the Fourier expansion
converges as 1/N2. A better flat-top can be obtained by approximating smoother pulses. For
instance, the series converges as 1/N3 if the pulse is assumed to have parabolic edges with no
discontinuity in slope. Alternate circuits to that of Figure 9.39 can be derived. The main
disadvantage of the Guillemin network is that the capacitors all have different values. It is usually
difficult to procure commercial high-voltage capacitors with the required capacitances.
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9.12 PULSED POWER COMPRESSION

Electron and ion beams in the megampere range have been generated in pulsed power diodes [see
T. H. Martin and M. F. Rose, Eds.,Proc. 4th IEEE Pulsed Power Conference, (IEEE
83CH1908-3, Piscataway, New Jersey, 1983)]. Such beams have, application to inertial fusion and
studies of materials at high temperature, pressure, and radiation levels. High-power pulse
modulators are needed to drive the diodes. Pulsed power research is largely centered on extending
the limits of the output power of voltage generators. At present, single-unit generators have been
built that can apply power in the TW (1012 W) range to a load. Typical output parameters of such a
modulator are 1 MA of current at 1 MV in a 50-ns pulse. Parallel generators have reached levels of
10 TW.
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Power compressionis the technique that has allowed the generation of such high output. A
general power compression circuit is illustrated in Figure 9.41. Energy is transferred from one
stage of energy storage to the next in an increasingly rapid sequence. Each storage stage has higher
energy density and lower inductance. Even though energy is lost in each transfer, the decrease in
transfer time is sufficient to raise the peak power.

The first power compression stage in Figure 9.41 is one we are already familiar with. A dc
source charges an impulse generator such as a Marx generator. The output power from the Marx
generator may be a factor of 107 higher than the average power from the source. In the example,
the Marx generator transfers its energy to a low-inductance water-filled capacitor. A shorting
switch then passes the energy to a low-impedance transmission line. A low-inductance multi-
channel switch then connects the line to a vacuum load. Power multiplication in stages following
the Marx generator are not so dramatic; gains become increasingly difficult. Figure 9.42 is a scale
drawing of a pulsed power compression system to generate 300-kV, 300-kA, 80-ns pulses. The
system consists of a low inductance 1-MVLC generator that pulse-charges a 1.5-Ω water-filled
transmission line. Energy from the line is transferred by a multi-element high-pressure gas switch.
The pulse is matched to a 1-Ω electron beam load by a coaxial line transformer.

The highest power levels have been achieved with multiple stages of capacitive energy storage
connected by sequenced shorting switches. Triggered gas-filled switches are used in the early
stages. Gas switches have too much inductance for later stages, so that self-breakdown between
electrodes in a highly stressed liquid medium is used. Discharges in liquids absorb considerable
energy. The resulting shock wave rapidly erodes electrodes. Therefore, machines of this type are
fired typically 1-10 times per day and may need repair after 10-100 shots. In Section 9.13, we shall
study a potential method for low-inductance switching at high repetition rate, saturable core
magnetic switching. Characteristics of the EAGLE pulsed power generator are summarized in
Table 9.4.
Transfer of energy between capacitors forms the basis of most pulsed power generators. A model
for the transfer is illustrated in Figure 9.43. A capacitor is charged to voltageVo, and then energy is
switched through an inductance to a second capacitor by a shorting switch. The inductance may be
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�Vo � � idt/C1 � L (di/dt) � � idt/C2 � 0,

L (d 2i/dt 2) � �i (C1�C2)/C1C2. (9.98)

i(t) � Vo sin(ωt) / L(C1�C2)/C1C2 , (9.99)

ω � L C1C2/(C1�C2)

introduced purposely or may represent the inevitable parasitic inductance associated with current
flow. Current in the circuit is described by the equation

or

If the switch, is closed att = 0, then the initial conditions arei(0) = 0 and di(0)/dt = Vo/L. The
solution of Eq. (9.98) is

where
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V1(t) � Vo � � idt/C1, V2(t) � � idt/C2. (9.100)

V1 � Vo [1 � [C2/(C1�C2)] (1 � cosωt)], (9.101)

V2 � Vo [1 � [C1/(C1�C2)] (1 � cosωt)]. (9.102)

The quantities of interest are the time-dependent charge voltages on the two capacitors.

Substituting Eq. (9.99) into Eqs. (9.100), we find that

Waveforms are plotted in Figure 9.44 forC2 = C1 andC2 « C1. The first case is the optimum choice
for a high-efficiency power compression circuit. A complete transfer of energy from the first to the
second capacitor occurs at timet = π/ω. In the second case, the energy transfer is inefficient but
the second capacitor is driven to twice the charge voltage of the first. For this reason, the circuit of
Figure 9.43 is often called thepeaking capacitor circuit.
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9.13 PULSED POWER SWITCHING BY SATURABLE CORE INDUCTOR

Although the process of pulse shaping by saturable core ferromagnetic inductors has been used for
many years in low-voltage circuits, application to high-power circuits is a recent area of interest.
Magnetic switches can be constructed with low inductance and high transfer efficiency. Energy
losses are distributed evenly over the core mass, and there is no deionization time as there is in gas
or liquid breakdown switches. These factors give magnetic switches potential capability for high
repetition rate operation.

A two-stage power compression circuit with a magnetic switch is shown in Figure 9.45a.
CapacitorsC0 andC1 constitute a peaking circuit. Energy is transferred by a normal shorting
switch. The energy inC1 is then routed to a load by a saturable core inductor switch. The circuit
achieves power compression if the switch out time fromC1 is short compared to the initial
transfer. We chooseC0 = C1 for high efficiency.

In order to understand the operation of the circuit of Figure 9.45 a, we must refer to the
hysteresis curve of Figure 5.12. We assume that the ferromagnetic core of the inductor is ideal; its
properties are described by a static hysteresis curve. This means that there are no real currents
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V1(t) � N Ac (dB/dt), (9.103)

� V1(t) dt � N Ac (Bs � Br). (9.104)

N Ac (Bs � Br) � Voπ/2ω. (9.105)

flowing in the core material; magnetic effects are produced solely by alignment of atomic currents.
Methods of core construction to assure this condition are described in Chapter 10. We further
assume that at some time beforet = 0 a separate circuit has pulsed a negative current through the
ferromagnetic core sufficient to bias it to -Bs. After the current is turned off, the core settles to a
state with flux level -Br. This process is calledcore reset.

Consider the sequence of events after the shorting switch is activated. At early times, the
right-hand portion of the circuit is approximately an open circuit because of the high inductance of
the winding around the high µ core. Energy flows fromC0 to C1; the voltage onC1 is given by Eq.
(9.102). Further, Faraday's law implies that

whereAc is the cross-section area of the core andN is the number of windings in the inductor. The
core reaches saturation when

After saturation, the inductanceL2 decreases by a large factor, approaching the vacuum inductance
of the winding. The transition from high to low inductance is a bootstrapping process that occurs
rapidly. Originally, translation along the H axis of the hysteresis curve is slow because of the high
inductance. Near saturation, the inductance drops and the rate of change of leakage current
increases. The rate of change of H increases, causing a further drop in the inductance. The
impedance change of the output switch may be as fast as 5 ns for a well-designed core and
low-inductance output winding.

Energy is utilized efficiently if the output switch has high impedance for and the0 � t � π/ω
switch core reaches saturation at the end of the interval when all the circuit energy is stored inC1.
Integrating Eq. (9.103) over this time span gives the following prescription for optimum core
parameters

Power compression in the two-stage circuit is, illustrated in Figure 9.46a.
A multiple compression stage circuit with magnetic switching is shown in Figure 9.45b. The
parameters of the saturable cores are chosen to transfer energy from one capacitor to the next at
increasing power levels. Current waveforms in the switches are shown in Figure 9.46b. There are a
number of constraints on power compression circuits:

1.The capacitance in all stages should be equal toC0 for high efficiency.
2.Switching of each stage should occur at peak energy transfer. This means that
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V0π L s
n�1 C0/2 � 2NnAc(Bs�Br). (9.106)

L u
n » L s

n�1. (9.107)

In Eq. (9.106), is the saturated (or vacuum) inductance of the winding around coren-1 andL s
n�1

Nn is the number of turns around coren.

3.The unsaturated inductance of windingn should be much larger than the saturated inductance
of winding n-1, or

Equation (9.107) implies that prepulse is small; power does not move forward in the circuit until
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L u
n « L u

n�1. (9.108)

τn/τn�1 � Ln/Ln�1 � 1/κ. (9.109)

switching time.

4. The saturated inductance of windingn should be small compared to the saturated inductance of
winding n-1,

Equation (9.108) guarantees that the time for energy transfer fromCn to Cn+1 is short compared to
the time for energy to flow backward fromCn to Cn-1; therefore, most of the energy in the circuit
moves forward.

One practical way to construct a multistage power compression circuit is to utilize identical
cores (constantAc, Bs andBr) and capacitors (constantC0) and to vary the number of turns around
each core to meet the conditions listed above. In this case, the first and second conditions imply
that the number of turns decreases geometrically along the circuit or . If we assumeNn � Bn�1/κ
that the saturated and unsaturated inductances vary by a factor µ/µo, conditions 3 and 4 imply that

and . These conditions are satisfied if .The power compressionκ2 « (µ/µo) κ2 » 1 1 < κ < µ/µo
that can be attained per stage is limited. The time to transfer energy scales as

The power compression ratio is the inverse of Eq. (9.109). For ferrite cores with µ/µo � 400, the
maximum power compression ratio per stage is about 5.

Magnetic switches in low-power circuits are usually toroidal pulse cores with insulated wire
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windings. Magnetic switches used to control the output of a high-power pulse-charged
transmission line must be designed for high-voltage standoff and low inductance. A typical
configuration is shown in Figure 9.47. Saturable core inductors can also be used for pulselength
shortening and risetime sharpening if efficiency is not a prime concern. The circuit illustrated in
Figure 9.48 produces a short, fast-rising voltage pulse from a slow pulse generator.

9.14 DIAGNOSTICS FOR PULSED VOLTAGES AND CURRENTS

Accurate measurements of acceleration voltage and beam current are essential in applications to
charged particle acceleration. The problem is difficult for pulsed beams because the frequency
response of the diagnostic must be taken into account. In this section, we shall consider some basic
diagnostic methods.

The diagnostic devices we shall discuss respond to electric or magnetic fields over a limited
region of space. For instance, measurement of the current through a resistor gives the
instantaneous spatially-averaged electric field over the dimension of the resistor. Confusion often
arises when electric field measurements are used to infer a voltage. In particle acceleration
applications voltage usually means the energy a charged particle gains or loses crossing the region
of measurement. Signals from voltage diagnostics must be carefully interpreted at high frequency
because of two effects.

1. Particle energy gain is not equal to (where the integral is taken at a fixed time) when the� E�dx



Electrostatic Accelerators and Pulsed High Voltage

268

is � V0/Rp. (9.110)

time interval for the particle to cross the region is comparable to or less than the period of voltage
oscillations. This is called thetransit time effectand is treated in Section 14.4.

2. The voltage difference between two points is not a useful concept when the wavelength of
electromagnetic oscillations is less than or comparable to the dimension of the region. In this case,
electric field may vary over the length of the diagnostic. For example, in the presence of a bipolar
electric field pattern, a voltage diagnostic may generateno signal.

Similarly, magnetic field measurements can be used to infer current flow at low frequency, but
caution should be exercised in interpretation at high frequency.

A. Steady-State Voltage Mesurement

The only, time-independent device that can measure a dc voltage is the resistive shunt (Fig. 9.49a).
The resistive shunt consists of a resistor string of valueRp attached between the measurement point
and ground. The quantityRp must be high enough to prevent overloading the voltage source or
overheating the resistors. The net voltage can be inferred by measuring current flow through
the chain with a microammeter,
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Vs/V0 � Rs / (Rp�Rs). (9.111)

Q � CpV0.

is � dQ/dt � Cp (dV0/dt) � V0 (dCp/dt). (9.112)

Ct � 4πεoR0R1/(R1�R0). (9.113)

0 � Cp � Ct Ap/4πR2
1 .

Another approach is to measure the voltage across a resistorRs at the low-voltage end of the
chain. This configuration is called aresistive divider(Fig. 9.49b). The division ratio, or the signal
voltage divided by the measured voltage, is

Capacitive voltage measurements of dc voltages are possible if there is a time variation of
capacitance between the source and the diagnostic. The charge stored in a capacitance between a
high-voltage electrode and a diagnostic plate (Cp) is

The total time derivative of the charge is

In pulsed voltage measurements,Cp is maintained constant and a diagnostic current is generated by
dV0/dt. Measurements of dc voltages can be performed by varying the capacitance as indicated by
the second term on the right-hand side of Eq. (9.112).

The voltage probe of Figure 9.50 has an electrode exposed to electric fields from a high-voltage
terminal. A rotating grounded disc with a window changes the mutual capacitance between the
probe and high-voltage electrodes, inducing a current. The following example of a voltage
measurement on a Van de Graaff acceleratorillustrates the magnitude of the signal current.
Assume the high-voltage electrode is a sphere of radiusRo in a grounded spherical chamber of
radiusR1. With gas insulation, the total capacitance between the outer and inner electrodes is

We assume further that the probe electrode and rotating window are near ground potential and
that their surfaces are almost flush with the surface of the outer electrode. Field lines between the
high-voltage electrode and the probe are radial; therefore, the mutual capacitance is equal toCt

times the fraction of outer electrode area occupied by the probe. IfAp is the area of the hole in the
rotating plate, then the capacitance between the high-voltage electrode and probe varies between

As an example, takeV0 = 1 MV, R0 = 0.3 m,R1 = 1 m, andAp = 8 × 10-3 m2. A plate, rotating at
1000 rmp (ω = 100 s-1) obscures the probe half the time. The total spherical capacitance isCt =
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100 pF; the mutual capacitance between terminal and probe is 0.07 pF. The signal current is
approximately . Substituting values, the magnitude of the ac current is 3.5is � V0 (ωCp/2) cosωt
µA, an easily measured quantity.

B. Resistive Dividers for Pulsed Voltages

T'he electrostatic approximation is usually applicable to the measurements of output voltage for
pulsed power modulators. For example, electromagnetic waves travel 15 m in vacuum during a
50-ns pulse. The interpretation of voltage monitor outputs is straightforward as long as the
dimensions of the load and leads are small compared to this distance.

Resistive dividers are well suited to pulsed voltage measurements, but some care must be
exercised to compensate for frequency-dependent, effects. Consider the divider illustrated in
Figure 9.49. Only the resistance values are important for dc measurements, but we must include
effects of capacitance and inductance in the structure for pulsed measurements. A more detailed
circuit model for the resistive divider is shown in Figure 9.51. There is inductance associated with
current flow through the resistors and a shunt capacitance between points on the divider.
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V0(t) � � a(ω) exp(jωt), (9.114)

A particularly unfavorable situation occurs when the primary resistor chain is a water solution
resistor and the signal resistor is an ordinary carbon-composition resistor. Water resistors have
high dielectric strength and good energy-absorbing ability, but they also have a large shunt
capacitance,Cp. Therefore, on time scales less thanR0Cp, the circuit acts as a differentiator. A
square input pulse gives the pulse shape shown in Figure 9.52b.

The above example illustrates a general problem of pulsed voltage attenuators; under some
circumstances, they may not produce a true replication of the input waveform. We can understand
the problem by considering the diagnostic as a device that transforms an input waveform to an
output waveform. We can represent the process mathematically by expressing the input signal as a
Fourier integral,
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Vs(t) � � a(ω) g(ω) exp(jωt). (9.115)

wherea(ω) is a complex number. Neglecting the electromagnetic transit time through the
diagnostic, the transform function of a diagnostic system is a function of frequency,g(ω). The
quantityg(ω) is a complex number, representing changes in amplitude and phase. The output
signal is

In an ideal diagnostic, the transformation function is a real number independent of frequency over
the range of interest. When this condition does not hold, the shape of the output signal differs from
the input. In the case of the water solution resistive divider,g(ω) is constant at low frequency but
increases in magnitude at high frequency. The result is the spiked appearance of Figure 9.52b.
Conversely, if the inductance of the divider stack is a dominant factor, high frequencies are
inhibited. The pulse risetime is limited to aboutL/R0, producing the pulse shown in Figure 9.52c.

Pulse shapes can often be reconstructed by computer if the transfer function for a diagnostic and
the associated cabling is known. Nonetheless, the best practice is to design the diagnostic for flat
frequency response. Devices with frequency variations must be compensated. For example,
consider the water solution resistive divider. A method of compensation is evident if we recognize
that pulsed voltage dividers can be constructed with capacitors or inductors. In the capacitive
divider (Fig. 9.53a), the division ratio is
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Vs/V0 � Cp/(Cs�Cp), (9.116)

Vs/V0 � Ls/(Ls�Lp), (9.117)

Rs/(Rs�Rp) � Cp/(Cs�Cp) � Ls/(Ls�Lp). (9.118)

and for an inductive divider (Fig. 9.53b),

A balanced divider is illustrated in Figure 9.53c. Extra circuit components (Cs andLs) have been
added to the probe of Figure 9.51 to compensate for the capacitance and inductance of the probe.
The divider is balanced if

The componentCs pulls down the high-frequency components passed byCp eliminating the
overshoot of Figure 9.52a. Similarly, the inductanceLs boosts low-frequency components which
were over-attenuated byLp to improve the risetime of Figure 9.52b. Sometimes,Cp andLp are not
known exactly, so that variableC andL are incorporated. These components are adjusted to give
the best output for a fast-rising square input pulse.

Divider balance can also be achieved through geometric symmetry. A balanced water solution
resistive divider is shown in Figure 9.54. The signal pick-off point is a screen near the ground
plane. The probe resistor and signal resistor,Rp andRs, share the same solution. The division ratio
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is given by the ratio of the length ofRs to the length ofRp. The high dielectric constant of the water
solution assures that electric field fines in the water are parallel to the column [see Eq. (5.6)].
Inspection of Figure 9.54 shows that the resistances, capacitances, and inductances are all in the
proper ratio for a balanced divider when the solution resistance, resistor diameter, and electric field
are uniform along the length of the resistor.
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C. Capacitive Dividers for Pulsed Voltages

High-voltage dividers can be designed with predominantly capacitive coupling to the high-voltage
electrode. Capacitive probes have the advantage that there is no direct connection and there are
negligible electric keld perturbations. Two probes for voltage measurements in high-voltage
transmission lines are shown in Figures 9.55a and b.
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Vs � (CpZo) (dV0/dt). (9.119)

T'he first probe is suitable for use in an oil or gas-filled line where the resistance of the medium is
effectively infinite and the mutual capacitance between terminal and probe is low. The capacitance
between the probe and the wall,Cs, is purposely made small. The probe is connected directly to a
signal transmission line of impedanceZo. The signal voltage on the line is

This signal is processed by an integration circuit (Section 9.1). The minimum time response of the
probe is aboutZoCs. The maximum time is determined by the integration circuit.

The second probe is a self-integrating.probe for use in water-filled transmission lines. The
coupling capacitance is high in water lines; in addition, there is real current flow because of the
non-zero conductance. In this situation, the capacitance between the probe and the wall is made
high by locating the probe in a reentrant chamber. The probe acts as a capacitive divider rather
than a coupling capacitor. If the space between between the probe electrode and the wall of the
chamber is filled with a non-conductive dielectric, the divider is unbalanced because of the water
resistance. Balance can be achieved if the water of the transmission line is used as the dielectric in
the probe chamber. The minimum time response of the divider is set by electromagnetic pulse
transit time effects in the probe chamber. Low-frequency response is determined by the input
resistance of the circuit attached to the probe. IfRd is the resistance, then the signal of a square
input pulse will droop as . Usually, a high seriesRd is inserted between theexp(�t/RdCs)
transmission line and the probe to minimize droop and further attenuate the signal voltage.

D. Pulsed Current Measurements with Series Resistors

Measurements of fast-pulsed beam flux or currents in modulators are usually performed with either
series resistors, magnetic pickup loops, or Rogowski loops. A typical series resistor configuration
for measuring the current from a pulsed electron gun is shown in Figure 9.56a. Power is supplied
from a voltage generator through a coaxial transmission line. The anode is connected to the return
conductor through a series resistor called acurrent-viewing resistor(CVR). Current is inferred
from the voltage across the resistor. The CVR has low resistance,Rs, and very low series
inductance. In many cases, diagnostic cables and power leads are connected to the anode. In this
situation, some circuit current flows through the ground connectors of the cables, ultimately
returning to the generator. This current does not contribute to a signal on the CVR. The current
loss is minimized if the inductance associated with the loss paths is large compared to the series
inductance of the CVR. When this condition holds, most of the primary circuit current flows
through the CVR for times short compared toL/Rs, whereL is the inductance along the connecting
cables.
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Vs � NAB/RC. (9.120)

A design used for commercial CVRs is shown in Figure 9.56b. The diagnostic is mounted on the
return conductor of a coaxial transmission line. It consists of a toroidal chamber with a thin sheet
of stainless steel welded across the opening to preserve the cylindrical geometry. In the absence of
the resistive sheet, current flow generates a magnetic field inside the chamber; there is an
inductanceLs, associated with the convoluted path of return current. When a sheet with resistance
Rs, is added, current flows mainly through the sheet for times less thanLs/Rs. When this condition
holds, voltage measured at the pick-off point is approximately equal toiRs. The response of the
CVR can be extended to lower frequencies by the inclusion of a ferromagnetic material such as
ferrite in the toroidal chamber. The principle of operation of the ferrite-filled probe will be clear
when we study inductive linear accelerators in the next chapter.

E. Pulsed Current Measurements with Magnetic Pickup Loops

The magnetic pickup loop measures the magnetic field associated with current flow. It consists of
a loop normal to the magnetic field of areaA with N turns. If the signal from the loop is passed
through a passive integrator with time constantRC, then the magnetic field is related to the
integrator output voltage by

Current can be inferred if the geometry is known. For instance, if the current is carried by the
center conductor of a transmission line or a cylindrically symmetric beam on axis, the magnetic
field at a probe located a distancer from the axis is given by Eq. (4.40). The loop is oriented to
sense toroidal magnetic fields.

The net current of a beam can be determined even if the beam moves off axis by adding the
signals of a number of loops at different azimuthal positions. Figure 9.57 shows a simple circuit to
add and integrate the signals from a number of loops. Magnetic pickup loops at diametrically
opposite positions can detect beam motion off-axis along the diameter. In this case, the loop
signals are subtracted to determine the difference signal. This is accomplished by rotating one of
the loops 180� and adding the signals in the circuit of Figure 9.57.

The high-frequency response of a magnetic pickup loop is determined by the time it takes
magnetic fields to fill the loop. The loop is diamagnetic; currents induced by changing flux produce
a counterflux. The response time for a loop with inductanceL and a series resistanceR is L/R. The
resistance is usually the input impedance of a transmission line connected to a loop. Sensitive
magnetic pickup loops with many turns generally have slow time response.

The magnetic pickup loop has a useful application in pulsed -voltage systems when the voltage
diagnostic cannot be attached at the load. For instance, in driving a high-current electron extractor
with a transmission line modulator, it may be necessary to measure voltage in the line rather than at
the vacuum load. If there is inductanceL between the measurement point and the acceleration gap,



Electrostatic Accelerators and Pulsed High Voltage

279

Vg(t) � V0(t) � Lp (di/dt). (9.121)

the actual voltage on the gap is

The quantityV0 is the voltage at the measurement point andVg is, the desired voltage. A useful
measurement can often be achieved by adding an inductive correction to the signal voltage. An
unintegrated magnetic pickup loop signal (proportional to -di/dt) is added to the uncorrected
voltage through a variable attenuator. The attenuator is adjusted for zero signal when the
modulator drives a shorted load. The technique is not reliable for time scales comparable to or less
than the electromagnetic transit time between the measurement point and the load. A transmission
line analysis must be used to infer high-frequency correction for the voltage signal.

F. Rogowski Loop

The final current diagnostic we will study is the Rogowski loop (Fig. 9.58). It is a multi-turn
toroidal inductor that encircles the current to be measured. When the dimension of the loops is
small compared to the major radius, Eq. (4.39) implies that the net flux linking the series of loops
does not depend on the position of the measured current inside the loop. Adopting this
approximation, we assume the magnetic field is constant over the cross-sectional area of the
windings and approximate the windings as a straight solenoid.
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i(t) �
NA (dBi/dt)

R
. (9.122)

Bi(t) � B(t) � µo i(t) (N/2πρ). (9.123)

(µoN
2A/2πρR) (dBi/dt) � Bi � (L/R) (dBi/dt) � Bi � B(t). (9.124)

The quantity B(t) is the magnetic field produced by the measured current andBi(t) is the total
magnetic field inside the loop. The loop hasN windings and a series resistanceR at the output. The
current flowing in the loop circuit is the total loop voltage divided byR or

The field inside the loop is the applied field minus the diamagnetic field associated with the loop
current or

Substituting Eq. (9.122) into (9.123),

The second form is derived by substituting the expression for the inductance of a toroidal winding,
Eq. (9.18). In the limit that the time scale for variations of the measured currentI is short
compared toL/R, the first term on the left-hand side is large compared to the second term. In this
limit very little of the magnetic field generated by the current to be measured penetrates into the
winding. Dropping the second term and substituting Eqs. (9.122) and (4.40), we find that
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i � I/N, (9.125)

i � I
N (µ/µo)

. (9.126)

wherei is the loop output current andI is the measured current.
In summary, the Rogowski loop has the following properties:

1. The output signal is unaffected by the distribution of current encircled by the loop.

2. The Rogowski loop is a self-integrating current monitor for time scales∆t « L/R.

3. The probe can respond to high-frequency variations of current.

The low-frequency response of the Rogowski loop can be extended by increasing the winding
inductance at the expense of reduced signal. The inductance is increased a factor µ/µo by winding
the loop on a ferrite torus. In this case, Eq. (9.125) becomes

G. Electro-optical Diagnostics

The diagnostics we have considered are basic devices that are incorporated on almost all pulsed
voltage systems. There has been considerable recent interest in the use, of electro-optical
techniques to measure rapidly varying electric and magnetic fields. The main reason is the
increasing, use of digital data acquisition systems. Optical connections isolate sensitive computers
from electromagnetic noise, a particular problem for pulsed voltage systems.

A diagnostic for measuring magnetic fields is illustrated in Figure 9.59. Linearly polarized light
from a laser is directed through a single-mode, fiber-optic cable. The linearly polarized light wave
can be resolved into two circularly polarized waves. A magnetic field parallel to the cable affects
the rotational motion of electrons in the cable medium. The consequence is that the index of
refraction for right and left circularly polarized waves is different. There is a phase difference
between the waves at the end of the cable. The phase difference is proportional to the strength of
the magnetic field integrated along the length of the cable, . When the waves are� B�dl
recombined, the direction of the resulting linearly polarized wave is rotated with respect to the
initial wave. This effect is calledFaraday rotation. The technique can be used for current
diagnostics by winding one or more turns of the fiber-optic cable around the measured current
path. Equation (4.39) implies that the rotation angle is proportional to the current. Electric fields
can be sensed through the Kerr effect or the Pockels effect in an optical medium. Interferometric
techniques are used to measure changes in the index of refraction of the medium induced by the
fields.
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The main drawbacks of electro-optical diagnostics techniques is the cost of the equipment and the
complex analyses necessary to unfold the data. In the case of the Faraday rotation measurement,
bifringence in ordinary fiber-optic materials complicates the interpretation of the rotation, and
extensive computations must be performed to determine the measured current. Electro-optical
devices have some unique applications that justify the additional effort, such as the direct
measurement of intense propagating microwave fields.
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10

Linear Induction Accelerators

The maximum beam energy achievable with electrostatic accelerators is in the range of 10 to 30
MeV. In order to produce higher-energy beams, the electric fields associated with changing
magnetic flux must be used. In many high-energy accelerators, the field geometry is such that
inductive fields cancel electrostatic fields over most the accelerator except the beamline. The
beam senses a large net accelerating field, while electrostatic potential differences in the
accelerating structure are kept to manageable levels. This process is calledinductive isolation.
The concept is the basis of linear induction accelerators [N. C. Christofiloset. al., Rev. Sci.
Instrum.35, 886 (1964)]. The main application of linear induction accelerators has been the
generation of pulsed high-current electron beams.
I n this chapter and the next we shall study the two major types of nonresonant, high-energy
accelerators, the linear induction accelerator and the betatron. The principle of energy transfer
from pulse modulator to beam is identical for the two accelerators; they differ mainly in geometry
and methods of particle transport. The linear induction accelerator and betatron have the
following features in common:

1. They use ferromagnetic inductors for broadband isolation.

2. They are driven by high-power pulse modulators.

3. They can, in principle, produce high-power beams.

4. They are both equivalent to a step-up transformer with the beam acting as the
secondary.
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In the linear induction accelerator, the beam is a single turn secondary with multiple parallel
primary inputs from high-voltage modulators. In the betatron, there is usually one pulsed-power
primary input. The beam acts as a multi-turn secondary because it is wrapped in a circle.

The linear induction accelerator is treated first since operation of the induction cavity is
relatively easy to understand. Section 10.1 describes the simplest form of inductive cavity with an
ideal ferromagnetic isolator. Section 10.2 deals with the problems involved in designing isolation
cores for short voltage pulses. The limitations of available ferromagnetic materials must be
understood in order to build efficient accelerators with good voltage waveform. Section 10.3
describes more complex cavity geometries. The main purpose is to achieve voltage step-up in a
single cavity. Deviations from ideal behavior in induction cavities are described in Sections 10.4
and 10.5. Subjects include flux forcing to minimize unequal saturation in cores, core reset for
maximum flux swing, and compensation circuits to achieve uniform accelerating voltage. Section
10.6 derives the electric field in a complex induction cavity. The goal is to arrive at a physical
understanding of the distribution of electrostatic and inductive fields to determine insulation
requirements. Limitations on the average longitudinal gradient of an inductionaccelerator are also
reviewed. The chapter concludes with a discussion of induction accelerations without
ferromagnetic cores. Although these accelerators are oflimited practical use, they make an
interesting study in the application of transmission line principles.

10.1 SIMPLE INDUCTION CAVITY

We can understand the principle of an induction cavity by proceeding stepwise from the
electrostatic accelerator. A schematic of a pulsed electrostatic acceleration gap is shown in Figure
10.1a. A modulator supplies a voltage pulse of magnitudeV0. The pulse is conveyed to the
acceleration gap through one or more high-voltage transmission lines. If the beam particles have
positive charge (+q), the transmission lines carry voltage to elevate the particle source to positive
potential. The particles are extracted at ground potential with kinetic energyqV0. The energy
transfer efficiency is optimized when the characteristic impedance of the generator and the parallel
impedance of the transmission lines equalsV0/I. The quantityI is the constant-beam current. Note
the current path in Figure 10.1a. Current flows from the modulator, along the transmission line
center-conductors, through the beam load on axis, and returns through the transmission line
ground conductor.

A major problem in electrostatic accelerators is controlling and supplying power to the particle
source. The source and its associated power supplies are at high potential with respect to the
laboratory. It is more convenient to keep both the source and the extracted beam at ground
potential. To accomplish this, consider adding a conducting cylinder between the high-voltage and
ground plates to define a toroidal cavity (Fig. 10.1h). The source and extraction point are at the
same potential, but the system is difficult to operate because the transmission line output is almost
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short-circuited. Most of the current flows around the outer ground shield; this contribution is
leakage current. There is a small voltage across the acceleration gap because the toroidal cavity
has an inductanceL1. The leakage inductance is given by Eq. (9.15) if we takeRi as the radius of
the power feeds andRo as the radius of the cylinder. Thus, a small fraction of the total current
flows in the load. The goal is clearly to reduce the leakage current compared to the load current;
the solution is to increaseL1.

In the final configuration (Fig. 10.1c), the toroidal volume occupied by magnetic field from
leakage current is filled with ferromagnetic material. If we approximate the ferromagnetic torus as
an ideal inductor, the leakage inductance is increased by a factor µ/µo. This factor may exceed
1000. The leakage current is greatly reduced, so that most of the circuit current flows in the load.
At constant voltage, the cavity appears almost as a resistive load to the pulse modulator. The
voltage waveform is approximately a square pulse of magnitudeV0 with some voltage droop
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caused by the linearly growing leakage current. The equivalent circuit model of the induction
cavity is shown in Figure 10.2a; it is identical to the equivalent circuit of a 1:1 transformer (Fig.
9.7).

The geometry of Figure 10.1c is the simplest possible inductive linear accelerator cavity. A
complete understanding of the geometry will clarify the operation of more complex cavities.

1. The load current does not encircle the ferromagnetic core. This means that the integral� H�dl
from load current is zero through the core. In other words, there is little interaction between the
load current and the core. The properties of the core set no limitation on the amount of beam
current that can be accelerated.

2. To an external observer, both the particle source and the extraction point appear to be at
ground potential during the voltage pulse. Nonetheless, particles emerge from the cavity with
kinetic energy gainqV0.

3.The sole purpose of the ferromagnetic core is to reduce leakage current.

4.There is an electrostaticlike voltage across the acceleration gap. Electric fields in the gap are
identical to those we have derived for the electrostatic accelerator of Figure 10.1a. The inductive
core introduces no novel accelerating field components.
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V0 tp � ∆B Ac. (10.1)

5. Changing magnetic flux generates inductive electric fields in the core. The inductive field at the
outer radius of the core is equal and opposite to the electrostatic field; therefore, there is no net
electric field between the plates at the outer radius, consistent with the fact that they are
connected by a conducting cylinder. The ferromagnetic core provides inductive isolation for the
cavity.

When voltage is applied to the cavity, the leakage current is small until the ferromagnetic core
becomes saturated. After saturation, the differential magnetic permeability approaches µo and the
cavity becomes a low-inductance load. The product of voltage and time is limited. We have seen a
similar constraint in the transformer [Eq. (9.29)]. If the voltage pulse has constant magnitudeV0

and durationtp, then

whereAc is the cross-sectional area of the core. The quantity∆B is the change of magnetic field in
the core; it must be less than 2Bs. Typical operating parameters for an induction cavity with a
ferrite core areV0 = 250 kV andtp = 50 ns. Ferrites typically have a saturation field of 0.2-0.3 T.
Therefore, the core must have a cross-sectional area greater than 0.025 m2.

The most common configuration for an inductive linear accelerator is shown in Figure 10.3. The
beam passes through a series of individual cavities. There is no electrostatic voltage difference in
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the system higher thanV0. Any final beam energy consistent with cost and successful beam
transport can be attained by adding more cavities. The equivalent circuit of an induction
accelerator is shown in Figure 10.2b. Characteristics of the ATA machine, the highest energy
induction accelerator constructed to data, are summarized in Table 10.1. A single-acceleration
cavity and a 10-cavity block of the ATA accelerator areillustrated in Figures 10.4a and 10.4b,
respectively.

10.2 TIME-DEPENDENT RESPONSE OF FERROMAGNETIC
MATERIALS

We have seen in Section 5.3 that ferromagnetic materials have atomic currents that align
themselves with applied fields. The magnetic field is amplified inside the material. The alignment
of atomic currents is equivalent to a macroscopic current that flows on the surface of the material.
When changes in applied field are slow, atomic currents are the dominant currents in the material.
In this case, the magnetic response of the material follows the static hysteresis curve (Fig. 5.12).

Voltage pulselengths in linear induction accelerators are short. We must include effects arising
from the fact that most ferromagnetic materials are conductors. Inductive electric fields can
generate real currents; real currents differ from atomic currents in that electrons move through the
material. Real current driven by changes of magnetic flux is callededdy current. The contribution
of eddy currents must be taken into account to determine the total magnetic fields in materials. In
ferromagetic materials, eddy current may prevent penetration of applied magnetic field so that
magnetic moments in inner regions are not aligned. In this case, the response of the material
deviates from the static hysteresis curve. Another problem is that resistive losses are associated
with eddy currents. Depending on the the type of material and geometry of construction, magnetic
cores have a maximum usable frequency. At higher frequencies, resistive losses increase and the
effective core inductance drops.

Eddy currents in inductive isolators and transformer cores are minimized by laminated core
construction. Thin sheets of steel are separated by insulators. Most common ac cores are designed
to operate at 60 Hz. In contrast, the maximum-frequency components in inductive accelerator
pulses range from 1 to 100 MHz. Therefore, core design is critical for fast pulses. The frequency
response is extended either by using very thin laminations or using alternatives to steel, such as
ferrites.
The skin depth is a measure of the distance magnetic fields penetrate into materials as a function
of frequency. We can estimate the skin depth in ferromagnetic materials in the geometry of
Figure 10.5. A lamination of high µ material with infinite axial extent is surrounded by a pulse
coil excited by a step-function current waveform. The coil carries an applied current per lengthJo

(A/m) for t > 0. The applied magnetic field outside the high µ material is
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B1 � µo Jo. (10.2)

Jr � �Jo. (10.3)

A real return currentJr flows in the conducting sample in the opposite direction from the applied
current. We assume this current flows in an active layer on the surface of the material of thickness
δ. The magnetic field decreases across this layer and approaches zero inside the material. The
total magnetic field as a function of depth in the material follows the variation of Figure 10.5. The
return current is distributed through the active layer, while the atomic currents are concentrated at
the layer surfaces. The atomic currentJa is the result of aligned dipoles in the region of applied
magnetic field penetration; it amplifies the field in the active layer by a factor of µ/µo. The field
just inside the material surface is (µ/µo)B1. The magnetic field inward from the active layer is zero
because the return current cancels the field produced by the applied currents. This implies that

We can estimate the skin depth by making a global balance between resistive effects (which
impede the return current) and inductive effects (which drive the return current). The active, layer
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Vr � JrρC/δ. (10.4)

Vi � µCJr (dδ/dt).

CµJr (dδ/dt) � JrρC/δ. (10.5)

δ � 2ρt/µ. (10.6)

δ � 2ρ/µω (10.7)

is assumed to penetrate a small distance into the lamination. The lamination has circumferenceC.
If the material is an imperfect conductor with volume resistivityρ (Ω-m), the resistive voltage
around the circumference from the flow of real current is

The return current is driven by an electromotive force (emf) equal and opposite toVr. The emf is
equal to the rate of change of flux enclosed within a loop at the location under consideration.
Because the peak magnetic field (µ/µo)B1 is limited, the change of enclosed flux must come about
from the motion of the active layer into the material. If the layer moves inward a distanceδ, then
the change of flux inside a circumferential loop is . Taking the time derivative∆Φ � (µ/µo)B1Cδ
and using Eq. (4.42), we find the inductive voltage

SettingVi equal toVr gives

The circumference cancels out. The solution of Equation (10.5) gives the skin depth

The magnetic field moves into the material a distance proportional to the square root of time if the
applied field is a step function. A more familiar expression for the skin depth holds when the
applied field is harmonic, :B1 � cos(ωt)

In this case, the depth of the layer is constant; the driving emf is generated by the time variation of
magnetic field.

The two materials commonly used in pulse cores are ferrites and steel. The materials differ
mainly in their volume resistivity. Ferrites are ceramic compounds of iron-bearing materials with
volume resistivity on the order of 104 Ω-m. Silicon steel is the most common transformer
material. It is magnetically soft; the area of its hysteresis loop is small, minimizing hysteresis
losses. Silicon steel has a relatively high resistivity compared to other steels, 45 × 10-8 Ω-m.
Nickel steel has a higher resistivity, but it is expensive. Recently, noncrystalline iron compounds
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have been developed. They are known by the tradename Metglas [Allied Corporation]. Metglas is
produced in thin ribbons by injecting molten iron compounds onto a cooled, rapidly rotating
drum. The rapid cooling prevents the formation of crystal structures. Metglas alloy 2605SC has a
volume resistivity of 125 × 10-8 Ω-m. Typical small-signal skin depths for silicon steel and ferrites
as a function of applied field duration are plotted in Figure 10.6. There is a large difference
between the materials; this difference is reflected in the construction of cores and the analysis of
time-dependent effects.

An understanding of the time-dependent response of ferromagnetic materials is necessary to
determine leakage currents in induction linear accelerators. The leakage current affects the
efficiency of the accelerator and determines the compensation circuits necessary for waveform
shaping. We begin with ferrites. In a typical ferrite isolated accelerator, the pulselength is 30-80 ns
and the core dimension is < 0.5 m. Reference to Figure 10.6 shows that the skin depth is larger
than the core; therefore, to first approximation, we can neglect eddy currents and consider only
the time variation of atomic currents. A typical geometry for a ferrite core accelerator cavity is
shown in Figure 10.7. The toroidal ferrite cores are contained between two cylinders of radiiRi

andRo. The leakage current circuit approximates a coaxial transmission line filled with high µ
material. The transmission line has lengthd; it is shorted at the end opposite the pulsed power
input. We shall analyze the transmission line behavior of the leakage current circuit with the
assumption that . Radial variations of toroidal magnetic field in the cores are(Ro�Ri)/Ro « 1
neglected.

The transmission line of lengthd has impedanceZc given by Eq. (9.86) and a relatively long
transit time . Consider, first, application of a low-voltage step-function pulse. Aδt � d εµ
voltage wave from a low-impedance generator of magnitudeV0 travels through the core at
velocity carrying currentV0/Zc. The wave is reflected at time∆t with inversec/ (ε/εo)(µ/µo)
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i � Vs/Zc � is � 2πRiHs. (10.8)

polarity from the short-circuit termination. The inverted wave arrives back at the input at time

2∆t. In order to match the input voltage, two voltage waves, each carrying currentV0/Zc are
launched on the line. The net leakage current during the interval is 3V0/Zc.2∆t � t � 4∆t
Subsequent wave reflections result in the leakage current variation illustrated in Figure 10.8a. The
dashed line in the figure shows the current corresponding to an ideal lumped inductor withL =
Zc∆t. The core approximates a lumped inductor in the limit of low voltage and long pulselength.
The leakage current diverges when it reaches the value . The quantityHs is theis � 2πRiHs
saturation magnetizing force.

Next, suppose that the voltage is raised toVs so that the current during the initial wave transit is

The wave travels through the core at the same velocity as before. The main difference is that the
magnetic material behind the wavefront is saturated. When the wave reaches the termination at
time∆t, the entire core is saturated. Subsequently, the leakage circuit acts as a vacuum
transmission line. The quantitiesZc and∆t decrease by a factor of µ/µo, and the current increases
rapidly as inverted waves reflect from the short circuit. The leakage current for this case is plotted
in Figure 10.8b. The volt-second product before saturation again satisfies Eq. (10.1).

At higher applied voltage, electromagnetic disturbances propagate into the core as a saturation
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T/∆t � Vs/V0. (10.9)

wave. The wave velocity is controlled by the saturation of magnetic material in the region of
rising current; the saturation wave moves more rapidly than the speed of electromagnetic pulses in
the high µ medium. WhenV0 > Vs conservation of the volt-second product implies that the timeT
for the saturation wave to propagate through the core is related to the small-signal propagation
time by
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i � i s (V0/Vs). (10.10)

The transmission line is charged to voltageV0 at timeT; therefore, a chargeCV0 flowed into the
leakage circuit whereC is the total capacitance of the circuit. The magnitude of the leakage
current accompanying the saturation wave is thus , ori � CV0/T

The leakage, current exceeds the value given in Eq. (10.8). Leakage current variation in the
high-voltage limit is illustrated in Figure 10.8c.

In contrast to ferrites, the skin depth in steel or Metglas is much smaller than the dimension of
the core. The core must therefore be divided into small sections so that the magnetic field
penetrates the material. This is accomplished by laminated construction. Thin metal ribbon is
wound on a cylindrical mandrel with an intermediate layer of insulation. The result is a toroidal
core (Fig. 10.9). In subsequent analysees, we assume that the core is composed of nested
cylinders and that there is no radial conduction of real current. In actuality, some current flows
from the inside to the outside along the single ribbon. This current is very small because the path
has a huge inductance. A laminated pulse core may contain thousands of turns.

Laminated steel cores are effective for pulses in the microsecond range. In the limit that
, the applied magnetic field is the same at each lamination. The loop voltage(Ro�Ri)/Ro « 1

around a lamination is thusV0/N, whereN is the number of layers. In an actual toroidal core, the
applied field is proportional to l/r so that lamination voltage is distributed unevenly; we will
consider the consequences of flux variation in Section 10.4.

If the thickness of the lamination is less than the skin depth associated with the pulselength, then
magnetic flux is distributed uniformly through a lamination. Even in this limit, it is difficult to
calculate the inductance exactly because the magnetic permeability varies as the core field changes
from -Br to Bs. For a first-order estimate of the leakage current, we assume an average
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L � µ d ln(Ro/Ri) / 2π. (10.11)

i l � (V0/L) t � [2πV0/µ d ln(Ro/Ri)] t. (10.12)

permeability . The inductance of the core isµ � Bs/Hs

The time-dependent leakage current is

The behavior of laminated cores is complex for high applied voltage and short pulselength. When
the skin depth is less than half the lamination thickness, magnetic field penetrates in a saturation
wave (Fig. 10.10a). There is an active layer with large flux change from atomic current alignment.
There is a region behind the active layer of saturated magnetic material; the skin depth for field
penetration is large in this region because . Changes in the applied field are communicatedµ � µo
rapidly through the saturated region. The active layer moves inward, and the saturation wave
converges at the center at a time equal to the volt-second product of the lamination divided by
V0/N.

Although the volt-second product is conserved in the saturation wave regime, the inductance of
the core is reduced below the value given by Eq. (10.11). This comes about because only a
fraction of the lamination cross-sectional area contributes to flux change at a particular time. The
core inductance is reduced by a factor on the order of the width of the active area divided by
the half-width of the lamination. Accelerator efficiency is reduced because of increased leakage
current and eddy current core heating. Leakage current in the saturation wave regime is illustrated
in Figure 10.10b.
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Core material and lamination thickness should be chosen so that skin depth is greater than half
the thickness of the lamination. If this is impossible, the severity of leakage current effects can
best be estimated by experimental modeling. Saturation wave analyses seldom give an accurate
figure for leakage current. Measurements for a single lamination are simple; a loop around the
lamination is driven with a pulse of voltageV0/N and pulselength equal to that of the accelerator.
The most reliable method to include the effects of radial field variations is to perform
measurements on a full-radius core segment.

Properties of common magnetic materials are listed in Table 10.2. Ferrite cores have the
capability for fast response; they are the only materials suitable for the 10-50 ns regime. The main
disadvantages of ferrites are that they are expensive and that they have a relatively small available
flux swing. This implies large core volumes for a given volt-second product.

Silicon steel is inexpensive and has a large magnetic field change,�3 T. On the other hand, it is
a brittle material and cannot be wound in thicknesses < 2 mil (5 × 10-3 cm). Reference to Figure
10.6 shows that silicon steel cores are useful only for pulselengths greater than 1 µs. There has
been considerable recent interest in Metglas for induction accelerator cores. Metglas has a larger
volume resistivity than silicon steel. Because of the method of its production, it is available in
uniform thin ribbons. It has a field change about equal to silicon steel, and it is expected to be
fairly inexpensive. Most important, because it is noncrystalline, it is not brittle and can be wound
into cores in ribbons as thin as 0.7 mil (1.8 × 10-3 cm). It is possible to construct Metglas cores for
short voltage pulses. If there is high load current and leakage current is not a primary concern,
Metglas cores can be used for pulses in the 50-ns range.

The distribution of electric field in isolation cores must be known to determine insulation
requirements. Electric fields have a simple form in laminated steel cores. Consider the core in the
cavity geometry of Figure 10.11 with radial variations of applied field neglected. We know that
there is a voltageV0 between the inner and outer cylinders at the input end (markedα) and there is
zero voltage difference on the right-hand side (markedβ) because of the connecting radial
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conductor. Furthermore, the laminated core has zero conductivity in the radial direction but has
high conductivity in the axial direction. Image charge is distributed on the laminations to assure
thatEz equals zero along the surfaces. Therefore, the electric field is almost purely radial in the
core. This implies that:

1. Except for small fringing fields, the electric field is radial along the input edge (α). The voltage
drop across each insulating layer on the edge isV0/N.

2. Moving into the core, inductive electric fields cancel the electrostatic fields. The net voltage
drop across the insulating layers decreases linearly to zero moving fromα to β.

Figure 10.11 shows voltage levels in the core relative to the outer conductor. Note that this is not
an electrostatic plot; therefore, the equal voltage lines in the core are not normal to the electric
fields.

10.3 VOLTAGE MULTIPLICATION GEOMETRIES

Inductive linear accelerator cavities can be configured as step-up transformers. High-current,
moderate-voltage modulators can be used to drive a lower-current beam load at high voltage.
Step-up cavities are commonly used for high-voltage electron beam injectors. Problems of beam
transport and stability in subsequentacceleration sections are reduced if the injector voltage is
high. Multi-MV electrostatic pulse generators are bulky and difficult to operate, but 0.25-MV
modulators are easy to design. The inductive cavity of Figure 10.12a uses 10 parallel 0.25-MV
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pulses to generate a 2.5-W pulse across an injection gap. Figure 10.12 illustrateslongitudinal
core stacking.

A schematic view of a 4:1 step-up circuit with longitudinal stacking is shown in Figure 10.12b.
Note that if electrodes are inserted at the positions of the dotted lines, the single gap of Figure
10.12b is identical to a four-gap linear induction accelerator. The electrodes carry no current, so
that the circuit is unchanged by their presence. We assume that the four input transmission lines
of characteristic impedanceZ0 carry pulses with voltageV0 and current . A singleI0 � V0/Z0
modulator to drive the four lines must have an impedance 4Z0. The high core inductance
constrains the net current through the axis of each core to be approximately zero. Therefore, the
beam current for a matched circuit isI0. The voltage across the acceleration gap is 4V0. The
matched load impedance is therefore 4Z0. This is a factor of 16 higher than the primary
impedance, as we expect for a 4:1 step-up transformer.

It is also possible to construct voltage step-up cavities with radial core stacking, as shown in
Figure 10.13. It is more difficult to understand the power flow in this geometry. For clarity, we
will proceed one step at a time, evolving from the basic configuration of Figure 10.1c to a
dual-core cavity. We assume the beam load is driven by matched transmission lines. There are two
main constraints if the leakage circuits have infinite impedance: (1) all the current in the system
must be accounted for and (2) there is no net axial current through the centers of either of the
cores.
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Figure 10.13a shows a cavity with one core and one input transmission line. The difference from
Figure 10.lc is that the line enters radially; this feature does not affect the behavior of the cavity.
Note the current path; the two constraints are satisfied. In Figure 10.13b, the power lead is
wrapped around the core and connected back to the input side of the inductive cavity. The
current cannot flow outward along the wall of the cavity and return immediately along the
transmission line outer conductor; this path has high inductance. Rather, the current follows the
convoluted path shown, flowing through the on-axis load before returning along the ground lead
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of the transmission line. Although the circuit of Figure 10.13b has a more complex current path
and higher parasitic inductance than that of Figure 10.12a, the net behavior is the same.

The third step is to add an additional core and an additional transmission line with power feed
wrapped around the core. The voltage on the gap is 2V0 and the load current is equal to that from
one line. Current flow from the two lines is indicated. The current paths are rather complex;
current from the first transmission line flows around the inner core, along the cavity wall, and
returns through the ground conductor of the second tine. The current from the second line flows
around the cavity, through the load, back along the cavity wall, and returns through the ground
lead of the first line. The cavity of Figure 10.13c conserves current and energy. Furthermore,
inspection of the current paths shows that the net current through the centers of both cores is
zero. An alternative configuration that has been used in accelerators with radially stacked cores is
shown in Figure 10.13d. Both cores are driven by a single-input transmission line of impedance
V0/2I0.

10.4 CORE SATURATION AND FLUX FORCING

In our discussions of laminated inductive isolation cores, we assumed that the applied magnetic
field is the same at all laminae. This is not true in toroidal cores where the magnetic field
decreases with radius. Three problems arise from this effect:

1. Electric fields are distributed unevenly among the insulation layers. They are highest at the
center of the core.

2. The inner layers reach saturation before the end of the voltage pulse. There is a global
saturation wave in the core; the region of saturation grows outward. The result is that the
magnetically active area of the core decreases following saturation of the inner lamination. The
inductance of the isolation circuit drops at the end of the pulse.

3. During the saturation wave, the circuit voltage is supported by the remaining unsaturated
laminations. The field stress is highly nonuniform so that insulation breakdowns may occur.

The first problem can be addressed by using thicker insulation near the core center. The second
and third problems are more troublesome, especially in accelerators with radially stacked cores.
The effects of unequal saturation on the leakage current and cavity voltage are illustrated in
Figure 10.14. The leakage current grows non-linearly during the latter portion of the pulse making
compensation (Section 10.5) difficult. The tail end of the voltage pulse droops. Although the
quantity is conserved, the waveform of Figure 10.14 may be useless for acceleration if a�Vdt
small beam energy spread is required.
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The problem of unequal saturation could be solved by using a large core to avoid saturation of
the inner laminations. This approach is undesirable because core utilization is inefficient. The core
volume and cost increase and the average accelerating gradient drops (see Section 10.7). Ideally,
the core and cavity should be designed so that the entire volume of the core reaches saturation
simultaneously at the end of the voltage pulse. This condition can be approached throughflux
forcing.

Flux forcing was originally developed to equalize saturation in large betatron cores. We will
illustrate the process in a two-core radially stacked inductionaccelerator cavity. In Figure 10.15a,
two open conducting loops encircle the cores. There is an applied voltage pulse of magnitudeV0.
The voltage between the terminals of the outer loop is smaller than that of the inner loop because
the enclosed magnetic flux change is less. The sum of the voltages equalsV0 with polarities as
shown in the figure. In Figure 10.14b, the ends of the loops are connected together to form a
single figure-8 winding. If the net enclosed magnetic flux in the outer loop were smaller than that
of the inner loop, a high current would flow in the winding. Therefore, we conclude that a
moderate current is induced in the winding that equalizes the magnetic flux enclosed by the two
loops.

The figure-8 winding is called aflux-forcing strap. The distribution of current is illustrated in
Figure 10.15c. The inner loop of the flux-forcing strap reduces the magnetic flux in the inner core,
while the outer loop current adds flux at the outer core. If both cores in Figure 10.15 have the
same cross-sectional area, they reach saturation at the same time because dΦ/dt is the same
inside both loops. Of course, local saturation can still occur in a single core. Nonetheless, the
severity of saturation is reduced for two reasons:
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1. The ratio of the inner to outer radius is closer to unity for a single core section than for the
entire stack.

2. Even if there is early saturation at the inside of the inner core, the drop in leakage circuit
inductance is averaged over the stack.

Figure 10.16 illustrates an induction cavity with four core sections. The cavity was designed to
achieve a high average longitudinal gradient in a long pulse linear induction accelerator. A
large-diameter core stack was used for high cross-sectional area. There are two interesting
aspects of the cavity:

1. The cores are driven in parallel from a single-pulse modulator. There is a voltage step-up by a
factor of 4.
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Is > 2πRoHs. (10.13)

� Vr exp(�t/RdCr) dt > (Bs�Br) Ac. (10.14)

Vr/Rd > Is. (10.15)

2. The parallel drive configuration assures that the loop voltage around each core is the same;
therefore, the current distribution in the driving loops provides automatic flux forcing.

10.5 CORE RESET AND COMPENSATION CIRCUITS

Following a voltage pulse, the ferromagnetic core of an inductive accelerator has magnetic flux
equal to +Br. The core must be reset to -Br before the next pulse; otherwise, the cavity will be
short-circuited soon after the voltage is applied.

Reverse biasing of the core is accomplished with a reset circuit. The reset circuit must have the
following characteristics:

1. The circuit can generate an inverse voltage-time product greater than .(Bs�Br) Ac

2. It can supply a unidirectional reverse current through the core axis of magnitude

The quantityHs is the magnetizing force of the core material andRo is the outercore radius.
Higher currents are required for fast-pulsed reset.

3. The reset circuit has high voltage isolation so that it does not absorb power during the primary
pulse.

A long pulse induction cavity with reset circuit is shown in Figure 10.17. Note that adamping
resistorin parallel with the beam load is included in the cavity. Damping resistors are
incorporated in most induction accelerators. Their purpose is to prevent overvoltage if there is an
error in beam arrival time. Some of the available modulator energy is lost in the damping resistor.
Induction cavities have typical energy utilization efficiencies of 20-50%.

Reset is performed by an RC circuit connected to the cavity through a mechanical high-voltage
relay. The relay acts as an isolator and a switch. The reset capacitorCr is charged to voltage -Vr;
the reset resistanceRr is small compared to the damping resistorRd. There is an inductanceLr

associated with the flow of reset current. NeglectingLr and the current through the leakage
circuit, the first condition above is satisfied if

If the inequality of Eq. (10.14) is well satisfied, the second condition is fulfilled if
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Rs �>2 Lr/Cr, (10.16)

Equation (10.15) implies that the reset resistance should be as low as possible. There is a
minimum value ofRr that comes about when the effect of the inductanceLr is included. Without
the resistance, the circuit is underdamped; the reset voltage oscillates. The behavior of theLC
circuit with saturable core inductor is complex; depending on the magnetic flux in the core
following the voltage pulse and the charge voltage on the reset circuit, the core may remain with
flux anywhere between +Br and -Br after the reset. Thus, it is important to ensure that reset
current flows only in the proper direction. The optimum choice ofRr leads to a critically damped
reset circuit:

when Eq. (10.16) is satisfied, the circuit generates a unidirectional pulse with maximum output
current.

The following example illustrates typical parameters for an induction cavity and reset circuit. An
induction linear accelerator cavity supports a 100-kV, 1-µs pulse. The beam current is 2 kA. The
laniinated core is constructed of 2-mil silicon steel ribbon. The skin depth for the pulselength in
silicon steel is about 0.33 mil. The core is therefore in the saturation wave regime. The available
flux change in the laminations is 2.6 T. The radially sectioned core has a length of 8 in. (0.205 m).
We assume about 30% of the volume of the isolation cavity is occupied by insulation and power
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Ac � (105 V)(10�6 s)/(0.7)(2.6 T) � 0.055 m2.

Cr > (0.1 V�s)/(30 Ω)(1000 V) � 3.3 µF.

straps. Taking into account the required volt-second product, the area of the core assembly is

If the inner radius of the core assembly is 6 in. (0.154 m), then the outer radius must be 16.4 in.
(0.42 m). These parameters illustrate two features of long-pulse inductionaccelerators: (1) there
is a large difference betweenRo andRi so that flux forcing must be used for a good impedance
match, and (2) the cores are large. The mass of the core assembly in this example (excluding
insulation) is 544 kG. The beam impedance is 50Ω. Assume that the damping resistor is 25Ω and
the charge voltage on the reset circuit is 1000 V. Equation (10.14) implies that

We choose C, = 10 µF; the core is reverse saturated 120 µs after closing the isolation relay. The
capacitor voltage at this time is 670 V. Referring to the hysteresis curve of Figure 5.13, the
required reset current is 670 A. This implies thatRd < 1Ω. Assuming that the parasitic inductance
of the reset circuit is about 1 µH, the resistance for a critically damped circuit is 0.632Ω;
therefore, the reset circuit is overdamped, as required.

A convenient method of core reset is possible for short-pulse induction cavities driven by
pulse-charged Blumlein line modulators. In the system of Figure 10.18a, a Marx generator is used
to charge an oil- or water-filled Blumlein line. The Blumlein line provides a flat-top voltage pulse
to a ferrite or Metglas core cavity. A gas-filled spark gap shorts the intermediate conductor to the
outer conductor to initiate the pulse. In this configuration, the intermediate conductor is charged
negative for a positive output pulse. The crux of the auto-reset process is to use the negative
current flowing from the center conductor of the Blumlein line during the pulse-charge cycle to
reset the core. Reset occurs just before the main voltage pulse. Auto-reset eliminates the need for
a separate reset circuit and high-voltage isolator. A further advantage is that the core can be
driven to -Bs just before the pulse.

Figure 10.18b shows the main circuit components. The impulse generator has capacitanceCg

and inductanceLg. It has an open circuit voltage of -V0. If the charge cycle is long compared to an
electromagnetic transit time, the inner and outer parts of the Blumlein line can be treated as
lumped capacitors of valueC1. The outer conductor is grounded; the inner conductor is connected
to ground through the induction cavity. We assume there is a damping resistorRd that shunts
some of the reset current. We will estimateVc(t) (the negative voltage on the core during the
charge cycle) and determine if the quantity exceeds the volt-second product of the core.� Vcdt

Assume thatVc(t) is small compared to the voltage on the intermediate conductor. In this case,
the voltage on the intermediate conductor is approximated by Eq. (9.102) withC2 = 2C1.
Assuming thatCg = 2C1 the voltage on the intermediate conductor is
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V2 � [V0 (1�cosωt)]/2, (10.17)

Vc � � (V0/2) (Rd / L/C1) sinωt. (10.18)

� VC dt � V0 (C1Rd). (10.19)

where .The charging current to the cavity is . Assuming most ofω � 1/ LgC1 ic � C1 (dV2/dt)
this current flows through the damping resistor, the reset voltage on the core during the Blumlein
line charge is

If the Blumlein is triggered at the time of completed energy transfer, , then thet � π/ω
volt-second integral during the charge phase is
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∆tp � C1Rd. (10.20)

Z1 � Rd. (10.21)

The integral of Eq. (10.19) must exceed the volt-second product of the core for successful
reset. This criterion can be written in a convenient form in terms of∆tp, the length of the main
voltage pulse in the cavity. Assuming a square pulse of magnitudeV0, the volt-second product of
the core should be . Substituting this expression in Eq. (10.19) gives the followingV0∆tp
condition:

Furthermore, we can use Eq. (9.89) to find the pulselength in terms of the line capacitance.
Equation (10.20) reduces to the following simple criterion for auto-reset:

The quantityZ1 is the net output impedance of the Blumlein line, equal to twice the impedance of
the component transmission lines. Clearly, Eq. (10.21) is always satisfied.

In summary, auto-reset always occurs during the charge cycle if (1) the Marx generator is
matched to the Blumlein line, (2) the core volt-second product is matched to the output voltage
pulse, and (3) the Blumlein line impedance is matched to the combination of beam and damping
resistor. Reset occurs earlier in the charge cycle asRd is increased. The condition of Eq. (10.21)
holds only for the simple circuit of Figure 10.18. More complex cases may occur; for instance, in
some accelerators the cavity and Blumlein line are separated by a long transmission line which
acts as a capacitance during the charge cycle. Premature core saturation shorts the reset circuit
and can lead to voltage reversal on the connecting line. The resulting negative voltage applied
to the cavity subtracts from the available volt-second product.

Flat voltage waveforms are usually desirable. In electron accelerators, voltage control assures
an output beam with small energy spread. Voltage waveform shaping is essential for induction
accelerators used for nonrelativistic particles. In this case, a rising voltage pulse is required for
longitudinal beam confinement (see Section 13.5). Power is usually supplied from a pulse
modulator which generates a square pulse in a matched load. There are two primary causes of
waveform distortion: (1) beam loading and (2) transformer droop. We will concentrate on
transformer droop in the remainder of this section.

The equivalent circuit of an induction linear accelerator cavity is shown in Figure 10.19a. The
driving modulator maintains constant voltage if the current to the cavity is constant. Current is
divided between the beam load, the damping resistor, and the leakage inductance. The leakage
current increases with time; therefore, the cavity does not present a matched load at an times
and the voltage droops. The goal is to compensate leakage current by inserting an element with a
rising impedance.

A simple compensation circuit is shown in Figure 10.19b. A series capacitor is added to the
damping resistor so that the impedance of the damping circuit rises with time. We can estimate
the value of capacitance that must be added to keepV0 constant by making the following
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i1 � V0t/L1 (10.22)

id � (V0/Rd) (1 � t/RdCd). (10.23)

RdCc � L1/Rd. (10.24)

L1 � (µ/µo) (µo/2π) d ln(Ro/Ri) � 400 µH.

simplifying assumptions: (1) the leakage path inductance is assumed constant over the
pulselength,∆tp; (2) the voltage on the compensation capacitorCc is small compared toV0; (3) the
leakage current is small compared to the total current supplied by the modulator; and (4) the beam
current is constant. The problem resolves into balancing the increase in leakage current by a
decrease in damping current.

With the above assumptions, the time-dependent leakage current is

for a voltage pulse initiated att = 0. The current through the damping circuit is approximately

Balancing the time-dependent parts gives the following condition for constant circuit current:

As an example, consider the long-pulse cavity that we have already discussed in this section.
Taking the average value of µ/µo as 10,000 and applying Eq. (9.15), the inductance of the leakage
path for ideal ferromagnetic material is

The core actually operates in the saturation regime with a skin depth about one-third the
half-thickness of the lamination; we can make a rough estimate of the leakage current by dividing
the inductance by three,L1 = 133 µH. With a damping resistance ofRd = 30Ω and a cavity
voltage of 100 kV, the modulator supplies a current greater than 5.3 kA. The leakage current is
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maximum at the end of the pulse. Equation (10.22) implies thati1 = 0.25 kA at t =∆tp, so that the
third assumption above is valid. The compensating capacitance is predicted from Eq. (10.24) to be
Cc = 0.15 µF. The maximum voltage on the capacitor is 22 kV: thus, assumption 2 is also
satisfied. Capacitors are generally available in the voltage and capacitance range required, so that
the compensation method of Figure 10.19 is feasible.

10.6 INDUCTION CAVITY DESIGN: FIELD STRESS AND AVERAGE
GRADIENT

At first glance, it is difficult to visualize the distribution of voltage in induction cavities because
electrostatic and inductive electric fields act in concord. In order to clarify field distributions, we
shall consider the specific example of the electron injector illustrated in Figure 10.20. The
configuration is the most complex one that would normally be encountered in practice. It has



Linear Induction Accelerators

314

laminated cores, longitudinal stacking, radial stacking, and flux-forcing straps. We shall develop
an electric field map for times during which all core laminations are unsaturated. In the following
discussion, bracketed numbers are keyed to points in the figure.

1. Three cavities are combined to provide 3:1 longitudinal voltage step-up. The load circuit region
(1) is maintained at high vacuum, for electron transport. The leakage circuit region (2) is filled
with transformer oil for good insulation of the core and high-voltage leads. The vacuum insulator
(6) is shaped for optimum resistance to surface breakdown.

2. Power is supplied through transmission lines entering the cavity radially (3). At least two
diametrically opposed lines should be used in each cavity. Current distribution from a single
power feed has a strong azimuthal asymmetry. If a single line entered from the top, the magnetic
field associated with load current flow would be concentrated at the top, causing a downward
deflection of the electron beam.

3. The cores (4) are constructed by interleaving continuous ribbons of ferromagnetic material and
insulator; laminations are orientated as shown in Figure 10.20. One of the end faces (5) must be
exposed; otherwise, the cavity will be shorted by conduction across the laminations.

4. If V0 is the matched voltage output of the modulator, a single cavity produces a voltage 2V0.
Equipotential lines corresponding to this voltage pass through the vacuum insulator (6). At radii
inside the vacuum insulator, the field is electrostatic. The inner vacuum region has coaxial
geometry. To an observer on the center conductor (7), the potential of the outer conductor
appears to increase by 2V0 crossing each vacuum insulator from left to right.

5. Equipotential lines are sketched in Figure 10.20. In the vacuum region, an equal number of
lines is added at each insulator. The center conductor is tapered to minimize the secondary
inductance and to preserve a constant field stress on the metal surfaces.

6. In the core region, the electric field is the sum of electrostatic and inductive contributions. We
know that the two types of fields cancel along the shorted wall (8). We have already discussed the
distribution of equipotential lines inside the core in Section 10.2, so we will concentrate on the
potential distribution on the exposed face (5). The inclusion of flux-forcing straps ensures that the
two cores in each subcavity enclose equal flux. This implies that the point marked (9) between the
cores is at a relative potential Vo.

7. Each lamination in the cores isolates a voltage proportional to the applied magnetic fieldB1(r).
Furthermore, electrostatic fields in the core are radial. Therefore, the electric field along the
exposed face of an individual core has a l/r variation, and potential varies as . TheΦ(r) � ln(r)
electrostatic potential distribution in the oil insulation has been sketched by connecting
equipotential lines to the specified potential on the exposed core surface (5).
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∆E tp � ∆B (Ro�Ri) α ∆z. (10.25)

In summary, although the electric field distribution in compound inductive cavities is complex,
we can estimate it by analyzing the problem in parts. The distribution could be determined exactly
with a computer code to solve the Laplace equation in the presence of dielectrics. There is a
specified boundary condition onφ along the core face. It should be noted that the above
derivation gives, at best, a first-order estimate of field distributions. Effects of core nonlinearities
and unequal saturation complicate the situation considerably.

Average longitudinal gradient is one of the main figures of merit of an accelerator. Much of the
equipment associated with a linear accelerator, such as the accelerator tunnel, vacuum systems,
and focusing system power supplies, have a cost that scales linearly with the accelerator length.
Thus, if the output energy is specified, there is an advantage to achieving a high average gradient.
In the induction accelerator, the average gradient is constrained by the magnetic properties and
geometry of the ferromagnetic core. Referring to Figure 10.21, assume the core has inner and
outer radiiRi andRo, and defineκ as the ratio of the radii, . The cavity has length∆z ofκ � Ro/Ri
which the core fills a fractionα. If particles gain energy∆E in eV in a cavity with pulselengthtp,
the volt-second constraint implies the following difference equation:
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�

Ef

Ei

dE tp(E) � α ∆B Ro (κ�1) L, (10.26)

(Ef � Ei)/L � α ∆B Ro (κ�1) / ∆tp (V/m). (10.27)

tp(E) � tpf Ef / E(z). (10.28)

Ef � EfEi / L � α ∆B Ro (κ�1) / 2tpf. (10.29)

V � π (κ2
�1) α L R2

o . (10.30)

where∆B is the volume-averaged flux change in the core. The pulselength may vary along the
length of the machine; Eq. (10.25) can be written as an integral equation:

whereEf is the final beam energy in electron volts,Ei is the injection energy, andL is the total
length. Accelerators for relativistic electrons, have constant pulselength. Equation (10.26) implies
that

In proposed accelerators for nonrelativistic ion beams [see A,Fattens, E. Hoyer, and D. Keefe,
Proc. 4th Intl. Conf. High Power Electron and Ion Beam Research and Technology, (Ecole
Polytechnique, 1981), 751]. the pulselength is shortened as the beam energy is raised to maintain
a constant beam length and space charge density. One possible variation is to take the pulselength
inversely proportional to the longitudinal velocity:

The quantitytpf is the pulselength of the output beam. Inserting Eq. (10.28) into Eq. (10.26) gives

In the limit thatEi « Ef, the expressions of Eqs. (10.27) and (10.29) are approximately equal to
the average longitudinal gradient. In terms of the quantities defined, the total volume of
ferromagnetic cores in the accelerator is

Equations (10.27), (10.29), and (10.30) have the following implications:

1. High gradients are achieved with a large magnetic field swing in the core material (∆B) and the
tightest possible core packingα.
2. The shortest pulselength gives the highest gradient. Properties of the core material and the
inductance of the pulse modulators determine the minimumtp. High-current ferrite accelerators
have a minimum practical pulselength of about 50 ns. The figure is about 1 µs for silicon steel
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cores and 100 ns for Metglas cores with thin laminations. Because of their high flux swing
and fast pulse response, Metglas cores open new possibilities for high-gradient-induction linear
accelerators.

3. The average gradient is maximized whenκ approaches infinity. On the other hand, the net core
volume is minimized whenL approaches infinity. There is a crossover point of minimum
accelerator cost at certain values ofκ andL, depending on the relative cost of cores versus other
components.

Substitution of some typical parameters in Eq. (10.27) will indicate the maximum gradient that
can be achieved with a linear induction accelerator. Taketp = 100 ns pulse and a Metglas core
with ∆B = 2.5 T,Ri = 0.1 in andRo = 0.5 m. Vacuum ports, power feeds, and insulators must be
accommodated in the cavity in addition to the cores; we will takeα = 0.5. These numbers imply a
gradient of 5 MV/m. This gradient is within a factor of 2-4 of those achieved in rf linear electron
accelerators. Higher gradients are unlikely because induction cavities have vacuum insulators
exposed to the full accelerating electric fields.

10.7 CORELESS INDUCTION ACCELERATORS

The ferromagnetic cores of induction accelerator cavities are massive, and the volt-second
product limitation restricts average longitudinal gradient. There has been considerable effort
devoted to the development of linear induction accelerators without ferromagnetic cores [A. I.
Pavlovskii, A, I. Gerasimov, D. I. Zenkov, V. S. Bosamykin, A. P. Klementev, and V. A.
Tananakin, Sov. At. Eng.28, 549 (1970)]. These devices incorporate transmission lines within the
cavity. They achieve inductive isolation through the flux change accompanying propagation of
voltage pulses through the lines.

In order to understand the coreless induction cavity, we must be familiar with the radial
transmission line (Fig. 10.22). This geometry has much in common with the transmission lines we
have already studied except that voltage pulses propagate radially. Consider the conical section
electrode as the ground conductor ans the radial plate is the center conductor. The structure has
minimum radiusRi. We take the inner radius as the input point of the line. If voltage is applied to
the center conductor, a voltage pulse travels outward at a velocity determined by the medium in
the line. The voltage pulse maintains constant shape. If the line extends radially to infinity, the
pulse never returns. If the line has a finite radius (Ro), the pulse is reflected and travels back to the
center.

It is not difficult to show that the structure of Figure 10.22 has constant characteristic
impedance as a function of radius. (In other words, the ratio of the voltage and current associated
with a radially traveling pulse is constant.) In order to carry out the analysis, we assume thatα,
the angle of the conical electrode, is small. In this case, the electric field lines are primarily in the
axial direction. There is a capacitance per unit of length in the radial direction given by
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c∆r � (2πr∆r)ε / r tanα � (2πε/tanα) ∆r. (10.31)

B
θ
� µI/2πr (10.32)

Umdr � (B 2
θ
/2µ) (2πrdr) (r tanα) � µ I 2 tanα dr/4π. (10.33)

In order to determine the inductance per unit of radial length, we must consider current paths for
the voltage pulse. Inspection of Figure 10.22 shows that current flows axially through the power
feed, outward along the radial plate, and axially back across the gap as displacement current. The
current then returns along the ground conductor to the input point. If the pulse has azimuthal
symmetry, the only component of magnetic field isB

θ
. The toroidal magnetic field is determined

by the combination of axial feed current, axial displacement current, and the axial component of
ground return current. Radial current does not produce toroidal magnetic fields. The combination
of axial current components results in a field of the form

confined inside the transmission line behind the pulse front. The region of magnetic field expands
as the pulse moves outward, so there is an inductance associated with the pulse. The magnetic
field energy per element of radial section length is
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l � µ tanα/2π. (10.34)

v � 1/ lc � 1/ εµ. (10.35)

Zo � l/c � (tanα/2π) µ/ε. (10.36)

Zo � 3.4 tanα (Ω). (10.37)

This energy is equal to ½lI 2dr, so that

To summarize, both the capacitance and inductance per radial length element are constant. The
velocity of wave propagation is

as expected. The characteristic impedance is

For purified water dielectric, Eq. (10.34) becomes
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∆t � 2 (Ro�Ri)/v. (10.38)

The basic coreless induction cavity of Figure 10.23 is composed of two radial transmission lines.
There are open-circuit terminations at both the inner and outer radius; the high-voltage radial
electrode is supported by insulators and direct current charged to high voltage. The region at the
outer radius is shaped to provide a matched transition; a wave traveling outward in one line
propagates without reflection through the transition and travels radially inward down the other
line. There is a low-inductance, azimuthally symmetric shorting switch in one line at the inner
radius. The load is on the axis. We assume, initially that the load is a resistor withR = Z0;
subsequently, we will consider the possibility of a beam load which has time variations
synchronized to pulses in the cavity.

The electrical configuration of the coreless induction cavity is shown schematically in Figure
10.24a. Because the lines are connected at the outer radius, we can redraw the schematic as a
single transmission of length 2(Ro - Ri) that doubles back and connects at the load, as in Figure
10.24b. The quantity∆t is the transit time for electromagnetic pulses through both lines, or

The charging feed, which connects to a Marx generator, approximates an open circuit during the
fast output pulse of the lines. Wave polarities are defined with respect to the ground conductor;
the initial charge on the high-voltage electrode is +V0. As in our previous discussions of
transmission lines, the static charge can be resolved into two pulses of magnitude ½V0 traveling in
opposite directions, as shown. There is no net voltage across the load in the charged state.

Consider the sequence of events that occurs after the switch is activated att = 0.

1. The point markedA is shorted to the radial electrode. During the time , the radial0 < t < ∆t
wave traveling counterclockwise encounters the short circuit and is reflected with reversed
polarity. At the same time, the clockwise pulse travels across the short circuit and backward
through the matched resistance, resulting in a voltage -½V0 across the load. Charged particles gain
an energy ½qV0 traveling from pointA to pointB. The difference in potential betweenA andB
arises from the flux change associated with the traveling pulses.

2. At time t =∆t, the clockwise-going positive wave is completely dissipated in the load resistor.
The head of the reflected negative wave arrives at the load. During the time , this∆t < t < 2∆t
wave produces a positive voltage of magnitude ½V0 from pointB to pointA. The total waveform
at the load is shown in Figure 10.25a.

The bipolar waveform of Figure 10.25a is clearly not very useful for particle acceleration. Only
half of the stored energy can be used. Better coupling is achieved by using the beam load as a
switched resistor. The beam load is connected only when the beam is in the gap. Consider the
following situation. The beam, with a currentV0/2Zo, does not arrive at the acceleration gap until
time∆t. In the interval the gap is an open circuit. The status of the reflecting waves is0 < t < ∆t
illustrated in Figure 10.24c. The counterclockwise wave reflects with inverted polarity; the
clockwise wave reflects from the open circuit gap with the same polarity. The voltage fromB to A
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is the open-circuit voltageV0. At time t =∆t, both the matched beam and the negative wave arrive
at the gap. The negative wave makes a positive accelerating voltage of magnitude ½V0 during the
time . In the succeeding time interval, , the other wave which has∆t < t < 2∆t 2∆t < t < 3∆t
been reflected once from the open-circuit termination and once from the short-circuit termination
arrives at the gap to drive the beam. The waveform for this sequence is illustrated in Figure
10.25b. In theory, 100% of the stored energy can be transferred to a matched beam load at
voltage ½V0 for a time 2∆t.

Although coreless induction cavities avoid the use of ferromagnetic cores, technological
difficulties make it unlikely that they will supplant standard configurations. The following
problems are encountered in applications:

1. The pulselength is limited by the electromagnetic transit time in the structure. Even with a high
dielectric constant material such as water, the radial transmission lines must have an outer
diameter greater than 9 ft for an 80-ns pulse.
2. Energy storage is inefficient for large-diameter lines. The maximum electric field must be
chosen to avoid breakdown at the smallest radius. The stored energy density of electric fields [Eq.
(5.19)] decreases as l/r2 moving out in radius.
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3. Synchronous low-inductance switching at high voltage with good azimuthal symmetry is
difficult.

4. Parasitic inductance in the load circuit tends to be larger than the primary inductance of the
leakage path because the load is a beam with radius that is small compared to the radius of the
shorting switches. The parasitic inductance degrades the gap pulse shape and the efficiency of the
accelerator.

5.The switch sequence for high-efficiency energy transfer means that damping resistors cannot be
used in parallel with the gap to protect the cavity.

6. The vacuum insulators must be designed to withstand an overvoltage by a factor of 2 during
the open-circuit phase of wave reflection.

One of the main reasons for interest in coreless induction accelerators was the hope that they
could achieve higher average accelerating gradients than ferromagnetic cavity accelerators. In
fact, a careful analysis shows that coreless induction accelerators have a significant disadvantage
in terms of average gradient compared to accelerators with ferromagnetic isolation. We will make
the comparison with the following constraints:
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V0/l � ∆B (Ro�Ri) / ∆tp. (10.39)

l � 2 Ro tanα, (10.40)

τp � 4 (Ro�Ri) ε/εo/c, (10.41)

Zo � V0/2I0.

V0/l � (µo/π) (1 � Ri/Ro) Io / ∆tp.

1. The cavities have the same pulselength∆tp and beamcurrentIo.

2. Regions of focusing magnets, pumping ports, and insulators are not included.

3.The energy efficiency of the cavities is high.

We have seen in Section 10.6 that the gradient of an ideal cavity with ferromagnetic isolation of
lengthl with core outer radiusRo and inner radiusRi is

where∆B is the maximum flux swing. Equation (10.39) proceeds directly from the volt-second
limitation on the core. In a radial line cavity, the cavity length is related to the outer radius of the
line, Ro, by

whereα is the angle of the conical transmission lines. The voltage pulse in a high-efficiency cavity
with charge voltageV0 has magnitude ½V0 and duration

whereRi is the inner radius,of the transmission lines. We further require that the beam load is
matched to the cavity:

The characteristic impedance is given by Eq. (10.36). Combining Eq. (10.36) with Eqs. (10.40)
and (10.41) gives the following expression for voltage gradient:

Equation (10.42) has some interesting implications for coreless induction cavities. First, gradient
in an efficient accelerator is proportional to beam current. Second, the gradient for a given
pulselength is relatively insensitive to the outer radius of the line. This reflects the fact that the
energy storage density is low at large radii. Third, the gradient for ideal cavities does not depend
on the filling medium of the transmission lines. Within limits of practical construction, an oil-filled
line has the same figure of merit as a water-filled line.

In order to compare the ferromagnetic core and coreless cavities, assume the following
conditions. The pulselength is 100 ns and the beam current is 50 kA (the highest current that has
presently been transported a significant distance in a multistage accelerator). The ferromagnetic
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core hasRo = 0.5 m,Ri = 0.1 m, and∆B = 2.5 T. The coreless cavity has . EquationRi/Ro « 1
(10.39) implies that the maximum theoretical gradient of the Metglas cavity is 10 MV/m, while
Eq. (10.42) gives an upperlimit for the coreless cavity of only 0.16 MV/m, a factor of 63 lower.
Similar results can be obtained for any coreless configuration. Claims for high gradient in coreless
accelerators usually are the result of implicit assumptions of extremely short pulselengths (10-20
ns) and low system efficiency.
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11
Betatrons

The betatron [D.W. Kerst, Phys. Rev.58, 841 (1940)] is a circular induction accelerator used
for electron acceleration. The word betatron derives from the fact that high-energy electrons are
often called�-particles. Like the linear induction accelerator, the betatron is the circuit
equivalent of a step-up transformer. The main difference from the linear induction accelerator is
that magnetic bending and focusing fields are added to confine electrons to circular orbits around
the isolation core. The beam acts as a multi-turn secondary. A single-pulsed power modulator
operating at a few kilovolts drives the input; the output beam energy may exceed 100 MeV. The
maximum electron kinetic energy achieved by betatrons is about 300 MeV. The energy limit is
determined in part by the practical size of pulsed magnets and in part by synchrotron radiation.

General principles of the betatron are introduced in Section 11.1. The similarities between the
power circuits of the linear induction accelerator, the recirculating induction linear accelerator,
and the betatron are emphasized. An expression is derived for the maximum energy from a
betatron; neglecting radiation, the limit depends only on the properties of the ferromagnetic core.

Two areas of accelerator physics must be studied in detail in order to understand the betatron;
the theory of particle orbits in a gradient-type magnetic field and properties of magnetic circuits.
Regarding orbits, the simple theory of betatron oscillations introduced in Section 7.3 must be
extended. The amplitude of transverse-orbit oscillations and conditions for constant main-orbit
radius must be determined for highly relativistic particles in a slowly changing magnetic field.
Section 11.2 treats main orbit equilibria. The main orbit in the betatron has a constant radius
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during the acceleration cycle. The orbit exists when the well-knownbetatron conditionis
satisfied. The confinement properties of the system for nonideal orbits are subsequently
discussed.
The derivations demonstrate two properties of orbits: (1) particles injected on a circular orbit
inside or outside the main orbit approach the main orbit during acceleration and (2) the
amplitude of transverse oscillations decreases during the acceleration cycle. Section 11.3
addresses the first effect, motion of the instantaneous circle. Section 11.5 discusses damping of
relativistic betatron
oscillations during acceleration. As an introduction, Section 11.4 reviews the properties of
periodic particle motions under the influence of slowly changing forces. The laws governing
reversible compressions, both for nonrelativistic and relativistic particles, are discussed. The
results are applicable to a wide variety of accelerators and particle confinement devices. Section
11.6 covers injection and extraction of electrons from the machine.

Section 11.7 surveys betatron magnet circuits, proceeding from simple low-energy devices to
high-energy accelerators with optimal use of the core. The betatron magnet provides fields for
particle acceleration, beam bending, and particle confinement. The magnet must be carefully
designed in order to fulfill these functions simultaneously. Ferromagnetic materials are an
integral
part of all betatrons except the smallest laboratory devices. Thus, the available flux change is
limited by the saturation properties of iron. Within these limits, the magnet circuit is designed to
achieve the highest beam kinetic energy for a given stored modulator energy.

Even with good magnet design, existing betatrons are inefficient. Conventional betatrons rely
on gradients of the bending field for focusing and utilize low-energy electron injection. The
self-electric field of the beam limits the amount of charge that can be contained during the
low-energy phase of the acceleration cycle. Usually, the beam current is much smaller than the
driving circuit leakage current. Consequently, energy losses from hysteresis and eddy currents in
the core are much larger than the net beam energy. Efficiency is increased by high beam current.
Some strategies for high-current transport are discussed in Section 11.6. The two most promising
options are (1) addition of supplemental focusing that is effective at low energy and (2)
high-energy electron injection using a linear induction accelerator as a preaccelerator. In
principle, betatrons can produce beam powers comparable to linear induction accelerators with a
considerable reduction in isolation core mass.

11.1 PRINCIPLES OF THE BETATRON

Figure 11.1 illustrates the basic betatron geometry. A toroidal vacuum chamber encircles the
core of a large magnet. The magnetic field is produced by pulsed coils; the magnetic flux inside
the radius of the vacuum chamber changes with time. Increasing flux generates an azimuthal
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electric field which accelerates electrons in the chamber.

In the absence of an air gap, there is little magnetic flux outside the core. An air gap is
included to divert some of the magnetic flux into the vacuum chamber. By the proper choice of
gap width, the vertical magnetic field can be adjusted to confine electrons to a circular orbit in
the vacuum chamber. As shown in Figure 11.1, the confining field lines are curved. The
resultant field has a positive field index. As we found in Section 7.3, the field can focus in both
the horizontal and vertical directions.

In summary, the simple betatron of Figure 11.1 has the following elements:

1. A pulsed magnet circuit to accelerate electrons by inductive fields.

2. An air gap to force magnetic field into the beam transport region; electrons follow circular
orbits in the bending field.

3. Shaped magnetic fields for beam focusing.

At first glance, the betatron appears quite different from the linear induction accelerator.
Nonetheless, we can show that the power circuits of the two devices are similar. To begin,
consider the induction accelerator illustrated in Figure 11.2a. The geometry is often called a
recirculating induction linac. The transport tube is bent so that the beam passes through the
same cavity a number of times. This allows higher beam kinetic energy for a given volt-second
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Eb � VotpNc/2�R (eV). (11.1)

Eb � 2BsNAcc/2�R. (11.2)

Eb � 2BsRc/2. (11.3)

product of the isolation cores. The transport. tubes are made of metal; each cavity has separate
vacuum insulators and high-voltage feeds. There are supplemental magnetic or electric forces to
bend the orbits and keep particles confined in the tube.

To begin, we calculate the maximum electron kinetic energy possible in a recirculating
induction linac with the following assumptions:

1. The beam tube has circumference 2�R.
2. There areN cavities around the circumference; each cavity has an isolation core with
cross-sectional areaAc.
3.The accelerating waveform in a cavity is a square pulse with voltageV0 and the pulselengthtp.
4.Over most of the acceleration cycle, electrons travel near the velocity of light.

During the acceleration cycle, the electrons make revolutions and travel throughctp/2�R
cavities. The final kinetic energy is thereforeNctp/2�R

Equation (11.1) can be rewritten by expressing the volt-second product in terms of the core
properties [Eq. (10.1)]:

For a given circumference, the highest energy is attained with the tightest packing of isolation
cores around the beam tube. The packing limit is reached when the cores fill the area inside the
beam, . Making this substitution, we find thatNAc � �R2

An optimized recirculating induction accelerator with pie-shaped cores is shown in Figure 11.2b.
In the figure, much of the structure has been removed and the vacuum insulators have been
extended to produce a single nonconducting toroidal vacuum chamber. The final step is to
recognize that the radial currents of the individual power feeds cancel out; we can replace the
multiple voltage feeds with a single line that encircles the core. Power is supplied from a
single-pulse modulator. The resulting geometry, the power circuit of the betatron, is shown in
Figure 11.2c.

In summary, the main differences between the betatron and the linear induction accelerator are
as follows:

1. The betatron has one pulse modulator; the induction accelerator has many.
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dE�

b � (eV0/2�R) 2E �

b/mi �t. (11.4)

dE�

b/E �

b

½
� (V0/2�R) 2e2/mi �t. (11.5)

2. The beam in an induction accelerator makes a single pass through the machine. The
equivalent circuit is a transformer with a single-turn secondary and multiple parallel primary
windings. In the betatron, the beam makes many revolutions around the core. The circuit
representing this machine is a single primary with a multi-turn secondary.

3. Because of recirculation, average gradient is not a concern in the betatron. Therefore, low
accelerating voltages and relatively long pulselengths (matched to the available volt-second
product of the core) are used. The circuit of Figure 11.2c requires a slow voltage pulse because it
has significantly higher inductance than the driving circuits of Fi re 11.2b.

4. Shaping of the voltage pulse shape is not important in the betatron. The beam is distributed
uniformly around the transport tube; there is no need for longitudinal confinement. The betatron
magnet is usually driven by a bipolar, harmonic voltage waveform that cycles the core between -
Bs and +Bs.

The slow acceleration cycle and small circuital voltage allow a number of options for
construction of the transport tube. The tube may be composed of metal interrupted azimuthally
by one or more insulating rings. It is also possible to use a metal chamber constructed of thin
stainless steel; the wall resistance must be high enough to keep inductively driven return currents
small.

Equation 11.3 is also applicable to the betatron. As an example of kinetic energy limits, takeR
= 1 m andBs = 1.5 T. The maximum kinetic energy is less than 450 MeV. Equation (11.3) has
an important implication for the scaling of betatron output energy. The beam energy increases
linearly with the radius of the central core, while the volume of core and flux return yoke
increase asR3. Cost escalates rapidly with energy; this is one of the main reasons why betatrons
are limited to moderate beam energy.

As a final topic, we shall consider why betatrons have little potential for ion acceleration. In
the discussion, ion dynamics is treated nonrelativistically. Assume an ion of massmi is contained
in a betatron with radiusR; the emf around the core isV0. The energy ions gain in a time interval
�t is eV0 multiplied by the number of revolutions, or

Equation (11.4) can be rearranged to give

Integrating Eq. (11.5) (with the assumption that the final ion energyEb is much larger than the
injection energy), we find that
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Eb � e/2mi (V0tp/2�R) (eV). (11.6)

Eb � (2e/mi) (BsR/2)2. (11.7)

Eb (ions) / Eb (electrons) � vif / c, (11/8)

R � �mev�/eBz(R) � p
�
/eBz(R). (11.9)

� E�dl � d�/dt � 2�RE
�
, (11.10)

Substituting for the volt-second product and assuming a core area�R2, Eq. (11.6) can be
rewritten

With the same magnet parameters as above (R = 1 m, Bs = 1.5 T), Eq. (11.7) implies that the
maximum energy for deuterons is only 54 MeV. Comparing Eq. (11.7) to Eq. (11.3), we find
that the ratio of maximum obtainable energies for ions compared to electrons is

wherevif is the final ion velocity. Equation (11.8) has a simple interpretation. During the same
acceleration cycle, the nonrelativistic ions make fewer revolutions around the core than electrons
and gain a correspondingly smaller energy.

11.2 EQUILIBRIUM OF THE MAIN BETATRON ORBIT

The magnitude of the magnetic field at the orbit radius of electrons in a betatron is determined
by the shape of the magnet poles. The equilibrium orbit has the following properties: (1) the
orbit is circular with a radius equal to that of the major radiusR of the vacuum chamber and (2)
the orbit is centered in the symmetry plane of the field with no vertical oscillations. This
trajectory is called themain orbit. We will consider other possible orbits in terms of
perturbations about the main orbit.

The vertical field atR is designatedBz(R). Equation (3.38) implies thatBz(R) andR are related
by

The quantityp� is the total momentum of particles on the main orbit. The magnetic field varies
with time. The azimuthal electric field acting on electrons is
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vr � 0, dpr/dt � 0,

vz � 0, dpz/dt � 0,

dp
�
/dt � eE

�
� (e/2�R) d�/dt.

(11.11)

p
�
� e [�(t) � �(0)]/2�R � (e/2�R) ��. (11.12)

Bz(R) � ��/2�R2. (11.13)

where� is the magnetic flux enclosed within the particle orbit. Particle motion on the main orbit
is described by the following equations:

Equation (11.11) is obtained from Eq. (3.34) by settingvr = 0. We assume thatR does not vary
in time; consequently, Eq. (11.11) can be integrated directly to give

Combining Eqs. (11.9) and (11.12),

Equation (11.13) is the well-knownbetatron condition. The betatron pole piece is designed so
that vertical field at the average beam radius is equal to one-half the flux change in the core
divided by the area inside the particle orbit. The betatron condition has a simple interpretation
for the machine illustrated in Figure 11.1. Electrons are injected at low energy when the orbital
field and the flux in the core are near zero. The bending field and accelerating field are produced
by the same coils, so that they are always proportional if there is no local saturation of the core
iron. The main orbit has radiusR throughout the acceleration cycle if the vertical field atR is
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equal to one-half the average field enclosed by the orbit. This condition holds both in the
nonrelativistic and relativistic regimes. The acceleration cycle is illustrated in Figure 11.3.

11.3 MOTION OF THE INSTANTANEOUS CIRCLE

The standard electron injector of a betatron consists of a thermionic source at high dc voltage
(20-120 kV) with extractor electrodes (Fig. 11.4). It is clear that such a device cannot extend to
the main orbit. The injector is located at a radius inside or outside the main orbit and is displaced
vertically from the symmetry plane. The extractor voltage is set so that the electrons have a
circular orbit of radiusR+�R in the magnetic field at injection. The betatron condition is not
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p0(0) � eBz(R)R, (11.14)

p1(0) � p0(0) � �p(0) � eBz (R��R) (R��R). (11.15)

d�1/dt � 2�R2 [dBz(R)/dt] � �

R��R

R

2�rdr [dBz(r)/dt]. (11.16)

d�1/dt � 2�R2 [dBz(R)/dt] � 2�R �R (dBz/dt) � 2�Rr [dBz(R)/dt]. (11.17)

satisfied on this orbit; therefore, the orbit radius changes during the acceleration cycle. We shall
see that the orbit asymptotically approaches the main orbit as the electron energy increases. The
circular orbit with slowly varying radius is referred to as theinstantaneous circle.

Let p0 be the momentum of a particle on the main orbit andp1 be the momentum of a particle
injected a distance�R from the main orbit on the instantaneous circle. At injection, the momenta
and magnetic fields are related by

The time variation of flux enclosed within the instantaneous circle is

Equation (11.13) has been used in the first term to express the magnetic flux in the region 0 <r
< R. Assume that field variations are small over the region near the main orbit so that

. To first order in�r, Eq. (11.16) can be rewrittenBz(r) � Bz(R)
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dp1/dt � (e/2�r) (d�1/dt) � eR [dBz(R)/dt)]. (11.18)

�p/po � �R/R. (11.19)

d 2x/dt 2
� � [F(t)/mxo] x � ��(t)2 x. (11.20)

��/� « 1. (11.21)

The equation of motion for an electron on the instantaneous circle is

We recognize that the expression on the right-hand side is equal to dpo/dt [Eq. (11.14)].
The main conclusion is that particles on the instantaneous circle gain momentum at the same

rate as particles on the main orbit, as illustrated in Figure 11.5. The ratio of the radius of the
instantaneous circle to that of the main orbit is equal to the relative momentum difference, or

The radius difference is proportional, to 1/po because�p is constant by Eq. (11.18). Therefore,
the instantaneous circle approaches the main orbit as the electron energy increases.

11.4 REVERSIBLE COMPRESSION OF TRANSVERSE PARTICLE
ORBITS

As we saw in Section 7.3, the focusing strength of magnetic field gradients is proportional to the
magnitude of the bending field. In order to describe the betatron, the derivations of particle
transport in continuous focusing systems must be extended to include time-varying focusing
forces. As an introduction, we will consider the general properties of periodic orbits when the
confining force varies slowly compared to the period of particle oscillations. The approximation
of slow field variation is justified for the betatron; the transverse oscillation period is typically
10-20 ns while the acceleration cycle is on the order of 1 ms. The results are applicable to many
beam transport systems.

To begin, consider the nonrelativistic transverse motion of a particle under the action of a
force with a linear spatial variation. The magnitude of the force may change with time. The
equation of motion is

If the time scale for the force to change,�T, is long compared to 1/�, then the solution of Eq.
(11.20) looks like the graph of Figure 11.6. The relative change in� over one period,��, is
small:
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(d�/dt) (1/�)

�
�

d�/dt

�2
« 1, (11.12)

1

� �T
« 1. (11.23)

x(t) � A(t) sin[�(t)]. (11.24)

The condition of Eq. (11.21) can be rewritten in two alternate forms:

Equations (11.21)-(11.23) give the condition for areversible compression(or reversible
expansion). The meaning of reversible will be evident when we consider properties of the
particle orbits.

Following Figure 11.6, an approximate solution to Eq. (11.20) should be oscillatory with a
slow variation of amplitude. We assume a form



Betatrons

338

x � (d 2A/dt 2)sin��2(dA/dt)(d�/dt)cos��Asin�(d�/dt)2
�A(d�/dt 2)cos� � ��2sin�.

(d 2A/dt 2) � A (d�/dt)2
� ��2 A, (11.25)

2 (dA/dt) (d�/dt) � A (d 2�/dt 2) � 0. (11.26)

� � � � dt � �o. (11.27)

2 (dA/dt)/A � � (d 2�/dt 2)/(d�/dt) � � (d�/dt)/�. (11.28)

ln(�) � �2 ln(A) � const.

� A 2
� const. (11.29)

x(t) � Ao �o/� sin � � dt � �o . (11.30)

The quantitiesA(t) and�(t) are determined by substituting Eq. (11.24) into Eq. (11.20) and
dropping terms of order or higher.(1/��T)2

Calculating the derivatives and substituting,

The solution must hold at all values of�. Therefore, the sin� and cos� terms must be
individually equal, or

The first term in Eq. (11.25) is of orderA/�T2. This term is less than the expression on the
right-hand side by a factor (1/��T)2, so it can be neglected. Equation (11.25) becomes

; therefore,d�/dt � �

Substituting this expression in Eq. (11.26) gives

Integrating both sides of Eq. (11.28),

or

The approximate solution of Eq. (11.20) is

Taking the derivative of Eq. (11.30), the particle velocity is
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x(t) � Ao �o/� cos � � dt � �o � ((d�/dt)/2�2) sin � � dt � �o

� Ao �o/� cos � � dt � �o .
(11.31)

Hving solved the problem mathematically, let us consider the physical implications of the
results.

1. At a particular time, the particle orbits approximate harmonic orbits with an angular frequency
� determined by the magnitude of the force. The amplitude and angular frequency of the
oscillations changes slowly with time.

2. As the force increases, the amplitude of particle oscillations decreases, . Thisxmax � 1/ �
process is called compression of the orbit.

3. The particle velocity is approximately 90� out of phase with the displacement.

4. The magnitudes of the velocity and displacement are related by
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vx,max � � xmax. (11.32)

xmax vx,max � const. (11.33)

�vxo � 2vw. (11.34)

5. The product of the displacement and velocity is conserved in a reversible process, or

Figure 11.7 gives a graphical interpretation of the above conclusions. Particle orbits are plotted
in phase space withx andvx as axes. Inspection of Eqs. (11.30) and (11.31) shows that particle

orbits acted on by a linear force are ellipses in phase space. Orbits are plotted in Figure 11.7 for
a slow increase in focusing force (reversible compression). Although the oscillation amplitude
changes, the net phase space area included within the orbit is constant. If the force slowly returns
to its initial value, the particle orbit is restored to its original parameters; hence, the term
reversible.

The properties of reversible compressions are not limited to linear forces but hold for
confinement forces with any spatial variation. Consider, for instance, a particle contained by the
square-well potential illustrated in Figure 11.8. The force is infinite atx = xo and x = -xo . The
particle has constant velocityvxo except at the reflection points. The walls move inward or
outward slowly compared to the time scalexo(t)/vxo(t). In other words, the constant wall velocity
vw is small compared tovxo(t) at all times.

Particles reflect from the wall elastically. Conservation of momentum implies that the
magnitude ofvxo is constant if the wall is stationary. If the wall moves inward at velocityvw, the
particle velocity after a collision is increased by an amount

In a time interval�t, a particle collides with the walls times. Averaging overvxo(t)�t/2xo(t)
many collisions, we can write the following differential equation:
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dvxo/dt � 2vwvxo(t)/2xo(t). (11.35)

dxo � �vwdt. (11.36)

xo(t) vxo(t) � const. (11.37)

xo � 1/ �,

The equation of the wall position is orxo(t) � xo(0) � vx(t)t,

Substituting into Eq. (11.35), we find ordvxo/vxo � �dxo/xo,

This is the same result that we found for the harmonic potential. Similarly, defining the periodic
frequency Eq. (11.37) implies that� � vxo(t)/xo(t),
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x2
o � � const. (11.38)

�r � �g 1�n, (11.39)

�z � �g n, (11.40)

dpz(t)/dt � d[m(t)vz(t)]/dt � �m(t) �z(t)
2 z. (11.41)

(d 2z/dt) � (dm/dt)(dz/dt)/m � �
2
z z � 0. (11.42)

or

as before. A phase space plot of particle orbits in a highly nonlinear focusing system during a
reversible compression is given in Figure 11.9.

11.5 BETATRON OSCILLATIONS

Reviewing the conclusions of Section 7.3, particles in a gradient magnetic field perform
harmonic oscillations about the main orbit in the radial and vertical directions. The frequencies
of oscillation are

wheren is the field index and . In the betatron, the magnitude of the magnetic�g � eBz(R)/�me
field increases (�g is a function of time) while the relative shape remains constant (n is
constant). The focusing force increases; therefore, the amplitude of oscillations in the radial and
vertical directions decreases and particles move closer to the main orbit. This process is often
called damping of betatron oscillations, although this is a misnomer. The process is reversible
and no dissipation is involved.

The mathematical description of betatron oscillations is similar to that of Section 11.4 except
that the variation of electron mass with energy must be taken into account for relativistically
correct results. We shall consider motion in the vertical direction; the derivation for radial
motion is a straightforward extension. With the assumption that , the transversevz « v

�

approximation (Section 2.10) can be applied. This means that vertical motions do not influence
the value of�.

The vertical equation of motion for a linear force can be written

Expanding the time derivative, Eq. (11.41) becomes

Again, we seek a solution of the form
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z � A(t) sin�z(t). (11.43)

(�2
z��

2
z) A sin�z � [A(d 2�z/dt 2) � 2(dA/dt)(d�z/dt) � A(dm/dt)(d�z/dt)/m] cos�z

� [(d 2A/dt 2) � (dA/dt)(dm/dt)/m] sin�z � 0.
(11.44)

�
2
z � (d�z/dt)2. (11.45)

�z � � �zdt � �O. (11.46)

A (d 2�z/dt 2) � 2 (dA/dt) (d�z/dt) � A [(dm/dt)/m] �z � 0. (11.47)

d(A 2m�z)/dt � 0,

A 2m�z � const. (11.48)

vz,max � zmax �z � A �z. (11.49)

Substituting in Eq. 11.42,

We can show by dimensional arguments that the third term of Eq. (11.44) is smaller than the
first term by a factor of (l/��T)2, where�T is the time scale of the acceleration cycle.
Therefore, to first order, the first term is approximately equal to zero:

Equation (11.45) gives the same result as the nonrelativistic derivation [Eq. (11.27)]:

Setting the second term equal to zero gives

We can show that Eq. (11.47) is equivalent to

or

There are some interesting implications associated with the above derivation. As before, the
vertical displacements and velocity are 90� out of phase with magnitudes related by
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m vz,max zmax � zmax pz,max � const. (11.50)

The conservation law for a relativistic reversible compression is

For relativistic particles, the area circumscribed by an orbit is constant if it is plotted in phase
space axes of displacement and momentum rather than displacement and velocity.

11.6 ELECTRON INJECTION AND EXTRACTION

Particle injection into linear accelerators is not difficult. In contrast, injection is a significant
problem for circular accelerators, particularly those with constant beam radius such as the
betatron. This is one of the reasons why high current electron beams have not yet been
accelerated in betatrons. The conventional betatron electron source consists of a thermionic
cathode located in the vacuum chamber (Fig. 11.4) capable of emitting 1-2 A current. The
cathode is biased to high negative potential and electrons are extracted and focused by shaped
electrodes. The emerging beam has a large spread in particle direction. The source is pulsed on
for a few microseconds at the time when electrons will travel on an instantaneous circle orbit in
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the rising bending magnetic field.
Following injection, the combined effects of inward motion of the instantaneous circle and

damping of betatron oscillations carries electrons away from the injector so that some are
trapped. The process is illustrated in Figure 11.10. Without such effects, the electrons would
eventually strike the back of the injector. The fraction of electrons trapped is increased if the
injector is
displaced vertically from the main orbit. Because of the vertical oscillations, particles may travel
many revolutions before striking the injector, even in the absence of radial motion.

As an example, consider a 300-MeV betatron with main orbit radius of 1 m operating at 180
Hz. The rate of energy gain is about 7 keV/turn. If the injection energy is 100 keV and the
initial instantaneous circle has radius 1.05 m, then Eq. (11.19) implies that the orbit moves
radially inward a distance 0.24 cm in a single turn. If vertical oscillations allow the particles
5-10 turns,
this radial motion is sufficient to trap a substantial number of electrons.

The main limit on trapping in a high-energy betatron appears to result from beam space charge
effects. Focusing is weak at injection because of the low applied magnetic field. In the example
above, the injection field is only 10-3 T. Estimating the space charge force and specifying a
balance with the vertical focusing force leads to a predicted equilibrium current of less than 1 A
for a
beam with 4 cm vertical extent. This figure is consistent with the maximum current observed in
betatrons. The dominant role of space charge in limiting injection current is consistent with the
fact the trapped current increases significantly with increased injector voltage. The injection
efficiency for high-energy betatrons with an internal, electrostatic injector is typically only a few
percent.

Trapping mechanisms are not as easily explained in small, low-energy betatrons. In a machine
with output energy of 20 MeV, motion of the instantaneous circle is predicted to be on the order
of only 2 × 10-3 cm. Nonetheless, the trapped current is observed to be much higher than that
predicted from single-particle orbit dynamics combined with the probability of missing the
injector. The most widely accepted explanation is that collective particle effects are responsible
for the enhanced trapping. There is a substantial inductance associated with the changes of beam
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current around the ferromagnetic core. The increasing beam current during the injection pulses
induces a back emf that is larger than the accelerating emf of the core. The inductive electric
field decelerates electrons. The effect is almost independent of radius, so that particle orbits
shrink toward the main orbit much more rapidly than predicted by the arguments of Section
11.3. This explanation is supported by the fact that trapping in low-energy betatrons is improved
considerably when orbit contraction coils are incorporated in the machine. These rapidly pulsed
coils enhance the self-field effects by inducing a back emf.

Extraction of electron beams from betatrons is accomplished with a magnetic peeler,
illustrated in Figure 11.11. This device is a magnetic field shunt located on an azimuth outside
the radius wheren = 1. It cannot be located too close to the main orbit because the associated
magnetic field perturbation would cause particle loss during the low-energy phase of the
acceleration cycle. If particles are forced past then = 1 radius, radial focusing is lost and they
spiral outward into the peeler. There are a number of options for inducing radial motion of the
betatron beam. One possibility is an orbit expander coil. The expander coil is activated at the
peak of the electron energy. It subtracts from the bending field in the beam chamber, causing the
beam radius to expand. Another method of moving electrons out in radius is to induce betatron
oscillations by resonant fields. Electric or magnetic fields oscillating at are generated1�n �g
by coils or plates at particular azimuthal positions. If the growth of betatron oscillations is rapid,
the beam spills out at a specific azimuth.

The maximum current that can be contained in a betatron is determined by a balance between
the mutual repulsion between electrons and the focusing forces. In terms of space-charge
equilibrium, the gradient focusing strength in a betatron at peak field (� 1 T) is sufficient to
contain a high-energy (- 300 MeV) electron beam with current in excess of 10 kA. A
high-energy electron beam is stiff and largely confined by its own magnetic fields; therefore, an
extension of conventional betatron extraction techniques would be sufficient to extract the beam
from the machine. Containing the beam during the low-energy portion of the acceleration phase
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is the major impediment to a high-current, high-efficiency betatrons. Two methods appear
feasible to improve the operation of betatrons: (1) high-energy injection and (2) addition of
supplemental focusing devices.

In the first method, illustrated in Figure 11.12, a high-current, high-energy beam from a linear
induction accelerator is injected in a single turn into the betatron. To facilitate injection, the
betatron could be constructed in a racetrack configuration. The circular machine is split into two
parts connected by straight sections. Injection and extraction are performed in the straight
sections, which are free of bending fields. The betatron performs the final portion of the
acceleration cycle (for example, from 100 to 300 MeV). The current limit in the betatron is high
for two reasons: (1) the bending field and its gradients are large and (2) the self-magnetic field
force of the relativistic beam almost balances the self-electric field repulsion so that space charge
effects are of reduced importance. The beam is directed along the main orbit by a pulsed
electrostatic inflector. The radial inflector field is activated only during a single transit of the
beam around the accelerator; otherwise, it would deflect the trapped beam onto an exit orbit
similar to the extrance orbit. The combination of induction linear accelerator and betatron is a
good symbiosis for high-flux electron beams. The induction accelerator, with its strong
solenoidal focusing magnets, solves the problem of injection and low-energy transport. The
betatron provides the bulk of the particle acceleration. The combined accelerator would have a
size and core volume much smaller than that of a 300-MeV linear induction accelerator.

A second approach to high-flux betatrons is to supplement gradient focusing with axi-centered
focusing lenses arrayed around the toroidal vacuum chamber. Some options, illustrated in Figure
11.13, include (1) a bent solenoidal field (toroidal field), (2) discrete solenoidal magnetic lenses
with reversing applied field direction, and (3) an array of magnetic quadrupole lenses in an
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FD configuration. The study of alternate focusing methods in betatrons is an active area of
research. There are some difficult technological problems to be solved. For instance, injection
into a betatron with a strong toroidal field is considerably more difficult than injection into a
standard geometry, even at low current. The main problem in any strong focusing betatron is the
fact that
the beam must pass through the	 = 1 condition (see Section 7.2). When the low-energy beam is
injected, the strong space charge forces require strong supplementary focusing. Strong focusing
implies that the betatron wavelength is less than the circumference of the machine; thus,	 > 1 in
both the radial and vertical directions. At the end of the acceleration cycle, gradient field
focusing dominates. The orbits resemble those in a conventional betatron with	 < 1. Passage
through the resonance condition could be avoided by increasing the supplementary focusing
fields with the bending fields and keeping	 > 1. This is not technologically practical since the
focusing system would require high energy input. Passage through the	 = 1 condition may
result in complete loss of the beam. There is a possibility that the severity of resonance
instabilities could be reduced by a nonlinear focusing system, a fast acceleration cycle, or tuned
electrostatic lenses that sweep the focusing system rapidly through the resonance condition.

11.7 BETATRON MAGNETS AND ACCELERATION CYCLES

The kinetic energy limit of betatrons is tied closely to the saturation properties of iron. Although
air core betatrons have been operated successfully, they are impractical except for small research
devices because of the large circulating energy and power losses involved. The volume of
magnetic field outside the iron core should be minimized for the highest accelerator efficiency
and lowest cost. With these factors in mind, we will review some of the types of betatron
magnets that have been developed. The order will be roughly historical, proceeding from the
simplest circuits at low energy to the highest energy attained.

An early betatron for electrons at 20 MeV is illustrated in Figure 11.1. The acceleration cycle
is illustrated in Figure 11.3. The core flux and bending field are part of the same magnetic
circuit; therefore, they are proportional to one another. A betatron driving circuit is illustrated in
Figure 11.14. The inductance represents the betatron core and windings; a resistor has been
included
to represent energy loss through winding resistivity, hysteresis, and eddy currents. The beam
load is also indicated; at current typical of conventional betatrons, the impedance of the beam
load is high. The beam current is much smaller than the leakage current. In order to keep the
power consumed by the betatron at a reasonable level, the core inductor is often combined with a
capacitor bank to form a resonant circuit. The leakage current is supported as reactive current in
the resonant circuit; a fraction of the energy of the underdampedLC circuit is lost on each cycle
to resistive losses and beam acceleration. The stored energy of the capacitor bank is topped up
on each cycle by a driving circuit with high-power vacuum tubes.

The components of the resonant circuit fulfill the following conditions:
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f � 2� / LC.

Um � � dx3 (B 2/2µ).

1.The circuit has the desired resonant frequency, or

Typically, betatrons operate at 180 Hz.

2.The stored energy in the capacitor bank, ½CV0
2, equals the total magnetic field energy at the

peak of the acceleration cycle,

3. The ampere turns in the coil box are sufficient to produce the field in the air gap.

The above conditions can be combined to determine the capacitor bank voltage and number of
turns in the coil box given the operating parameters of the betatron.

The betatron of Figure 11.1 has a major drawback for application to high-energy beams. Most
of the energy in the drive circuit is utilized to produce magnetic flux in the central air gap. This
translates into a large capacitor bank to store energy and increased resistive losses because of the
high NI product of the coil. In order to extend the betatron to higher energy and keep power
consumption low enough to run on a continuous basis, it is clearly advantageous to eliminate the
air gap. One solution is illustrated in Figure 11.15a. The magnetic flux at the electron orbit is
produced by a separate magnet circuit. The beam transport circuit has its own flux-guiding core
and magnet windings. The size of the capacitor bank is reduced considerably, and power losses
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are typically only one-third those that would occur with a single-magnet circuit. The
disadvantage of the design is the increased complexity of assembly and increased volume of the
main circuit core in order to accommodate the bending field circuit.

An interesting problem associated with the betatron of Figure 11.15a is how to drive the two
magnetic circuits with close tracking between the transport fields and acceleration flux. An
effective solution is to connect both magnets to the same power supply in parallel, as shown in
Figure 11.15b. Because the voltage across the windings must be the same, the flux change
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through both windings is the same. Thus, if the number of turns and geometry of the windings
are chosen properly, the ratio of bending field and core flux will be correct throughout the
acceleration cycle, independent of the effective µ values in the two cores. This is another
application offlux forcing(see Section 10.4).

The magnet design of Figure 11.16a represents another stage of improvement. It is much
simpler than the magnet of Figure 11.15a and still produces a bending field without an air gap.
In order to understand how this configuration works, we shall approach the circuit in parts and
then determine the total magnetic field by superposition. First, consider a single coil inside the
radius of the vacuum chamber, as shown in Figure 11.16b. All the magnetic flux flows through
the central core as shown. In the second stage (Fig. 11.16c), we consider the field produced by a
winding inside the vacuum chamber carrying current -NI and a windings outside the chamber
carrying current +NI. This produces a bending field at the main orbit, and flux returns through
the core as shown. In the final configuration, Figure 11.16d, the external windings are present
and the windings on the flux coil are reduced by -NI ampere turns to generate the net field.
Proper choice of the number of turns on the flux coil versus the field coils plus shunting of the
bending field gap assures that the betatron condition is satisfied.

A further improvement to the magnet of Figure 11.16 to reach higher beam energy is to utilize
the full available flux swing of the central core during acceleration. In the previous acceleration
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cycles we have discussed, the core field changes from 0 to +Bs while the bending field changes
from 0 to +½Bs. Inspection of Eq. (11.13) shows that the betatron condition is expressed in
terms of the change of included flux, not the absolute value. An acceleration cycle in which the
core magnetic field changes from -Bs to +Bs, while the bending field changes from 0 to +Bs

satisfies the betatron condition and doubles the final electron energy for a given core size. There
are two methods to achieve an acceleration cycle with full flux swing,field biasingandflux
biasing. Field biasing is illustrated in Figure 11.17a. A dc component of magnitude +½Bs is
added to the bending field. Acceleration takes place over a half-cycle of the ac waveform. For
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flux biasing, dc bias windings are added to the core circuit to maintain the core at -Bs. Bias
windings are illustrated in Figure 11.16. The field and flux coils are energized in parallel to
produce the accelerating waveform illustrated in Figure 11.17b. Acceleration takes place over
one quarter-cycle. The main technological difficulty associated with flux biasing is that the core
is driven to saturation, resulting in increased hystersis and eddy current losses. Also, during the
negative half-cycle, the core has µ = µo so that the circuit inductance varies considerably.
Betatrons with flux biasing are usually driven by pulse power modulators rather than resonant
circuits. A pulsed acceleration cycle is shown in Figure 11.17c.

A modern commercial betatron for radiation therapy is illustrated in Figure 11.18a. The
machine accelerates electrons to a maximum kinetic energy of 45 MeV to generate deeply
penetrating radiation. Electrons can be extracted directly or used to generate forward-directed
gamma rays on an internal target. The 12,000-kG machine and the treatment table can be moved
to a variety of positions to achieve precise dose profiles. A cross section of the betatron (Fig.
11.18b) illustrates operation in the gamma ray and electron modes.
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12

Resonant Cavities and Waveguides

This chapter initiates our study of resonant accelerators., The category includes rf
(radio-frequency) linear accelerators, cyclotrons, microtrons, and synchrotrons. Resonant
accelerators have the following features in common:

1. Applied electric fields are harmonic. The continuous wave (CW) approximation is valid;
a frequency-domain analysis is the most convenient to use. In some accelerators, the
frequency of the accelerating field changes over the acceleration cycle; these changes are
always slow compared to the oscillation period.

2. The longitudinal motion of accelerated particles is closely coupled to accelerating field
variations.

3. The frequency of electromagnetic oscillations is often in the microwave regime. This
implies that the wavelength of field variations is comparable to the scale length of
accelerator structures. The full set of the Maxwell equations must be used.

Microwave theory relevant to accelerators is reviewed in this chapter. Chapter 13 describes the
coupling of longitudinal particle dynamics to electromagnetic waves and introduces the concept of
phase stability. The theoretical tools of this chapter and Chapter 13 will facilitate the study of
specific resonant accelerators in Chapters 14 and 15.

As an introduction to frequency-domain analysis, Section 12.1 reviews complex exponential
representation of harmonic functions. The concept of complex impedance for the analysis of
passive element circuits is emphasized. Section 12.2 concentrates on a lumped element model for
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α (di/dt) � β i � γ � idt � V0 cosωt. (12.1)

the fundamental mode of a resonant cavity. The Maxwell equations are solved directly in Section
12.3 to determine the characteristics of electromagnetic oscillations in resonant cavities. Attention
is centered on the TM010 mode because it is the most useful mode for particle acceleration.
Physical properties of resonators are discussed in Section 12.4. Subjects include theQ value of a
cavity and effects of competing modes. Methods of extracting energy from and coupling energy
to resonant cavities are discussed in Section 12.5.

Section 12.6 develops the frequency-domain analysis of transmission lines. There are three
reasons to extend the analysis of transmission lines. First, an understanding of transmission lines
helps to illuminate properties of resonant cavities and waveguides. Second, transmission lines are
often used to transmit power to accelerator cavities. Finally, the transmission line equations
illustrate methods to match power sources to loads with reactive components, such as resonant
cavities. In this application, a transmission line acts to transform the impedance of a
single-frequency input. Section 12.7 treats the cylindrical resonant cavity as a radial transmission
line with an open-circuit termination at the inner radius and a short-circuit termination at the outer
radius.

Section 12.8 reviews the theory of the cylindrical waveguide. Waveguides are extended hollow
metal structures of uniform cross section. Traveling waves are contained and transported in a
waveguide; the frequency and field distribution is determined by the shape and dimensions of the
guide. A lumped circuit element model is used to demonstrate approximate characteristics of
guided wave propagation, such as dispersion and cutoff. The waveguide equations are then solved
exactly.

The final two sections treat the topic of slow-wave structures, waveguides with boundaries that
vary periodically in the longitudinal direction. They transport waves with phase velocity equal to
or less than the speed of light. The waves are therefore useful for continuous acceleration of
synchronized charged particles. A variety of models are used to illustrate the physics of the
iris-loaded waveguide, a structure incorporated in many traveling wave accelerators. The
interpretation of dispersion relationships is discussed in Section 12.10. Plots of frequency versus
wavenumber yield the phase velocity and group velocity of traveling waves. It is essential to
determine these quantities in order to design high-energy resonant accelerators. As an example,
the dispersion relationship of the iris-loaded waveguide is derived.

12.1 COMPLEX EXPONENTIAL NOTATION AND IMPEDANCE

Circuits consisting of a harmonic voltage source driving resistors, capacitors, and inductors, are
described by an equation of the form

The solution of Eq. (12.1) has homogeneous and particular parts. Transitory behavior must
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i(t) � I0 cos(ωt�φ). (12.2)

cosωt � [exp(jωt)�exp(�jωt)]/2, (12.3)

sinωt � [exp(jωt)�exp(�jωt)]/2j. (12.4)

exp(jωt) � cosωt � jsinωt. (12.4)

i(t) � A exp(jωt) � B exp(�jωt). (12.5)

include the homogenous part. Only the particular part need be included if we restrict our attention
to CW (continuous wave) excitation. The particular solution has the form

I0 andφ depend on the magnitude of the driving voltage, the elements of the circuit, andω.
Because Eq. (12.1) describes a physical system, the solution must reflect a physical answer.
Therefore,I0 andφ are real numbers. They can be determined by direct substitution of Eq. (12.2)
into Eq. (12.1). In most cases, this procedure entails considerable manipulation of trigonometric
identities.

The mathematics to determine the particular solution of Eq. (12.1) and other circuit equations
with a single driving frequency can be simplified considerably through the use of the complex
exponential notation for trigonometric functions. In using complex exponential notation, we must
remember the following facts:

1. All physical problems must have an answer that is a real number. Complex numbers
have no physical meaning.

2. Complex numbers are a convenient mathematical method for handling trigonometric
functions. In the solution of a physical problem, complex numbers can always be grouped
to form real numbers.

3. The answers to physical problems are often written in terms of complex numbers. This
convention is used because the results can be written more compactly and because there
are well-defined rules for extracting the real-number solution.

The following equations relate complex exponential functions to trigonometric functions:

where . The symbolj is used to avoid confusion with the current,i. The inversej � �1
relationship is

In Eq. (12.1), the expression is substituted for the voltage, and theV0[exp(jωt)�exp(�jωt)]/2
current is assumed to have the form
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A � (jωV0/2) / (�αω2
� jωβ � γ), (12.7)

B � (�jωV0/2) / (�αω2
� jωβ � γ). (12.8)

Aexp(jωt) � A�exp(�jωt) � I0 [exp(jωt)exp(φ) � exp(�jωt)exp(�φ)]/2. (12.9)

A � I0 exp(jφ)/2 � I0 (cosφ � jsinφ)/2 (12.10)

A � A�

� I 2
0 (cosφ�jsinφ)/2,

I0 � 2 A � A�. (12.11)

φ � tan�1 Im(A)/Re(A) . (12.12)

The coefficientsA andB may be complex numbers if there is a phase difference between the
voltage and the current. They are determined by substituting Eq. (12.6) into Eq. (12.1) and
recognizing that the terms involving exp(jωt) and exp(-jωt) must be separately equal if the
solution is to hold at all times. This procedure yields

The complex conjugate of a complex number is the number with -j substituted forj. Note thatB is
the complex conjugate ofA. The relationship is denotedB = A*.

Equations (12.7) and (12.8) represent a formal mathematical solution of the problem; we must
rewrite the solution in terms of real numbers to understand the physical behavior of the system
described by Eq. (12.1). Expressing Eq. (12.2)in complex notation and setting the result equal to
Eq. (12.6), we find that

Terms involving exp(jωt) and exp(-jωt) must be separately equal. This implies that

by Eq. (12.5). The magnitude of the real solution is determined by multiplying Eq. (12.10) by its
complex conjugate:

or

Inspection of Eq. (12.10) shows that the phase shift is given by

Returning to Eq. (12.1), the solution is



Resonant Cavities and Waveguides

360

I0 � V0ω / (γ�αω2)2
� ω2β2,

φ � tan�1(γ�αω2) / ωβ.

i(t) � A exp(jωt). (12.13)

V/I � Z. (12.14)

ZR � R. (12.15)

V(t) � V0 cosωt, (12.16)

This is the familiar resonance solution for a driven, damped harmonic oscillator.
Part of the effort in solving the above problem was redundant. Because the coefficient of the

second part of the solution must equal the complex conjugate of the first, we could have used a
trial solution of the form

We arrive at the correct answer if we remember that Eq. (12.13) represents only half of a valid
solution. OnceA is determined, the real solution can be extracted by applying the rules of Eq.
(12.11) and (12.12). Similarly, in describing an electromagnetic wave traveling in the +z direction,
we will use the form . The form is a shortened notation for the functionE � E0 exp[j(ωt�kz)]

whereE0 is a real number. TheE � E0 exp[j(ωt�kz)] � E�

0 exp[�j(ωt�kz)] � E0 cos(ωt�kz�φ)
function for a wave traveling in the negative z direction is abbreviated .E � E0 exp[j(ωt�kz)]
Complex exponential notation is useful for solving lumped element circuits with CW excitation. In
this circumstance, voltages and currents in the circuit vary harmonically at the driving frequency
and differ only in amplitude and phase. In complex exponential notation, the voltage and current
in a section of a circuit are related by

The quantityZ, the impedance, is a complex number that contains information on amplitude and
phase. Impedance is a function of frequency.

The impedance of a resistorR is simply

A real impedance implies that the voltage and current are in phase as shown in Figure 12.1a. The
time-averaged value ofVI through a resistor is nonzero; a resistor absorbs energy.

The impedance of a capacitor can be calculated from Eq. (9.5). If the voltage across the
capacitor is

then the current is
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i(t) � C dV/dt � �ωCV0 sinωt � ωCV0 cos(ωt � π/2). (12.17)

ZC � (1/ωC) exp(jπ/2) � �j/ωC (12.18)

i(t) �
V0 sinωt

ωL
�

V0 cos(ωt�π/2

ωL
.

Equation (12.17) specifies the magnitude and amplitude of voltage across versus current through
a capacitor. There is a 90� phase shift between the voltage and current; the current leads the
voltage, as shown in Figure 12.1b. The capacitor is a reactive element; the time average ofV(t)i(t)
is zero. In complex exponential notation, the impedance can be expressed as a single complex
number

if the convention of Eq. (12.13) is adopted. The impedance of a capacitor has negative imaginary
part. This implies that the current leads the voltage. The impedance is inversely proportional to
frequency; a capacitor acts like a short circuit at high frequency.

The impedance of an inductor can be extracted from the equation Again,V(t) � L di(t)/dt.
taking voltage in the form of Eq. (12.16), the current is

The current lags the voltage, as shown in Figure 12.1c. The complex impedance of an inductor is
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Zl � jωL. (12.19)

Z(ω) � V0 exp(jωt) / I0 exp(jωt) � (1/Zr � 1/ZC � 1/ZL)�1. (12.20)

Z(ω) � (jωC�1/jωL)�1
� jωL/(1�ω2LC). (12.21)

The impedance of an inductor is proportional to frequency; inductors act like open circuits at high
frequency.

12.2 LUMPED CIRCUIT ELEMENT ANALOGY FOR A RESONANT
CAVITY

A resonant cavity is a volume enclosed by metal walls that supports an electromagnetic
oscillation. Inaccelerator applications, the oscillating electric fieldsaccelerate charged particles
while the oscillating magnetic fields provide inductive isolation. To initiate the study of
electromagnetic oscillations, we shall use the concepts developed in the previous section to solve
a number of lumped element circuits. The first, shown in Figure 12.2, illustrates the process of
inductive isolation in a resonant circuit. A harmonic voltage generator with output

drives a parallel combination of a resistor, capacitor, and inductor.V(t) � V0 exp(jωt)
Combinations of impedances are governed by the same rules that apply to parallel and series
combinations of resistors. The total circuit impedance at the voltage generator is

The quantityI0 is generally a complex number.
Consider the part of the circuit of Figure 12.2 enclosed in dashed lines: a capacitor in parallel

with an inductor. The impedance is

The impedance is purely imaginary; therefore, the load is reactive. At low frequency
( the impedance is positive, implying that the circuit is inductive. In other words,(ω < 1/ LC)
current flow through the inductor dominates the behavior of the circuit. At high frequency, the



Resonant Cavities and Waveguides

363

Z(ω) � [jωC � 1/(jωL�R)]�1
� [jωL�R] / [(1�ω2LC) � jωRC].

Z(ω) � 1/[(1�ω2/ω2
0)

2
� (ωRC)2]. (12.22)

impedance is negative and the circuit acts as a capacitive load. When , theω � ω0 � 1/ LC
impedance of the combined capacitor and inductor becomes infinite. This condition is called
resonance; the quantityω0 is the resonant frequency. In this circumstance, the reactive part of the
total circuit of Figure 12.2 draws no current when a voltage is applied across the resistor. All
current from the generator flows into the resistive load. The reactive part of the circuit draws no
current atω = ω0 because current through the inductor is supplied completely by displacement
current through the capacitor. At resonance, the net current from the generator is minimized for a
given voltage. This is the optimum condition for energy transfer if the generator has nonzero
output impedance.

The circuit of Figure 12.3 illustrates power losses in resonant circuits. Again, an inductor and
capacitor are combined in parallel. The difference is that the inductor is imperfect. There are
resistive losses associated with current flow. The losses are represented by a series resistor. The
impedance of the circuit is

Converting the denominator in the above equation to a real number, we find that the magnitude of
the impedance is proportional to

Figure 12.4 shows a plot of total current flowing in the reactive part of the circuit versus current
input from the generator. Two cases are plotted: resonant circuits with low damping and high
damping. Note that the impedance is no longer infinite at . For a cavity with resistiveω � 1/ LC
losses, power must be supplied continuously to support oscillations. A circuit is in resonance
when large reactive currents flow in response to input from a harmonic power generator. In other
words, the amplitude of electromagnetic oscillations is high. Inspection of Figure 12.4 and Eq.
(12.22) shows that there is a finite response width for a driven damped resonant circuit. The
frequency width, , to reduce the peak impedance by a factor of 5 is∆ω � ω�ω0
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∆ω

ω0

�
R

LC
. (12.23)

Q �

ω0 (energy stored in the resonant circuit)

(time�averaged power loss)

�

π (energy stored in the resonant circuit)
(energy lost per half cycle)

(12.24)

Resonant circuits are highly underdamped; therefore, .∆ω/ω « 1
Resonant circuit damping is parametrized by the quantityQ. The circuitQ is defined as

In the limit of low damping near resonance, the reactive current exchanged between the inductor
and capacitor of the circuit of Figure 12.3 is much larger than the current input from the
generator. The reactive current is , whereI0 is a slowly decreasing function ofi(t) � I0 exp(jωt)
time. The circuit energy, U, is equal to the energy stored in the inductor at peak current:
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U � LI0I
�

0 /2 (12.25)

P � i(t)2 R � ½I0I
�

0 R. (12.26)

Q � ω0L/R � L/C / R. (12.27)

U � CV2
0 /2 � V2

0 / 2ω0 L/C. (12.28)

P � V2
0 / 2Q L/C. (12.29)

P � V2(t) / Rin � V2
0 / 2Rin, (12.30)

Rin � Q L/C � ( L/C)2 / R. (12.31)

Energy is lost to the resistor. The power lost to the resistor (averaged over a cycle) is

Substituting Eqs. (12.25) and (12.26) into Eq. (12.24), theQ value for theLRCcircuit of Figure
12.3 is

In an underdamped circuit, the characteristic impedance of theLC circuit is large compared to the
resistance, so thatQ » 1.

Energy balance can be used to determine the impedance that the circuit of Figure 12.3 presents
to the generator at resonance. The input voltageV0 is equal to the voltage across the capacitor.
The input voltage is related to the stored energy in the circuit by

By the definition of Q, the input voltage is related to the average power loss by

Defining the resistive input impedance so that

we find at resonance ( ) thatω � ω0

The same result can be obtained directly from the general impedance expression in the limit
. The impedance is much larger thanR. This reflects the fact that the reactive current isL/C » R

much larger than the current from the generator. In terms ofQ, the resonance width of an
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∆ω/ω0 � 1/Q. (12.32)

imperfect oscillating circuit [Eq. (12.23)] can be written
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ω0 � 1/ LC � 2π(R0�a)d/εoµoR
2
0 a 2π2

� c 2(R0�a)d/R2
0 a 2π. (12.33)

Resonant cavities used for particle acceleration have many features in common with the circuits
we have studied in this section. Figure 12.5 illustrates a particularly easy case to analyze, the
reentrant cavity. This cavity is used in systems with space constraints, such as klystrons. It
oscillates at relatively low frequency for its size. The reentrant cavity can be divided into
predominantly capacitive and predominantly inductive regions. In the central region, there is a
narrow gap. The capacitance is large and the inductance is small. A harmonic voltage generator
connected at the center of the cavity induces displacement current. The enlarged outer region acts
as a single-turn inductor. Real current flows around the wall to complete the circuit. If the walls
are not superconducting, the inductor has a series resistance.

Assume that there is a load, such as a beam, on the axis of the cavity. Neglecting cavity
resistance, the circuit is the same as that of Figure 12.2. If the generator frequency is low, most of
the input current flows around the metal wall (leakage current). The cavity is almost a short
circuit. At high frequency, most of the current flows across the capacitor as displacement current.
At the resonance frequency of the cavity, the cavity impedance is infinite and all the generator
energy is directed into the load. In this case, the cavity can be useful for particle acceleration.
When the cavity walls have resistivity, the cavity acts as a high impedance in parallel to the beam
load. The generator must supply energy for cavity losses as well as energy to accelerate the beam.

The resonant cavity accelerator has much in common with the cavity of an induction linear
accelerator. The goal is to accelerate particles to high energy without generating large
electrostatic voltages. The outside of the accelerator is a conductor; voltage appears only on the
beamline. Electrostatic voltage is canceled on the outside of theaccelerator by inductively
generated fields. The major difference is that leakage current is inhibited in the induction linear
accelerator by ferromagnetic inductors. In the resonant accelerator, a large leakage current is
maintained by reactive elements. The linear induction accelerator has effective inductive isolation
over a wide frequency range; the resonant accelerator operates at a single frequency. The voltage
on the axis of a resonant cavity is bipolar. Therefore, particles are accelerated only during the
proper half-cycle. If an accelerator is constructed by stacking a series of resonant cavities, the
crossing times for particles must be synchronized to the cavity oscillations.

The resonant frequency of the reentrant cavity can be estimated easily. Dimensions are
illustrated in Figure 12.5. The capacitance of the central region is and theC � εoπ R2

0 /d,
inductance is .The resonant angular frequency isL � µoπ a 2/2π(R0�a).

12.3 RESONANT MODES OF A CYLINDRICAL CAVITY

The resonant modes of a cavity are the natural modes for electromagnetic oscillations. Once
excited, a resonant mode will continue indefinitely in the absence of resistivity with no further
input of energy. In this section, we shall calculate modes of the most common resonant structure
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� × E � �B/�t � 0, (12.34)

� � E � 0, (12.35)

� × B � εµ �E/�t � 0, (12.36)

� � B � 0. (12.37)

encountered in particle accelerator applications, the cylindrical cavity (Fig. 12.6). The cavity
length is denotedd and radiusR0.In the initial treatment of resonant modes, we shall neglect the
perturbing effects of power feeds, holes for beam transport, and wall resistivity. The cylindrical
cavity has some features in common with the reentrant cavity of Section 2.2. A capacitance
between the upstream and downstream walls carries displacement current. The circuit is
completed by return current along the walls. Inductance is associated with the flow of current.
The main difference from the reentrant cavity is that regions of electric field and magnetic field are
intermixed. In this case, a direct solution of the Maxwell equations is more effective than an
extension of the lumped element analogy. This approach demonstrates that resonant cavities can
support a variety of oscillation modes besides the low-frequency mode that we identified for the
reentrant cavity.

We seek solutions for electric and magnetic fields that vary in time according to exp(jωt). We
must use the full set of coupled Maxwell equations [Eqs. (3.1l)-(3.14)]. We allow the possibility
of a uniform fill of dielectric or ferromagnetic material; these materials are assumed to be linear,
characterized by parametersε and µ. The field equations are

Applying the vector identity , Eqs. (12.34)-(12.37) can be� × (� × V) � �(��V) � �
2V

rewritten as
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�
2E � (1/v2) �

2E/�t 2
� 0, (12.38)

�
2B � (1/v2) �

2B/�t 2
� 0. (12.39)

v � c / εµ/εoµo. (12.40)

E � Ez(r) exp(jωt) uz. (12.41)

d 2Ez(r)

dr 2
�

1
r

dEz(r)

dr
�

ω2

v2
Ez(r) � 0. (12.42)

where v is the velocity of light in the cavity medium,

The features of electromagnetic oscillations can be found by solving either Eq. (12.38) or
(12.39) forE or B. The associated magnetic or electric fields can then be determined by
substitution into Eq. (12.34) or (12.36). Metal boundaries constrain the spatial variations of fields.
The wave equations have solutions only for certain discrete values of frequency. The values of
resonant frequencies depend on how capacitance and inductance are partitioned in the mode.

The general solutions of Eqs. (12.38) and (12.39) in various cavity geometries are discussed in
texts on electrodynamics. We shall concentrate only on resonant modes of a cylindrical cavity that
are useful for particle acceleration. We shall solve Eq. (12.38) for the electric field since there are
easily identified boundary conditions. The following assumptions are adopted:

1.Modes of interest have azimuthal symmetry ( ).�/�θ � 0

2.The electric field has no longitudinal variation, or .�E/�z � 0

3.The only component of electric field is longitudinal,Ez.

4.Fields vary in time as exp(jωt).

The last two assumptions imply that the electric field has the form

Using the cylindrical coordinate form of the Laplacian operator, dropping terms involving
azimuthal and longitudinal derivatives, and substituting Eq. (12.41), we find that the class of
resonant modes under consideration satisfies the equation

Equation (12.42) is expressed in terms of total derivatives because there are only radial variations.
Equation (12.42) is a special form of the Bessel equation. The solution can be expressed in terms
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Ezn(r,t) � E0n J0(knr) exp(jωt), (12.43)

of the zero-order Bessel functions, J0(knr) and Y0(knr). The Y0 function is eliminated by the
requirement thatEz has a finite value on the axis. The solution is

whereE0n is the magnitude of the field on the axis.
The second boundary condition is that the electric field parallel to the metal wall atr = R0 must

be zero, orEz(R0,t) = 0. This implies that only certain values ofkn give valid solutions. Allowed
values ofkn are determined by the zeros of J0 (Table 12.1). A plot ofEz(r) for n = 1 is given in
Figure 12.7. Substituting Eq. (12.43) into Eq. (12.42), the angular frequency is related to the
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ωn � vkn. (12.44)

�B/�t � � (�×E). (12.45)

jωnBθn � dEzn/dr � E0n dJ0(knr)/dr. (12.46)

B
θn(r) � �j εµ E0n J1(knr).

wavenumberkn by

Angular frequency values are tabulated in Table 12.1.
The magnetic field of the modes can be calculated from Eq. (12.34),

Magnetic field is directed along theθ direction. Assuming time variation exp(jωt) and substituting
from Eq. (12.43),

Rewriting Eq. (12.46),

Magnetic field variation for the TM010 mode is plotted in Figure 12.7. The magnetic field is zero
on the axis. Moving outward in radius,B

θ
increases linearly. It is proportional to the integral of

axial displacement current from 0 tor. Toward the outer radius, there is little additional
contribution of the displacement current. The l/r factor [see Eq. (4.40)] dominates, and the
magnitude ofB

θ
decreases toward the wall.

12.4 PROPERTIES OF THE CYLINDRICAL RESONANT CAVITY

In this section, we consider some of the physical implications of the solutions for resonant
oscillations in a cylindrical cavity. The oscillations treated in the previous section are called TM0n0

modes. The term TM (transverse magnetic) indicates that magnetic fields are normal to the
longitudinal direction. The other class of oscillations, TE modes, have longitudinal components of
B, andEz = 0. The first number in the subscript is the azimuthal mode number; it is zero for
azimuthally symmetric modes. The second number is the radial mode number. The radial mode
number minus one is the number of nodes in the radial variation ofEz. The third number is the
longitudinal mode number. It is zero in the example of Section 12.3 becauseEz is constant in thez
direction. The wavenumber and frequency of TM0n0 modes depends only onR0, not d. This is not
generally true for other types of modes.

TM0n0 modes are optimal for particle acceleration. The longitudinal electric field is uniform
along the propagation direction of the beam and its magnitude is maximum on axis. The
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transverse magnetic field is zero on axis; this is important for electron acceleration where
transverse magnetic fields could deflect the beam. TM modes with nonzero longitudinal
wavenumber (p� 0) have axial electric field of the form ; it is clear that theEz(0,z) � sin(pπx/d)
acceleration of particles crossing the cavity is reduced for these modes.

Figure 12.8 clarifies the nature of TM0n0 modes in terms of lumped circuit element
approximations. Displacement currents and real currents are indicated along with equivalent
circuit models. At values ofn greater than 1, the cavity is divided inton interacting resonantLC
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Q �

d/δ
1 � d/R0

(12.48)

∆f/f0 � 1/Q � 3 × 10�5.

U � �

d

0

dz �

R0

0

2πrdr (εE 2
o /2) J2

0 (2.405r/R0) � (πR2
0 d) (εE 2

0 /2) J2
1 (2.405). (12.49)

circuits. The capacitance and inductance of each circuit is reduced by a factor of about l/n;
therefore, the resonant frequency of the combination of elements is increased by a factor
close ton.

Resonant cavities are usually constructed from copper or copper-plated steel for the highest
conductivity. Nonetheless, effects of resistivity are significant because of the large reactive
current. Resistive energy loss from the flow of real current in the walls is concentrated in the
inductive regions of the cavity; hence, the circuit of Figure 12.3 is a good first-order model of an
imperfect cavity. Current penetrates into the wall a distance equal to the skin depth [Eq. (10.7)].
Power loss is calculated with the assumption that the modes approximate those of an ideal cavity.
The surface current per length on the walls is . Assuming that the current isJs � B

θ
(r,z,t)/µo

distributed over a skin depth, power loss can be summed over the surface of the cavity. Power
loss clearly depends on mode structure through the distribution of magnetic fields. TheQ value
for the TM010 mode of a cylindrical resonant cavity is

where the skin depthδ is a function of the frequency and wall material. In a copper cavity
oscillating atf = 1 GHz, the skin depth is only 2 µm. This means that the inner wall of the cavity
must be carefully plated or polished; otherwise, current flow will be severely perturbed by surface
irregularities lowering the cavityQ. With a skin depth of 2 µm, Eq. (12.48) implies aQ value
of 3 × 104 in a cylindrical resonant cavity of radius 12 cm and length 4 cm. This is a very high
value compared to resonant circuits composed of lumped elements. Equation (12.32) implies that
the bandwidth for exciting a resonance

An rf power source that drives a resonant cavity must operate with very stable output frequency.
For f0 = 1 GHz, the allowed frequency drift is less than 33 kHz.

The total power lost to the cavity walls can be determined from Eq. (12.24) if the stored energy
in the cavity, U, is known. The quantity can be calculated from Eq. (12.43) for the TM010 mode;
we assume the calculation is performed at the time when magnetic fields are zero.

A cylindrical cavity can support a variety of resonant modes, generally at higher frequency than
the fundamental accelerating mode. Higher-order modes are generally undesirable. They do not
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contribute to particle acceleration; the energy shunted into higher-order modes is wasted.
Sometimes, they interfere with particle acceleration; modes with transverse field components may
induce beam deflections and particle losses.

As an example of an alternate mode, consider the lowest frequency TE mode, the TE111 mode.
Figure 12.9 shows a sketch of the electric and magnetic fields. The displacement current oscillates
from side to side across the diameter of the cavity. Magnetic fields are wrapped around the
displacement current and have components in the axial direction. The distribution of capacitance
and inductance for TE111 oscillations is also shown in Figure 12.9. The mode frequency depends
on the cavity length (Fig. 12.10). Asd increases over the range to , there is ad « R0 d � R0
large increase in the capacitance of the cavity for displacement current flow across a diameter.
Thus, the resonant frequency drops. For , return current flows mainly back along thed » R0
circular wall of the cavity. Therefore, the ratio of electric to magnetic field energy in the cavity
approaches a constant value, independent ofd. Inspection of Figure 2.10 shows that in long
cavities, the TE111 mode has a lower frequency than the TM010. Care must be taken not to excite
the TE111 mode in parameter regions where there ismode degeneracy. The term degeneracy
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Z � (jωL�R) / [(1�ω2LC)�jωRC]. (12.50)

Z � L/RC � Z 2
0 /R � QZ0, (12.51)

indicates that two modes have the same resonant frequency. Mode selection is a major problem in
the complex structures used in linear ion accelerators. Generally, the cavities are long cylinders
with internal structures; the mode plot is considerably more complex than Figure 12.10. There is a
greater possibility for mode degeneracy and power coupling between modes. In some cases, it is
necessary to add metal structures to the cavity, which selectively damp competing modes.

12.5 POWER EXCHANGE WITH RESONANT CAVITIES

Power must be coupled into resonant cavities to maintain electromagnetic oscillations when there
is resistive damping or a beam load. The topic of power coupling to resonant cavities involves
detailed application of microwave theory. In this section, the approach is to achieve an
understanding of basic power coupling processes by studying three simple examples.

We have already been introduced to a cavity with the power feed located on axis. The feed
drives a beam and supplies energy lost to the cavity walls. In this case, power is electrically
coupled to the cavity because the current in the power feeds interacts predominantly with electric
fields. Although this geometry is never used for driving accelerator cavities, there is a practical
application of the inverse process of driving cavity oscillations by a beam. Figure 12.11a shows a
klystron, a microwave generator. An on-axis electron beam is injected across the cavity. The
electron beam has time-varying current with a strong Fourier component at the resonant
frequency of the cavity,ω0. We will consider only this component of the current and represent it
as a harmonic current source. The cavity has a finiteQ, resulting from wall resistance and
extraction of microwave energy.

The complete circuit model for the TM010 mode is shown in Figure 12.llb. The impedance
presented to the component of the driving beam current with frequencyω is

Assuming that and that the cavity has highQ, Eq. (12.50) reduces toω � ω0 � 1/ LC

with Q given by Eq. (12.27). The impedance is resistive; the voltage oscillation induced is in
phase with the driving current so that energy extraction is maximized. Equation (12.51) shows
that the cavity acts as a step-down transformer when the power feed is on axis. Power at low
current and high voltage (impedanceZ0

2/R) drives a high current through resistanceR.
In applications to high-energy accelerators, the aim is to use resonant cavities as step-up

transformers. Ideally, power should be inserted at low impedance and coupled to a low-current
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B(t) � B0(ρ,t) cosωt, (12.52)

beam at high voltage. This process is accomplished when energy ismagnetically coupledinto a
cavity. With magnetic coupling, the power input is close to the outer radius of the cavity;
therefore, interaction is predominantly through magnetic fields. A method for coupling energy to
the TM010 mode is illustrated in Figure 12.12a. A loop is formed on the end of a transmission line.
The loop is orientated to encircle the azimuthal magnetic flux of the TM010 mode. (A loop
optimized to drive the TE111 mode would be rotated 90� to couple to radial magnetic fields.)

We shall first consider the inverse problem of extracting the energy of a TM010 oscillation
through the loop. Assume that the loop couples only a small fraction of the cavity energy per
oscillation period. In this case, the magnetic fields of the cavity are close to the unperturbed
distribution. The magnetic field at the loop position,ρ, is

whereB0(ρ,t) is a slowly varying function of time. The spatial variation is given by Eq. (12.47).
The loop is attached to a transmission line that is terminated by a matched resistorR.

The voltage induced at the loop output depends on whether the loop current significantly affects
the magnetic flux inside the loop. As we saw in the discussion of the Rogowski loop (Section
9.14), the magnetic field inside the loop is close to the applied field when , whereL isL/R « 1/ωo
the loop inductance and 1/ωo is the time scale for magnetic field variations. In this limit, the
magnitude of the induced voltage around a loop of areaAl is . The extracted power isV � AlωoB0
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P � (AlB0ω)2/2R. (12.53)

P � [AlBo/(L/R)]2/2R. (12.54)

Power coupled out of the cavity increases asAl
2 in this regime. At the opposite extreme

( ), the loop voltage is shifted 90� in phase with respect to the magnetic field.L/R » 1/ωo
Application of Eq. (9.124) shows that the extracted power is approximately

Because the loop inductance is proportional toAl, the power is independent of the loop area in
this limit. Increasing Al increases perturbations of the cavity modes without increasing power
output. The optimum size for the coupling loop corresponds to maximum power transfer with
minimum perturbation, or .L/R � 1/ωo
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dU/dt � �U. (12.55)

Q � (1/Ql � 1/Qc)
�1. (12.56)

Z � [jωL � R(1�ω2LC)] / (1�jωRC). (12.57)

Z � R [(L/C)/R2]. (12.58)

Note that in Eqs. (12.53) and (12.54), power loss from the cavity is proportional toB0
2 and is

therefore proportional to the stored energy in the cavity,U. The quantityU is governed by the
equation

The stored energy decays exponentially; therefore, losses to the loop can be characterized by aQ
factorQl. If there are also resistive losses in the cavity characterized byQc, then the total cavityQ
is

We can now proceed to develop a simple circuit model to describe power transfer through a
magnetically coupled loop into a cavity with a resistive load on axis. The treatment is based on
our study of the transformer (Section 9.2). The equivalent circuit model is illustrated in Figure
12.12b. The quantityR represents the on-axis load. We consider the loop as the primary and the
flow of current around the outside of the cavity as the secondary. The primary and secondary are
linked together through shared magnetic flux. The loop area is much smaller than the
cross-section area occupied by cavity magnetic fields. An alternate view of this situation is that
there is a large secondary inductance, only part of which is linked to the primary.

Following the derivation of Section 9.2, we can construct the equivalent circuit seen from the
primary input (Fig. 12.12c). The part of the cavity magnetic field enclosed in the loop is
represented byLl; the secondary series inductance is L -Ll. We assume that energy transfer per
oscillation period is small and that . Therefore, the magnetic fields are close to those of anLl « L
unperturbed cavity. This assumption allows a simple estimate ofLl.

To begin, we neglect the effect of the shunt inductanceLl in the circuit of Figure 12.12c and
calculate the impedance the cavity presents at the loop input. The result is

Damping must be small for an oscillatory solution. This is true if the load resistance is high, or
. Assuming this limit and takingω = ωo, Eq. (12.57) becomesR » LC

Equation (12.58) shows that the cavity presents a purely resistive load with impedance much
smaller thanR. The combination of coupling loop and cavity act as a step-up transformer.

We must still consider the effect of the primary inductance in the circuit of Figure 12.12c. The
best match to typical power sources occurs when the total input impedance is resistive. A simple
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V(z,t) � V
�

exp[jω(t�z/v)] � V
�

exp[jω(t�z/v)]. (12.59)

I(z,t) � (V
�
/Zo) exp[jω(t�z/v)] � (V

�
/Zo) exp[jω(t�z/v)]. (12.60)

Z � V(z,t)/I(z,t). (12.61)

method of matching is to add a shunt capacitorCl, with a value chosen so thatClLl = LC. In this
case, the parallel combination ofLl andCl has infinite impedance at resonance, and the total load
is (L/C)/R. Matching can also be performed by adjustment of the transmission fine leading to the
cavity. We shall see in Section 12.6 that transmission lines can act as impedance transformers. The
total impedance will appear to be a pure resistance at the generator for input at a specific
frequency if the generator is connected to the cavity through a transmission line of the
proper length and characteristic impedance.

12.6 TRANSMISSION LINES IN THE FREQUENCY DOMAIN

In the treatment of the transmission line in Section 9.8, we considered propagating voltage pulses
with arbitrary waveform. The pulses can be resolved into frequency components by Fourier
analysis. If the waveform is limited to a single frequency, the description of electromagnetic signal
propagation on a transmission line is considerably simplified. In complex exponential notation,
current is proportional to voltage. The proportionality constant is a complex number, containing
information on wave amplitude and phase. The advantage is that wave propagation problems can
be solved algebraically, rather than through differential equations.

Voltage waveforms in a transmission line move at a velocity along the line. Av � 1/ εµ
harmonic disturbance in a transmission line may have components that travel in the positive or
negative directions. A single-frequency voltage oscillation measured by a stationary observer has
the form

Equation (12.59) states that points of constantV move along the line at speedv in either the
positive or negativez directions. As we found in Section 9.9, the current associated with a wave
traveling in either the positive or negative direction is proportional to the voltage. The constant of
proportionality is a real number,Zo. The total current associated with the voltage disturbance of
Eq. (12.59) is

Note the minus sign in the second term of Eq. (12.60). It is included to preserve the convention
that current is positive when positive waves move in the +z direction. A voltage wave with
positive voltage moving in the -z direction has negative current. The total impedance at a point is,
by definition
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If there are components ofV(z,t) moving in both the positive and negative directions,Z may not
be a real number. Phase differences arise because the sum ofV+ andV- may not be in phase with
the sum ofI+ andI -.

We will illustrate transmission line properties in the frequency-domain by the calculation of
wave reflections at a discontinuity. The geometry is illustrated in Figure 12.13. Two infinite length
transmission lines are connected at z = 0. Voltage waves at angularω frequency travel down the
line with characteristic impedanceZo toward the line with impedanceZL. If ZL = Zo, the waves
travel onward with no change and disappear down the second line. IfZL � Zo, we must consider
the possibility that wave reflections take place at the discontinuity. In this case, three wave
components must be included:

1. The incident voltage wave, of form is specified. The current of theV
�
exp[jω(t�z/v)]

wave is .(V
�
/Zo)exp[jω(t�z/v)]

2. Some of the incident wave energy may continue through the connection into the second
line. The wave moves in the +z direction and is represented by . TheVLexp[jω(t�z/v �)]
current of thetransmitted waveis . There is no negatively directed(VL/ZL)exp[jω(t�z/v �)]
wave in the second line because the line has infinite length.

3. Some wave energy may be reflected at the connection, leading to a backward-directed
wave in the first fine. The voltage and current of the reflected wave areV

�
exp[jω(t�z/v)]

and .�(V
�
/Zo)exp[jω(t�z/v)]

The magnitudes of the transmitted and reflected waves are related to the incident wave and the
properties of the lines by applying the following conditions at the connection point (z = 0):
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V
�

exp(jωt) � V
�

exp(jωt) � VL exp(jωt), (12.62)

(V
�
/Zo) exp(jωt) � (V

�
/Zo) exp(jωt) � (VL/ZL) exp(jωt). (12.63)

ρ � (V
�
/V

�
) � (ZL�Zo)/(ZL�Zo), (12.64)

τ � (VL/V
�
) � 2ZL/(ZL�Zo). (12.65)

1.The voltage in the first line must equal the voltage in the second line at the connection.

2. All charge that flows into the connection must flow out.

The two conditions can be expressed mathematically in terms of the incident, transmitted, and
reflected waves.

Canceling the time dependence, Eqs. (12.62) and (12.63) can be solved to relate the reflected and
transmitted voltages to the incident voltage:

Equations (12.64) and (12.65) define the reflection coefficientρ and the transmission coefficient
τ. The results are independent of frequency; therefore, they apply to transmission and reflection of
voltage pulses with many frequency, components. Finally, Eqs. (12.64) and (12.65) also hold for
reflection and absorption of waves at a resistive termination, because an infinite length
transmission line is indistinguishable from a resistor withR = ZL.

A short-circuit termination hasZL = 0. In this case,ρ = -1 andτ = 0. The wave is reflected with
inverted polarity, in agreement with Section 9.10. There is no transmitted wave. WhenZL 	 


there is again no transmitted wave and the reflected wave has the same voltage as the incident
wave. Finally, ifZL = Zo, there is no reflected wave andτ = 1; the lines are matched.

As a final topic, we consider transformations of impedance along a transmission line. As shown
in Figure 12.14, assume there is a loadZL at z = 0 at the end of a transmission line of lengthl and
characteristic impedanceZo. The load may consist of any combination of resistors, inductors, and
capacitors; therefore,ZL may be a complex number. A power source, located at the point z = -l
produces a harmonic input voltage,Voexp(jωt). The goal is to determine how much current the
source must supply in order to support the input voltage. This is equivalent to calculating the
impedance Z(-l).

The impedance at the generator is generally different fromZL. In this sense, the transmission line
is animpedance transformer. This property is useful for matching power generators to loads that
contain reactive elements. In this section, we shall find a mathematical expression for the
transformed impedance. In the next section, we shall investigate some of the implications of the
result .
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V(0) � V
�
� V

�
, (12.66)

I(0) � (V
�
/Zo) � (V

�
/Zo). (12.67)

V(�l) � V
�

exp(�jlω/v) � V
�

exp(�jlω/v), (12.68)

I(�l) � (V
�
/Zo) exp(�jlω/v) � (V

�
/Zo) exp(�jlω/v). (12.69)

V
�
/V

�
� (ZL�Zo)/(ZL�Zo). (12.70)

Z(�l) � Zo

exp(jlω/v) � (ZL�Zo)exp(�lω/v)/(ZL�Zo)

exp(jlω/v) � (ZL�Zo)exp(�lω/v)/(ZL�Zo)

� Zo

ZL[exp(jlω/v) � exp(�jlω/v)] � Zo[exp(jlω/v) � exp(�jlω/v)]

ZL[exp(jlω/v) � exp(�jlω/v)] � Zo[exp(jlω/v) � exp(�jlω/v)]

� Zo

ZL cos(2πl/λ) � jZo sin(2πl/λ)

Zo cos(2πl/λ) � jZL sin(2πl/λ)
.

(12.71)

Voltage waves are represented as in Eq. (12.59). Both a positive wave traveling from the
generator to the load and a reflected wave must be included. All time variations have the form
exp(jωt). Factoring out the time dependence, the voltage and current atz = 0 are

The voltage and current at z = -l are

Furthermore, the treatment of reflections at a line termination [Eq. (12.64)] implies that

Taking , and substituting from q. (12.70), we find thatZ(�l) � V(�l)/I(�l)
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Z(�l) � jZo tan(2πl/λ). (12.72)

l � λ/4, 3λ/4, 5λ/4,... (12.73)

ω1 � πv/2l, ω2 � 3πv/2l, ω1 � 5πv/2l, ... . (12.74)

where . In summary, the expressions of Eq. (12.71) give the impedance at the inputω/v � 2π/λ.
of a transmission line of lengthl terminated by a loadZL.

12.7 TRANSMISSION LINE TREATMENT OF THE RESONANT CAVITY

In this section, the formula for the transformation of impedance by a transmission line [Eq.
(12.71)] is applied to problems related to resonant cavities. To begin, consider terminations at the
end of a transmission line with characteristic impedanceZo and lengthl. The terminationZL is
located atz = 0 and the voltage generator atz = -l. If ZL is a resistor withR = Zo, Eq. (1 2.71)
reduces to Z(-l) = Zo, independent of the length of the line. In this case, there is no reflected wave,
The important property of the matched transmission line is that the voltage wave at the
termination is identical to the input voltage wave delayed by time intervall/v. Matched lines are
used to conduct diapostic signals without distortion.

Another interesting case is the short-circuit termination,ZL = 0. The impedance at the line input
is

The input impedance is zero when . An interesting result is that the shortedl � 0, λ/2, 3λ/2,...
line has infinite input impedance (open circuit) when

A line with length given by Eq. (12.73) is called aquarter wave line.
Figure 12.15 illustrates the analogy between a cylindrical resonant cavity and a quarter wave

line. A shorted radial transmission line of lengthl has power input at frequencyω at the inner
diameter., Power flow is similar to that of Figure 12.2. If the frequency of the input power
matches one of the resonant frequencies of the line, then the line has an infinite impedance and
power is transferred completely to the load on axis. The resonant frequencies of the radial
transmission line are

These frequencies differ somewhat from those of Table 12.1 because of geometric differences
between the cavities.

The quarter wave line has positive and negative-going waves. The positive wave reflects at the
short-circuit termination giving a negative-going wave with 180� phase shift. The voltages of the
waves subtract at the termination and add at the input (z = -l). The summation of the voltage
waves is a standing-wave pattern:
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V(z,t) � V0 sin(�πz/2l) exp(jωt).

At resonance, the current of the two waves at z =l is equal and opposite. The line draws no
current and has infinite impedance. At angular frequencies belowω1, inspection of Eq. (12.72)
shows thatZ � +j; thus, the shorted transmission line acts like an inductor. For frequencies above
w1, the line has Z� -j; it acts as a capacitive load. This behavior repeats cyclically about higher
resonant frequencies.

A common application of transmission lines is power matching from a harmonic voltage
generator to a load containing reactive elements. We have already studied one example of power
matching, coupling of energy into a resonant cavity by a magnetic loop (Section 12.5). Another
example is illustrated in Figure 12.16. An ac generator drives anacceleration gap. Assume, for
simplicity, that the beam load is modeled as a resistorR. The generator efficiency is optimized
when the total load is resistive. If the load has reactive components, the generator must supply
displacement currents that lead to internal power dissipation. Reactances have significant effects
at high frequency. For instance, displacement current is transported through the capacitance
between the electrodes of the accelerating gaps,Cg. The displacement current is comparable to
the load current when . In principle, it is unnecessary for the power supply to supportω � 1/RCg
displacement currents because energy is not absorbed by reactances. The strategy is to add circuit
elements than can support the reactive current, leaving the generator to supply power only to the
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resistive load. This is accomplished in the acceleration gap by adding a shunt inductance with
value , whereωo is the generator frequency. The improvement of the Wideroe linacL � 1/ω2

oCg
by the addition of resonant cavities (Section 14.2) is an example of this type of matching.

Section 12.5 shows that a coupling loop in a resonant cavity is a resistive load at the driving
frequency if the proper shunt capacitance is added. Matching can also be accomplished by
adjusting the length of the transmission line connecting the generator to the loop. At certain
values of line length, the reactances of the transmission line act in concert with the reactances of
the loop to support displacement current internally. The procedure for finding the correct length
consists of adjusting parameters in Eq. (12.71) with Z1 equal to the loop impedance until the
imaginary part of the right-hand side is equal to zero. In this circumstance, the generator sees a
purely resistive load. The search for a match is aided by use of the Smith chart; the procedure is
reviewed in most texts on microwaves.

12.8 WAVEGUIDES

Resonant cavities have finite extent in the axial direction. Electromagnetic waves are reflected at
the axial boundaries, giving rise to the standing-wave patterns that constitute resonant modes. We
shall remove the boundaries in this section and study electromagnetic oscillations that travel in the
axial direction. A structure that contains a propagating electromagnetic wave is called a
waveguide. Consideration is limited to metal structures with uniform cross section and infinite
extent in thez direction. In particular, we will concentrate on the cylindrical waveguide, which is
simply a hollow tube.
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Waveguides transport electromagnetic energy. Waveguides are often used in accelerators to
couple power from a microwave source to resonant cavities. Furthermore, it is possible to
transport particle beams in a waveguide in synchronism with the wave phase velocity so that they
continually gain energy. Waveguides used for direct particle acceleration must support slow
waves with phase velocity equal to or less than the speed of light. Slow-wave structures have
complex boundaries that vary periodically in the axial direction; the treatment of slow waves is
deferred to Section 12.9.

Single-frequency waves in a guide have fields of the form or .exp[j(ωt�kz)] exp[j(ωt�kz)]
Electromagnetic oscillations move along the waveguide at velocityω/k. In contrast to
transmission lines, waveguides do not have a center conductor. This difference influences the
nature of propagating waves in the following ways:

1. The phase velocity in a waveguide varies with frequency. A structure with
frequency-dependent phase velocity exhibitsdispersion. Propagation in transmission lines
is dispersionless.

2. Waves of. any frequency can propagate in a transmission line. In contrast,
low-frequency waves cannot propagate in a waveguide. The limiting frequency is called
thecutoff frequency.

3. The phase velocity of waves in a waveguide is greater than the speed of light. This does
not violate the principles of relativity since information can be carried only by modulation
of wave amplitude or frequency. The propagation velocity of frequency modulations is the
group velocity, which is always less than the speed of light in a waveguide.

The properties of waveguides are easily demonstrated by a lumped circuit element analogy. We
can generate a circuit model for a waveguide by starting from the transmission line model
introduced in Section 9.9. A coaxial transmission line is illustrated in Figure 12.17a. At
frequencies low compared to , the field pattern is the familiar one with radial1/(Ro�Ri) εµ
electric fields and azimuthal magnetic fields. This field is a TEM (transverse electric and magnetic)
mode; both the electric and magnetic fields are transverse to the direction of propagation.
Longitudinal current is purely real, carried by the center conductor. Displacement current flows
radially; longitudinal voltage differences result from inductive fields. The equivalent circuit model
for a section of line is shown in Figure 12.17a.

The field pattern may be modified when the radius of the center conductor is reduced and the
frequency is increased. Consider the limit where the wavelength of the electromagnetic
disturbance, , is comparable to or less than the outer radius of the line. In this case,λ � 2π/k
voltage varies along the high-inductance center conductor on a length scale� Ro. Electric field
lines may directly connect regions along the outer conductor (Fig. 12.17b). The field pattern is no
longer a TEM mode because there are longitudinal components of electric field. Furthermore, a
portion of the longitudinal current flow in the transmission line is carried by displacement current.
An equivalent circuit model for the coaxial transmission line at high frequency is shown in Figure
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12.17b. The capacitance between the inner and outer conductors,C2, is reduced. The flow of real
current through inductorL2 is supplemented by axial displacement current through the series
combination ofC1 andL1. The inductanceL1 is included because displacement currents generate
magnetic fields.

As the diameter of the center conductor is reduced, increasingL2, a greater fraction of the axial
current is carried by displacement current. Thelimit whereRi 	 0 is illustrated in Figure 12.17c.
All axial current flow is via displacement current;L2 is removed from the mode. The field pattern
and equivalent circuit model are shown. We can use the impedance formalism to find the
appropriate wave equations for the circuit of Figure 12.17c. Assume that there is a wave
moving in the + z direction and take variations of voltage and current as
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V � V
�

exp[j(ωt�kz)] and I � I
�

exp[j(ωt�kz)].

∆V � �I (�j∆z/ωc1 � jωl1∆z),

�V/�z � � (�j/ωc1 � jωl1) I (12.76)

∆I � �jc2∆zω V,

�I/�z � �jωc2 V. (12.77)

�
2V/�z2

� �k2 V � jωc2 (�j/ωc1 � jωl1) V � (c2/c1 � ω2l1c2) V. (12.78)

k � c2/c1 ω2/ω2
c � 1. (12.79)

ω/k � c1/c2 ωc / 1 � ω
2
c/ω

2.

The waveguide is separated into sections of length∆z. The inductance of a section isl1∆z wherel1

is the inductance per unit length. The quantityC2 equalsc2∆z, wherec2 is the shunt capacitance
per unit length in farads per meter. The series capacitance is inversely proportional to length, so
that , wherec1 is the series capacitance of a unit length. The quantityc1 has units ofC1 � c1∆z
farad-meters. The voltage drop across an element is the impedance of the element multiplied by
the current or

or

The change in longitudinal current occurring over an element is equal to the current that is lost
throughC2 to ground

or

Equations (12.76) and (12.77) can be combined to the single-wave equation

Solving for k and letting , we find thatωc � 1/ l1c1

Equation (12.79) relates the wavelength of the electromagnetic disturbance in the cylindrical
waveguide to the frequency of the waves. Equation (12.79) is a dispersion relationship. It
determines the phase velocity of waves in the guide as a function of frequency:
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E(r,θ,z,t) � E(r,θ) exp[j(ωt�kz)], (12.80)

B(r,θ,z,t) � B(r,θ) exp[j(ωt�kz)]. (12.81)

� × E � �jωB, (12.82)

� × B � �jωεµE. (12.83)

�
2E � �k2

o E, (12.84)

�
2B � �k2

o B. (12.85)

Note that the phase velocity is dispersive. It is minimum at high frequency and approaches infinity
as . Furthermore, there is acutoff frequency, ωc, below which waves cannot propagate. Theω	ωc
wavenumber is imaginary belowωc. This implies that the amplitude of low-frequency waves
decreases along the guide. Low-frequency waves are reflected near the input of the waveguide;
the waveguide appears to be a short circuit.

The above circuit model applies to a propagating wave in the TM01 mode. The term TM refers
to the fact that magnetic fields are transverse; only electric fields have a longitudinal component.
The leading zero indicates that there is azimuthal symmetry; the 1 indicates that the mode has the
simplest possible radial variation of fields. There are an infinite number of higher-order modes that
can occur in a cylindrical transmission line. We will concentrate on the TM01 mode because it has
the optimum field variations for particle acceleration. The mathematical methods can easily be
extended to other modes. We will now calculate properties of azimuthally symmetric modes in a
cylindrical waveguide by direct solution of the field equations. Again, we seek propagating
disturbances of the form

With the above variation and the condition that there are no free charges or current in the
waveguide, the Maxwell equations [Eqs. (3.11) and (3.12)] are

Equations (12.82) and (12.83) can be combined to give the two wave equations

where .ko � εµ ω � ω/v
The quantityko is thefree-space wavenumber; it is equal to 2π/λo, whereλo is the wavelength of

electromagnetic waves in the filling medium of the waveguide in the absence of the boundaries.
In principle, either Eq. (12.84) or (12.85) could be solved for the three components ofE or B,

and then the corresponding components ofB or E found through Eq. (12.82) or (12.83). The
process is complicated by the boundary conditions that must be satisfied at the wall radius,Ro:
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E
�
(Ro) � 0, (12.86)

B
�
(Ro) � 0. (12.87)

jkE
θ
� �jωBr, (12.88)

(1/r) �(rE
θ
)/�r � �jωBz, (12.89)

�jkEr � �Ez/�r � �jωB
θ
, (12.90)

jkB
θ
� �j(k2

o /ω) Er, (12.91)

(1/r) �(rB
θ
)/�r � �j(k2

o /ω) Ez, (12.92)

�jkBr � �Bz/�r � �j(k2
o /ω) E

θ
. (12.93)

Br � �jk (�Bz/�r) / (k2
o � k2), (12.94)

Er � �jk (�Ez/�r) / (k2
o � k2), (12.95)

B
θ
� �j(k2/ω) (�Ez/�r) / (k2

o � k2), (12.96)

E
θ
� �jω (�Bz/�r) / (k2

o � k2). (12.97)

Equations (12.86) and (12.87) refer to the vector sum of components; the boundary conditions
couple the equations for different components. An organized approach is necessary to make the
calculation tractable.

We will treat only solutions with azimuthal symmetry. Setting = 0, the component forms�/�θ
of Eqs. (12.82) and (12.83) are

These equations can be manipulated algebraically so that the transverse fields are proportional to
derivatives of the longitudinal components:

Notice that there is no solution if bothBz andEz equal zero; a waveguide cannot support a TEM
mode. Equations (12.94)-(12.97) suggest a method to simplify the boundary conditions on the
wave equations. Solutions are divided into two categories: waves that haveEz = 0 and waves that
haveBz = 0. The first type is called a TE wave, and the second type is called a TM wave. The first
type has transverse field componentsBr andE

θ
. The only component of magnetic field

perpendicular to the metal wall isBr. SettingBr = 0 at the wall implies the simple, decoupled
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�Bz(Ro)/�r � 0. (12.98)

Ez(Ro) � 0. (12.99)

�
2Ez � (1/r) (�/�r) (�Ez/�r) � k2Ez � �k2

o Ez, (12.100)

Ez(r,z,t) � Eo J0 k2
o�k2r exp[j(ωt�kz)] (12.101)

k2
o � k2

� x2
n /R2

o , (12.102)

k � εµω2
� x2

n /R2
o , (12.103)

boundary condition

Equation (1 2.98) implies thatE
θ
(Ro) = 0 andBr(Ro) = 0. The wave equation for the axial

component ofB [Eq. (12.85)] can be solved easily with the above boundary condition. GivenBz,
the other field components can be calculated from Eqs. (12.94) and (12.97).

For TM modes, the transverse field components areEr andB
θ
. The only component of electric

field parallel to the wall isEz so that the boundary condition is

Equation (12.84) can be used to findEz; then the transverse field components are determined
from Eqs. (12.95) and (12.96). The solutions for TE and TM waves are independent. Therefore,
any solution with bothEz andBz can be generated as a linear combination of TE and TM waves.
The wave equation forEz of a TM mode is

with Ez(Ro) = 0. The longitudinal contribution to the Laplacian follows from the assumed form of
the propagating wave solution. Equation (12.100) is a special form of the Bessel equation. The
solution is

The boundary condition of Eq. (12.99) constraints the wavenumber in terms of the free-space
wavenumber:

wherexn = 2.405,5.520,... . Equation (12.102) yields the following dispersion relationship for
TM0n modes in a cylindrical waveguide:

The mathematical solution has a number of physical implications. First, the wavenumber of
low-frequency waves is imaginary so there is no propagation. The cutoff frequency of the TM01

mode is
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ωc � 2.405/ εµRo. (12.104)

λ � λo / 1 � ω
2
c/ω

2. (12.105)

ω/k � 1 / εµ 1 � ω
2
c/ω

2. (12.106)

Near cutoff, the wavelength in the guide approaches infinity. The free-space wavelength of a
TM01 electromagnetic wave at frequencyωc is . The free-space wavelength is aboutλo � 2.61Ro
equal to the waveguide diameter; waves with longer wavelengths are shorted out by the metal
waveguide walls.

The wavelength in the guide is

The phase velocity is

Note that the phase velocity in a vacuum waveguide is always greater than the speed of light.
The solution of the field equations indicates that there are higher-order TM0n waves. The cutoff

frequency for these modes is higher. In the frequency range to , the2.405/ εµRo 5.520/ εµRo
only TM mode that can propagate is the TM01 mode. On the other hand, a complete solution for
all modes shows that the TE11 has the cutoff frequency which is lower thanωc � 1.841/ εµRo
that of the TM01 mode. Precautions must be taken not to excite the TE11 mode because: 1) the
waves consume rf power without contributing to particle acceleration and 2) the on-axis radial
electric and magnetic field components can cause deflections of the charged particle beam.

12.9 SLOW-WAVE STRUCTURES

The guided waves discussed in Section 12.8 cannot be used for particle acceleration because they
have phase velocity greater thanc. It is necessary to generate slow waves with phase velocity less
thanc. It is easy to show that slow waves cannot propagate in waveguides with simple
boundaries. Consider, for instance, waves with electric field of the form exp[j(ωt - kz)] with
ω/k < c in a uniform cylindrical pipe of radiusRo. Because the wave velocity is assumed less than
the speed of light, we can make a transformation to a frame moving at speeduz = ω/k. In this
frame, the wall is unchanged and the wave appears to stand still. In the wave rest frame the
electric field is static. Because there are no displacement currents, there is no magnetic field. The
electrostatic field must be derivable from a potential. This is not consistent with the fact that the
wave is surrounded by a metal pipe at constant potential. The only possible static field solution
inside the pipe isE = 0.

Slow waves can propagate when the waveguide has periodic boundaries. The properties of slow
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ω/k � 1/ LC. (12.107)

waves can be derived by a formal mathematical treatment of wave solutions in a periodic
structure. In this section, we shall take a more physical approach, examining some special cases to
understand how periodic structures support the boundary conditions consistent with slow waves.
To begin, we consider the effects of the addition of periodic structures to the transmission line of
Figure 12.18a. If the region between electrodes is a vacuum, TEM waves propagate withω/k =
c. The line has a capacitanceC and inductanceL per unit length given by Eqs. (9.71) and (9.72).
We found in Section 9.8 that the phase velocity of waves in a transmission line is related to these
quantities by

Consider reconstructing the line as shown in Figure 12.18b. Annular metal pieces calledirisesare
attached to the outer conductor. The irises have inner radiusR and spacingδ.

The electric field patterns for a TEM wave are sketched in Figure 12.18b in the limit that the
wavelength is long compared toδ. The magnetic fields are almost identical to those of the
standard transmission line except for field exclusion from the irises; this effect is small if the irises
are thin. In contrast, radial electric fields cannot penetrate into the region between irises. The
electric fields are restricted to the region between the inner conductor and inner radius of the
irises. The result is that the inductance per unit length is almost unchanged, butC is significantly
increased. The capacitance per unit length is approximately
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C � 2πε / ln(R/Ri). (12.108)

ω/k � c ln(R/Ri) / ln(Ro/Ri). (12.109)

Z � L/C � Zo ln(Ro/Ri) / ln(R/Ri). (12.109)

The phase velocity as a function ofR/Ro is

The characteristic impedance for TEM waves becomes

The phase velocity and characteristic impedance are plotted in Figure 12.19 as a function ofR/Ri.
Note the following features:

1.The phase velocity decreases with increasing volume enclosed between the irises.

2.The phase velocity is less than the speed of light.

3.The characteristic impedance decreases with smaller iris inner radius.
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λ � 2πδ/∆φ. (12.111)

v(phase) � ωo/k � (2.405/∆φ) (δ/R0) c. (12.112)

∆φ � 2.405 δ/R0 or λ < R0/2.405. (12.113)

4.In the long wavelength limit ( ), the phase velocity is independent of frequency. This is notλ » δ

true when . A general treatment of the capacitively loaded transmission line is given inλ � δ

Section 12.10.
A similar approach can be used to describe propagation of TM01 modes in an iris-loaded

waveguide (Fig. 12.18c). At long wavelength the inductanceL1 is almost unchanged by the
presence of irises, but the capacitancesC1 andC2 of the lumped element model is increased. The
phase velocity is reduced. Depending on the geometry of the irises, the phase velocity may be
pulled belowc. Capacitive loading also reduces the cutoff frequencyωc. In the limit of strong
loading ( ), the cutoff frequency for TM01 waves approaches the frequency of the TM010R « Ro
mode in a cylindrical resonant cavity of radiusRo.

The following model demonstrates how the irises of a loaded waveguide produce the proper
boundary fields to support an electrostatic field pattern in the rest frame of a slow wave. Consider
an iris-loaded waveguide in the limit that (Fig. 12.18c). The sections between irises areR « Ro
similar to cylindrical resonant cavities. A traveling wave moves along the axis through the small
holes; this wave carries little energy and has negligible effect on the individual cavities. Assume
that cavities are driven in the TM010 mode by external power feeds; the phase of the
electromagnetic oscillation can be adjusted ineach cavity. Such a geometry is called an
individually phased cavity array. In the limit , the cavity fields atR are almost pureEz fields.λ » δ

These fields can be matched to the longitudinal electric field of a traveling wave to determine the
wave properties.

Assume thatδ is longitudinally uniform and that there is a constant phase difference -∆φ between
adjacent cavities. The input voltage has frequency . Figure 12.20 is a plot ofω � 2.405c/Ro
electric field atR in a number of adjacent cavities separated by a constant phase interval at different
times. Observe that the field at a particular time is a finite difference approximation to a sine wave
with wavelength

Comparison of plots at different times shows that the waveform moves in the
+z direction at velocity

The phase velocity is high at long wavelength. A slow wave results when

In the rest frame of a slow wave, the boundary electric fields atR approximate a static sinusoidal
field pattern. Although the fields oscillate inside the individual cavities between irises, the electric
field at R appears to be static to an observer moving at velocityω/k. Magnetic fields are confined
within the cavities. The reactive boundaries, therefore, are consistent with an axial variation of
electrostatic potential in the wave rest frame.
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vg � dω/dk. (12.114)

12.10 DISPERSION RELATIONSHIP FOR THE IRIS-LOADED
WAVEGUIDE

The dispersion relationshipω = ω(k) is an equation relating frequency and wavenumber for a
propagating wave. In this section, we shall consider the implications of dispersion relationships for
electromagnetic waves propagating in metal structures. We are already familiar with one quantity
derived from the dispersion relationship, the phase velocityω/k. The group velocityvg is another
important parameter. It is the propagation velocity for modulations of frequency or amplitude.
Waves with constant amplitude and frequency cannot carry information; information is conveyed
by changes in the wave properties. Therefore, the group velocity is the velocity for information
transmission. The group velocity is given by

Equation (12.114) can be derived through the calculation of the motion of a pulsed disturbance
consisting of a spectrum of wave components. The pulse is Fourier analyzed into frequency
components; a Fourier synthesis after a time interval shows that the centroid of the pulse moves if
the wavenumber varies with frequency.

As an example of group velocity, consider TEM electromagnetic waves in a transmission line.
Frequency and wavenumber are related simply by . Both the phase and groupω � k/ εµ � kv
velocity are equal to the speed of light in the medium. There is no dispersion; all frequency
components of a pulse move at the same rate through the line; therefore, the pulse translates with
no distortion. Waves in waveguides have dispersion. In this case, the components of a pulse move
at different velocities and a pulse widens as it propagates.

The group velocity has a second important physical interpretation. In most circumstances, the
group velocity is equal to the flux of energy in a wave along the direction of propagation divided
by the electromagnetic energy density. Therefore, group velocity usually characterizes energy
transport in a wave.

Dispersion relationships are often represented as graphs ofω versusk. In this section, we shall
constructω-k plots for a number of wave transport structures, including the iris-loaded waveguide.
The straight-line plot of Figure 12.21a corresponds to TEM waves in a vacuum transmission line.
The phase velocity is the slope of a line connecting a point on the dispersion curve to the origin.
The group velocity is the slope of the dispersion curve. In this case, both velocities are equal toc
at all frequencies.

Figure 12.21b shows anω-k plot for waves passing along the axis of an array of individually
phased circular cavities with small coupling holes. The curve is plotted for an outer radius ofR0 =
0.3 m and a distance of 0.05 m between irises. The frequency depends only on the cavity properties
not the wavelength of the weak coupling wave. Only discrete frequencies correspond ing to cavity
resonances are allowed, The reactive boundary conditions for azimuthally symmetric slow waves
can be generated by any TM0n0 mode. Choice of the relative phase,∆φ, determinesk for the
propagating wave. Phase velocity and group velocity are indicated in Figure 12.21b. The line
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corresponding toω/k = c has also been plotted. At short wavelengths (largek), the phase velocity
can be less thanc. Note that sinceω is not a function ofk, the group velocity is zero. Therefore,
the traveling wave does not transport energy between the cavities. This is consistent with the
assumption of small coupling holes. The physical model of Section 12.8 is not applicable for
wavelengths less than 2δ; this limit has also been indicated on theω/k graph.

The third example is the uniform circular waveguide. Figure 12.21c shows a plot of Eq. (12.103)
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for a choice ofR0 = 0.3 m. Curves are included for the TM01, TM02, and TM03 modes. Observe that
wavenumbers are undefined for frequency less thanωc. The group velocity approaches zero in the
limit that ,. When energy cannot be transported into the waveguide becausek =ω 	 ωc ω � ωc
0. The group velocity is nonzero at short wavelengths (largek). The boundaries have little effect
when ; in this limit, theω-k plot approaches that of free-space waves,ω/k = c. At longλ « R
wavelength (smallk), the oscillation frequencies approach those of TM0n0 modes in an axially
bounded cavity with radiusR. The phase velocity in a waveguide is minimum at long wavelength;
it can never be less thanc.

As a fourth example, consider the dispersion relationship for waves propagating in the
capacitively loaded transmission line of Figure 12.22a. This example illustrates some general
properties of waves in periodic structures and gives an opportunity to examine methods for
analyzing periodic structures mathematically. The capacitively loaded transmission line can be
considered as a transmission line with periodic impedance discontinuities. The discontinuities arise
from the capacitance between the irises and the center conductor. An equivalent circuit is shown in
Figure 12.22b; it consists of a series of transmission lines of impedanceZo and lengthδ with a
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V(z�δ) � � V
�

exp(�ωδ/v) � V
�

exp(ωδ/v)

� (V
�
�V

�
) cos(ωδ/v) � j (V

�
�V

�
) sin(ωδ/v)

� V(z) cos(ωδ/v) � jZo I(z) sin(ωδ/v).

(12.115)

I(z�δ) � I(z) cos(ωδ/v) � j V(z) sin(ωδ/v)/Zo. (12.116)

V(z�δ)

I(z�δ)
�

cos(ωδ/v) �jZo sin(ωδ/v)

�j sin(ωδ/v)/Zo cos(ωδ/v)

V(z)

I(z)
(12.117)

V �
� V(z�δ), (12.118)

I �
� I(z�δ) � jωCs V(z�δ). (12.119)

V �

I �

�

1 0

�jωCs 1)

V(z�δ)

I(z�δ)
. (12.120)

shunt capacitance Cs at the junctions. The goal is to determine the wavenumber of harmonic waves
propagating in the structure as a function of frequency. Propagating waves may have both
positive-going and negative-going components.

Equations (12.68) and (12.69) can be used to determine the change in the voltage and current of
a wave passing through a section of transmission line of lengthδ. Rewriting Eq. (12.68),

The final form results from expanding the complex exponentials [Eq. (12.5)] and applying Eqs.
(12.66) and (12.67). A time variation exp(jωt) is implicitly assumed. In a similar manner, Eq.
(12.69) can be modified to

Equations (12.115) and (12.116) can be united in a single matrix equation,

The shunt capacitance causes the following changes in voltage and current propagating across the
junction:

In matrix notation, Eqs. (12.118) and (12.119) can be written,

The total change in voltage and current passing through one cell of the capacitively loaded
transmission line is determined by multiplication of the matrices in Eqs. (12.117) and (12.120):
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V �

I �

�

cos(ωδ/v) �jZo sin(ωδ/v)

�j [ωCscos(ωδ/v)�sin(ωδ/v)/Zo] cos(ωδ/v)�ωCsZosin(ωδ/v)

V

I
(12.117)

cos(kδ) � cos(ωδ/v) � (CsZov/2δ) (ωδ/v) sin(ωδ/v). (12.122)

Applying the results of Section 8.6, the voltage and current at the cell boundaries vary
harmonically along the length of the loaded transmission line with phase advance given by

, whereM is the transfer matrix for a cell [Eq. (12.121)]. Ifk is the wavenumber ofcosµ � TrM/2
the propagating wave, the phase advance over a cell of lengthδ is . Taking the trace of theµ � kδ
matrix of Eq. (12.121) gives the following dispersion relationship for TEM waves in a capacitively
loaded transmission line:

Equation (12.122) is plotted in Figure 12.23 for three choices of . In thelimit of no(CsZov/2δ)
loading (Cs = 0), the dispersion relationship reduces to that of an unloaded line; both the group and
phase velocities equalv (the velocity of light in the medium filling the line). With loading, the phase
velocity is reduced belowv (slow waves). The long wavelength (smallk) results agree with the
analysis of Section 12.9; the phase velocity and group velocity are independent of frequency. The
wave characteristics deviate considerably from those of a TEM wave in an unloaded line whenk
approachesπ/δ. The group velocity approaches zero when . In this case, the wave is aλ/2 	 δ

standing-wave pattern with equal components of positive-going and negative-going waves. The
feature is explained below in terms of constructive interference of wave reflections from the line
discontinuities. The form of Eq. (12.122) implies that the dispersion plot repeats periodically for
higher values of wavenumber.

The final example of a dispersion curve is the iris-loaded waveguide. Theω-k diagram is
important in designing traveling wave particle accelerators; the phase velocity must match the
particle velocity at all points in the accelerator, and the group velocity must be high enough to
transport power through the structure effectively. In this calculation, we will determine how the
size of the aperture (R) affects a TM01 wave moving through the coupling holes. We will limit
attention to the long wavelength limit ( ). The iris spacing and outer radius are assumedλ > 2δ
constant. We have already treated two special cases,R/R0 = 1 (uniform circular waveguide) and
R/R0 = 0 (independently phased array). Curves for these limits are plotted on Figure 12.24.
Consider an intermediate case such asR/R0 = 0.5. At long wavelength, inspection of the curves for
the limiting cases infers that the frequency approachesω = 2.405c/R0. This behavior can be
understood if we consider a long wavelength TM01 mode in an ordinary waveguide of radiusR0.
The magnetic field is azimuthal, while the electric field is predominantly axial. The addition of thin
irises has negligible effect on the electric and magnetic field lines because the oscillating fields
induce little net current flow on the irises. In the long wavelength limit, electric fields of the TM01

mode are relatively unaffected by the radial metal plates. Current flow induced on the irises by
oscillating magnetic field is almost equal and opposite on the upstream and downstream sides. The
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Ez(reflected) � � exp[j(ωt � 2πδk)] � � exp(jωt) cos(2nkδ). (12.123)

only effect is exclusion of magnetic field from the interior of the thin irises.
We can understand theω-k diagram at short wavelengths by approximating the wave as a

free-space plane wave. The irises represent discontinuities in the waveguide along the direction of
propagation; some of the wave energy may be reflected at the discontinuity. Depending on the
geometry, there is the possibility of constructive interference of the reflected waves. To understand
this, assume that transmitted and reflected waves are observed at the pointz = 0. Irises are located
at distancesδ, 2δ, 3δ, .. ., nδ downstream. A waveform reaches a particular iris at a timenδ/(ω/k)
after it passes the pointz = 0. A reflected wave from the iris takes a time to return to thenδ/(ω/k)
origin. The sum of reflected waves at z = 0 is therefore
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The summation of Eq. (12.123) diverges when . In this case, there is a strong reflectedk � π/δ
wave. The final state has equipartition of energy between waves traveling in the +z and -z
directions; therefore, a standing-wave pattern with zero group velocity is set up.

We can estimate the frequency of the standing wave at by calculating the resonantk � π/δ
frequency of a hollow annular cavity with specified inner radius. In the limit , resonantδ « (Ro�Ri)
frequencies of TM0n0 modes are determined by solving Eq. (12.42) with boundary conditions
Ez(Ro) = 0 and . The latter condition comes about because the axial displacementB

θ
(R) � 0

current betweenr = 0 andr = R is small. The boundary condition can be rewritten as
. The resonant frequencies are determined by the solutions of the transcendentaldEz(R)/dr � 0

equation:
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J1(ωR/c) Y0(ωR0/c)

J0(ωR0/c) Y1(ωR/c)
� 1 (12.124)

Resonant frequencies as a function ofR/R0 are plotted in Figure 12.25 for the TM01 and TM02

modes. For our example [R/R0 = 0.5], the frequency of the hollow cavity is about 50% higher than
that of the complete cavity. This value was incorporated in the plot of Figure 12.24.

Consider some of the implications of Figure 12.24. In the limit of small coupling holes, the
cavities are independent. We saw in discussing individually phased cavities that phase velocities
much less than the speed of light can be generated by the proper choice of the phasing andδ/R.
Although there is latitude to achieve a wide range of phase velocity in the low coupling limit, the
low group velocity is a disadvantage. Low group velocity means that energy cannot be coupled
between cavities by a traveling wave.

The interdependence of phase and group velocity in a periodic structure enters into the design of
rf linear accelerators (Chapter 14). In an accelerator for moderate- to high-energy electrons, the
phase velocity is close toc. Inspection of Figure 12.24 shows that this value of phase velocity can
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be achieved in a structure with substantial coupling holes and a high value of group velocity. This
means that a useful traveling wave can be excited in an extended structure with nonzero wall
resistivity by a single power input. The boundary cavities between irises are excited by energy
carried by the traveling wave. This approach is not suitable for linear ion accelerators, where the
phase velocity must be well below the speed of light. This is the reason linear ion accelerators
generally use external rf coupling of individual cavities to synthesize a slow traveling wave on axis.

In the above derivation, we concentrated on TM01 waves over the wavenumher range
. This is the range generally encountered in accelerator applications. We should0 < k < π/δ

recognize, nonetheless, that higher-order modes and traveling waves with can beλ < 2δ
propagated. The completeω-k plot for a periodic waveguide structure is called aBrillouin
diagram[ L. Brillouin. Wave Propagation in Periodic Structures, Dover, New York, 1953]. An
example is illustrated in Figure 12.26. The periodic repetition of the curve along thek axis is a
consequence of the axial periodicity of the waveguide structure. Note the similarities between
Figure 12.26 and the dispersion relationship for TEM waves in the capacitively loaded transmission
line (Fig. 12.22).
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13

Phase Dynamics

The axial electric field at a particular location in an rf accelerator has negative polarity half the
time. Particles must move in synchronism with variations of electromagnetic fields in order to be
accelerated continuously. Synchronization must be effective over long distances to produce
high-energy beams. In this chapter, we shall study the longitudinal dynamics of particles moving in
traveling electromagnetic waves. Particle motion is summarized in the phase equations, which
describe axial displacements of particles relative to the traveling wave. The phase equations lead
to the concept of phase stability [V. Veksler, Doklady U. S. S. R.44, 444 (1944); E. M.
McMillan, Phys. Rev.69 145 (1945). Groups of particles can be confined to the accelerating
phase of a wave if they have a small enough spread in kinetic energy. Individual particles oscillate
about a constant point in the wave called the synchronous phase.

There are a number of important applications of the phase equations:

1. Injected particles are captured efficiently in an rf accelerator only if particles are
introduced at the proper phase of the electromagnetic field. The longitudinal acceptance of
an accelerator can by calculated from the theory of longitudinal phase dynamics. A
knowledge of the allowed kinetic energy spread of injected particles is essential for
designing beam injectors and bunchers.

2. There is a trade-off between accelerating gradient and longitudinal acceptance in an rf
accelerator. The theory of longitudinal phase dynamics predicts beam fluxlimits as a
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function of the phase and the properties of the accelerating wave. Effects of space charge
can be added to find longitudinal current limits inaccelerators.

3. The output from resonant accelerators consists of beam bunches emerging at the
frequency of the accelerating wave. Information on the output beam structure is necessary
to design debunchers, matching sections to other accelerators, and high-energy physics
experiments.

Section 13.1 introduces phase stability. Longitudinal motion is referenced to the hypothetical
synchronous particle. Acceleration and inertial forces are balanced for the synchronous particle; it
remains at a point of constant phase in a traveling wave. The synchronous particle is the
longitudinal analogy of an on-axis particle with no transverse velocity. Particles that deviate in
phase or energy from the synchronous particle may either oscillate about the synchronous phase
or may fall out of synchronism with the wave. In the former case, the particles are said to be
phase stable. Conditions for phase stability are discussed qualitatively in Section 13.1. Equations
derived in Section 13.2 give a quantitative description of phase oscillations. The derivation is
facilitated by a proof that the fields of all resonantaccelerators can be expressed as a sum of
traveling waves. Only the wave with phase velocity near the average particle velocity interacts
strongly with particles.

T'he phase equations are solved for nonrelativistic particles in Section 13.3 in the limit that
changes in the average particle velocity are slow compared to the period of a phase oscillation.
The derivation introduces a number of important concepts such as rf buckets, kinetic energy error,
and longitudinal acceptance. A second approximate analytic solution, discussed in Section 13.4,
holds when the amplitude of phase oscillations is small. The requirement of negligible velocity
change is relaxed. The model predicts reversible compression of longitudinal beam bunches during
acceleration. The process is similar to the compression of transverse oscillations in the betatron.
Longitudinal motion of non-relativistic particles in an induction linac is discussed in Section 13.5.
Synchronization is important in the linear induction accelerator even though it is not a resonant
device. Pulses of ions must pass through the acceleration gaps during the time that voltage is
applied. Section 13.6 discusses longitudinal motion of highly relativistic particles. The material
applies to rf electron linacs and linear induction electron accelerators. Solutions of the phase
equation are quite different from those for non-relativistic particles. Time dilation is the major
determinant of particle behavior. Time varies slowly in the rest frame of the beam relative to the
stationary frame. If the electrons in an rf accelerator are accelerated rapidly, they do not have time
to perform a phase oscillation before exiting the machine. In some circumstances, electrons can be
captured in the positive half-cycle of a traveling wave and synchronously accelerated to arbitrarily
high energy. This process is called electron capture. Relativistic effects are also important in linear
induction electron accelerators; electron beams remain synchronized even in the
presence of large imperfections of voltage waveform.
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13.1 SYNCHRONOUS PARTICLES AND PHASE STABILITY

The concept of the synchronous particle and phase stability can be illustrated easily by considering
motion in an accelerator driven by an array of independently phased cavities (Fig. 13.1a). Particles
receive longitudinal impulses in narrow acceleration gaps. The gaps are spaced equal distances
apart; the phase in each cavity is adjusted for the best particle acceleration. Figure 13.lb shows the
time variation of gap voltage in a cavity. The time axis is referenced to the beginning of the
accelerating half-cycle in gapn.
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Vn � Vo sin(ωt),

Vn�1 � Vo sin(ωt�∆φn�1),

Vn�1 � Vo sin(ωt�∆φn�1�∆φn�2),

(13.1)

½mv2
sn � ½mv2

sn�1 � qVo sinφs, (13.2)

The time at which a test particle crosses gapn is indicated in Figure 13.1b. The phase of the
particle in defined in terms of the crossing time relative to the cavity waveform. Phase is measured
from the beginning of the acceleration half-cycle. Figure 13.lbillustrates a particle with +70�
phase. A particle with a phase of +90� crosses at the time of peak cavity voltage; it gains the
maximum possible energy. (Note that in many discussions of linear accelerators, the gap fields are
assumed to vary as . Therefore, a synchronous phase value quoted as -32�Ez(t) � Ezo cosωt
corresponds toφs = 58� in the convention used in this book.)

A synchronous particleis defined as a particle that has the same phase in all cavities. Crossing
times of a synchronous particle are indicated as solid squares in Figure 13.2a. The synchronous
phaseφs is the phase of the synchronous particle. The synchronous particle is in longitudinal
equilibrium. Acceleration of the particle in the cavities matches the phase difference of
electromagnetic oscillations between cavities so that the particle always crosses gaps at the same
relative position in the waveform. A synchronous particle exists only if the frequencies of
oscillations in all cavities are equal. If frequency varies, theaccelerating oscillations will
continually shift relative to each other and the diagram of Figure 13.2a will not hold at all times.
Particles are accelerated if the synchronous phase is between 0� and 180�.

An accelerator must be properly designed to fulfill conditions for a synchronous particle. In
some accelerators, the phase difference is constant while the distance between gaps is chosen to
match particle acceleration. In the present example, the phase of oscillations in individual cavities
is adjusted to match the particle mass and average accelerating gradient with the distance between
gaps fixed. It is not difficult to determine the proper phase differences for non-relativistic
particles. The phase difference between oscillations in cavityn+1 and cavityn is denoted .∆φn�1
The accelerating voltages in cavitiesn throughn+2 are defined as

wheret is the time andω is the angular rf frequency. By the definition ofφs, the synchronous
particle crosses cavityn at time . Assuming non-relativistic ions, the change inωt � 0
synchronous particle velocity imparted by cavityn is given by

wherevsn is the particle velocity emerging from gapn. The particle arrives at gapn+1 at time
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tn�1 � d/vsn � φs/ω, (13.3)

ωd/vsn � φs � ∆φn�1 � φs,

∆φn�1 � �ωd/vsn, (13.4)

whered is the distance between gaps. Because the particle is a synchronous particle, the voltage
in cavityn+1 equals at timetn+1; therefore, Eq. (13.1) implies thatVo sinφs

or

where we have used Eqs. (13.1) and (13.3). Equation (13.4) specifies phase differences between
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dpz

dt
� eEo sinφs. (13.5)

cavity oscillations. OnceVo andφs are chosen, the quantitiesvsn can be calculated.
Particles injection can never be perfect. Beams always have a spread in longitudinal position and

velocity with respect to the synchronous particle. Figure 13.2a illustrates crossing times (circles)
for a particle with with the synchronous phase chosen so that . In thev � vs 0� < φs < 90�
example, the particle crosses cavityn at the same time as the synchronous particle. It crosses
cavityn+1 at a later time; therefore, it sees a higher accelerating voltage than the synchronous
particle and it receives a higher velocity increment. The process continues until the particle gains
enough velocity to overtake and pass the synchronous particle. In subsequent cavities, it sees
reduced voltage and slows with respect to the synchronous particle. The result is that particles
with parameters near those of the synchronous particle have stable oscillations aboutφs. These
particles constitute a bunch that remains synchronized with accelerating waves; the bunch isphase
stable.

It is also possible to define a synchronous particle whenφs is in the range .90� < φs < 180�
Such a case is illustrated in Figure 13.2b. The relative phase settings of the cavity are the same as
those of Figure 13.2a because the voltages are the same at the crossing time of the synchronous
particle. The crossing time history of a particle with is also plotted in Figure 13.2b. Thisv < vs
particle arrives at cavityn+1 later than the synchronous particle and sees a reduced voltage. Its
arrival time at the subsequent cavity is delayed further because of its reduced velocity. After a few
cavities, the particle moves into the decelerating phase of gap voltage. In its subsequent motion,
the particle is completely desynchronized from the cavity voltage oscillations; its axial velocity
remains approximately constant.

The conclusion is that particle distributions are not phase stable when the synchronous phase is
in the range . The stable range ofφs for particle acceleration is90� < φs < 180�

. Similar considerations apply to charged particle deceleration, an important0� < φs < 90�
process for microwave generation. The relative phases of the cavity oscillations can be adjusted to
define a decelerating synchronous particle. It can be shown that decelerating bunches have phase
stability when . Particle bunches are dispersed when the synchronous phase is in0� < φs < �90�
the range .�90� < φs < �180�

Particles accelerated in a traveling electromagnetic wave also can have phase stability. Figure
13.3 shows the electric field as a function of position viewed in the rest frame of a slow wave. The
figure illustrates the definition of phase with respect to the wave; the particle shown has

. Figure 13.3 (which shows an electric field variation in space at a constant time)φ � �70�
should not be confused with Figure 13.1 (which shows an electric field variation in time at a
constant position). Note that the phase definition of Figure 13.3 is consistent with Figure 13.1.

The synchronous particle in a traveling wave is defined by

In order for a synchronous particle to exist, the slow-wave structure must be designed so that the
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phase velocity of the wave changes to equal the particle velocity at all points in the accelerator. A
slow-wave structure must be designed to accelerate particles with a specific charge-to-mass ratio
( ) if the accelerating electric fieldEo is specified. The above derivations can be modified toZ�e/mo
show that a particle distribution has phase stability in a traveling wave if the synchronous phase is
in the range . (In the convention common to discussions of linear accelerators, the0� < φs < 90�
stable phase range is given as .)�90� < φs < 0�

13.2 THE PHASE EQUATIONS

The phase equations describe the relative longitudinal motion of particles about the synchronous
particle. The general phase equations are applicable to all resonant accelerators; we shall apply
them in subsequent chapters to linear accelerators, cyclotrons, and synchrotrons.

It is most convenient to derive continuous differential equations for phase dynamics. We begin
by showing that the synchronized accelerating fields in any accelerator can be written as a sum of
traveling waves. Only one component (with phase velocity equal to the average particle velocity)
interacts strongly with particles. Longitudinal motion is well described by including only the
effects of this component. The derivation leads to a unified treatment of both discrete cavity and
traveling wave accelerators.

The accelerator of Figure 13.4a has discrete resonant cavities oscillating atωo. The cavities
drive narrow acceleration gaps. We assume that rf oscillations in the cavities have the same phase.
Particles are synchronized to the oscillations by varying the distance between the gaps. The
distance between gapsn andn+1 is
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dn � vn (2π/ωo). (13.6)

Ez(z,t) � Vo sinωot [δ(z�z1) � δ(z�z2) � ... � δ(z�zn) � ... ]. (13.7)

Ez(z) � (2Vo/dn) �
m

cos[mπ(z�zn)/dn]. (13.8)

The quantityvn is the average velocity of particles emerging from gapn. Equation (13.6) implies
that the transit time of a synchronous particle between cavities is equal to one oscillation period.
The distribution of longitudinal electric fields along the axis is plotted in Figure 13.4b. Assuming a
peak voltageVo, Ez can be approximated as a sum ofδ functions,

The electric field in a region of widthdn at gapn is represented by the Fourier expansion
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Ez(z) � [Voωo/πvz(z)] �
m

cos[mzωo/vz(z)], (13.9)

Ez(z,t) � [Voωo/πvz(z)] �
m

sinωot cos[mzωo/vz(z)]

� [Voωo/2πvz(z)] �
m

sin[ωot � mzωo/vz(z)] � sin[ωot � mzωo/vz(z)]
(13.10)

Ez(z,t) � Eo(z) sin(ωt � zω/vs � φs). (13.11)

dpz

dt
� qEo(z) sin(ωt � ωz/vs � φs) � qEo(z) sinφ(z). (13/12)

Applying Eq. (13-6), the electric field distribution in the entire accelerator can be represented by
a Fourier expansion of the delta functions,

wherev(z) is a continuous function that equalsvn at dn. Assuming a temporal variation sinωot,
axial electric field variations can be expressed as

The gap fields are equivalent to a sum of traveling waves with axially varying phase velocity. The
only component that has a long-term effect for particle acceleration is the positive-going
component withm = 1. In subsequent discussions, the other wave components are neglected. The
accelerating field of any resonant accelerator can be represented as

The factorEo(z) represents a long-scale variation of electric field magnitude. In linear
accelerators,ω is constant throughout the machine. In cycled circular accelerators such as the
synchrocyclotron and synchrotron,ω varies slowly in time. The velocityvs is the synchronous
particle velocity as a function of position. The requirement for the existence of a synchronous
particle is thatvs equalsω/k, the phase velocity of the slow wave. The motion of the synchronous
particle is determined by Eq. (13.5).

Other particles shift position with respect to the synchronous particle; their phase,φ, varies in
time. Orbits are characterized byφ rather than by axial position because the phase is almost
constant during the acceleration process. In this section, we shall concentrate on a non-relativistic
derivation since phase oscillations are most important in linear ionaccelerators. Relativistic results
are discussed in Section 13.6.

The longitudinal equation of motion for a nonsynchronous particle is

The particle orbit is expanded about the synchronous particle in terms of the variables
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z � zs � ∆z, (13.13)

vz � dz/dt � vs � ∆vz (13.14)

φ � φs � ∆φ. (13.15)

∆φ � ωt � ωz/vs.

∆φ/2π � �∆z/(2πvs/ω)

∆φ � �ω∆z/vs. (13.16)

φ � φs � ω∆z/vs, (13.17)

d 2zs/dt 2
� d 2∆z/dt 2

� (qEo/mo) sinφ. (13.18)

where

Inspection of Figure 13.5 shows that the phase difference is related to the position difference by

or

Equations (13.12)-(13.16) can be combined to the forms

Equations (13.17) and (13.18) relateφ to ∆z; the relationship is influenced by the parameters of
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d 2φ/dt 2
� �(ω/vs) d 2∆z/dt 2. (13.19)

d 2∆z/dt 2
� (qEo/mo) sinφ � d 2zs/dt 2

� (qEo/mo) (sinφ � sinφs). (13.20)

d 2φ/dt 2
� � (ωqEo/movs) (sinφ�sinφs). (13.21)

sinφ � sin(φs � ∆φ) � sinφs cos∆φ � cosφs sin∆φ � sinφs � ∆φ cosφs. (13.22)

d 2(∆φ)/dt 2
� � (ωqEocosφs/movs) ∆φ. (13.23)

∆φ � ∆φo cosωzt, (13.24)

the synchronous orbit. In Sections 13.3, 13.4, and 13.6, analytic approximations will allow the
equations to be combined into a single phase equation.

13.3APPROXIMATE SOLUTION TO THE PHASE EQUATIONS

The phase equations for non-relativistic particles can be solved in the limit that the synchronous
particle velocity is approximately constant over a phase oscillation period. Although the
assumption is only marginally valid in linear ion accelerators, the treatment gives valuable physical
insight into the phase equations.

With the assumption of constantvs the second derivative of Eq. (13.17) is

Furthermore, Eqs. (13.5) and (13.18) imply that

Equations (13.19) and (13.20) combine to

Equation (13.21) is a familiar equation in physics; it describes the behavior of a nonlinear
oscillator (such as a pendulum with large displacement). Consider, first, thelimit of small
oscillations ( ). The first sine term becomes∆φ/φs « 1

Equation (13.21) reduces to

The solution of Eq. (13.23) is

whereωz is the phase oscillation frequency
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ωz � qEoω cosφs/movs. (13.25)

(dφ/dt)2
� (2ωqEo/movs) (cosφ � φ sinφs) � K. (13.26)

(dφ/dt)2
� (2ωqEo/movs) [cosφ � cosφs � (φ � φs � π) sinφs]. (13.27)

cosφ � cosφs � sinφs (π � φ � φs). (13.28)

Small-amplitude oscillations are harmonic; this is true for particles confined near a stable
equilibrium point of any smoothly varying force.

In order to treat oscillations of arbitrary amplitude, observe that Eq. (13.21) has the form of a
force equation. The effective force confinesφ aboutφs. Figure 13.6 shows a plot of the effective
restoring force as a function ofφ. This expression is linear nearφs;�(ωqEomovs) (sinφ�sinφs)
hence, the harmonic solution of Eq. (13.24). Particles which reach do not oscillateφ > π � φs
aboutφs. A first integral of Eq. (13.21) can be performed by first multiplying both sides by
2(dφ/dt):

We shall determine the integration constantK for the orbit of the oscillating particle with the
maximum allowed displacement fromφs. The orbit bounds the distribution of confined particles.
Inspection of Figure 13.6 shows that the extreme orbit must have (dφ/dt) = 0 at .φ � π � φs
Substituting into Eq. (13.26), the phase equation for the boundary orbit is

The boundary particle oscillates aboutφs with maximum phase excursions given by the solution of
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Ez(∆z) � Eo sin(ω∆z/vs) (13.29)

Figure 13.7 shows the limits of phase oscillations as a function ofφs. The figure illustrates the
trade-off between accelerating phase and longitudinal acceptance. A synchronous phase of 0�

gives stable confinement of particles with a broad range of phase, but there is no acceleration.
Although a choice ofφs = 90� gives the strongest acceleration, particles with the slightest
variation from the synchronous particle are not captured by the accelerating wave. Figure 13.8 is
a normalized longitudinal acceptance diagram inφ-(dφ/dt) space as a function ofφs derived from
the orbit of the boundary particle. The acceptable range of longitudinal orbit parameters for
trapped particles contracts as .φs � 90�

The principles of particle trapping in an accelerating wave and thelimits of particle oscillations
are well illustrated by a longitudinal potential diagram. Assume a traveling wave with an on-axis
electric field given by . The electric field measured by an observerEz(z,t) � Eo sin(ωt�ωz/vs)
traveling at the non-relativistic velocityvs is

if the origin of the moving frame is coincident with the point of zero phase and∆z is the distance
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Us(∆z) � � � d∆z qEz(∆z) � (qEovs/ω) [1 � cos(ω∆z/vs)], (13.30)

mo ∆v2
z � 2qEovs/ω � Ue,max. (13.31)

from the origin. Consider first a wave with constant velocity. In this case, dvs/dt = 0 and Eq.
(13.5) implies that . The moving observer determines the following longitudinal variationφs � 0�
of potential energy (Fig. 13.9a):

corresponding to a potential well centered at∆z = 0. Particles are confined within a single
half-cycle of the wave (anrf bucket) if they have a rest frame kinetic energy at∆z = 0 bounded by

In order to accelerate particles, the phase velocity of a wave must increase with time. An observer
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Fi � mo (dvs/dt) � qEo sinφs. (13.32)

Ui � qEo sinφs ∆z. (13.33)

Ut(∆z) � (qEovs/ω) [1 � cos(ω∆z/vs)] � qEo sinφs ∆z. (13.34)

∆vs/vs � 2π (qEo/movsω) (sin2φs/cosφs). (13.35)

in the frame of an accelerating wave frame sees an addition force acting on particles. It is an
inertial force in the negativez direction. Applying Eq. (13.5), the inertial force is

Integrating Eq. (13.32) from∆z' = 0 to∆z, the interial potential energy relative to the accelerating
frame is

The total potential energy for particles in the wave frame (representing electric and inertial forces)
is

Figures 13.9b-e showUt as a function ofφs. The figure has the following physical interpretations:

1.The rf bucket is the region of the wave where particle containment is possible. The
bucket region is shaded in the figures.

2.A particle with high relative kinetic energy will spill out of the bucket (Fig. 13.9c). In the
wave frame, the desynchronized particle appears to move backward with acceleration
-dvs/dt neglecting the small variations of velocity from interaction with the fields of
subsequent buckets). In the stationary frame, the particle drifts forward with
approximately the velocity it had at the time of desynchronization.

3.Increased wave acceleration is synonymous with largerφs. This leads to decreased
bucket depth and width.

4.The accelerationlimit occurs with . At this value, the bucket has zero depth.φs � 90�
A wave with higher acceleration will outrun all particles.

5.The conditions for a synchronous particle are satisfied atφs andπ - φs. The latter value is
a point of unstable longitudinal equilibrium.

Equation (13.25) can be applied to derive a validity condition for the assumption of constantvs

over a phase oscillation. Equation (13.5) implies that the change invs in time∆t is
Taking , we find that∆vs � (qEosinφs/mo) ∆t. ∆t � 2π/ωz
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As an example, assume 20-MeV protons (vs = 6.2 × 107 m/s), f = 800 MHz (ω = 5 × 109), Eo = 2
MV/m, andφs = 70�. These parameters imply that .∆vs/vs � 0.25

The longitudinal acceptance diagram is used to findlimits on acceptable beam parameters for
injection into an rf accelerator. In a typical injector, a steady-state beam is axially bunched by an
acceleration gap oscillating atωo. The gap imparts a velocity dispersion to the beam. Faster
particles overtake slower particles. If parameters are chosen correctly, the injected beam is
localized to the regions of rf buckets at the accelerator entrance. Bunching involves a trade-off
between spatial localization and kinetic energy spread. For injection applications, it is usually
more convenient to plot a longitudinal acceptance diagram in terms of phase versus kinetic energy
error. The difference in the kinetic energy of a non-relativistic particle from that of the
synchronous particle is given by
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∆T � ½mo [(dzs/dt)�(d∆z/dt)]2
� ½mo (dzs/dt)2

� mo (dzs/dt) (d∆z/dt).

∆T � (mv2
s /ω) (dφ/dt). (13.36)

∆z � � (vs/ωo) ∆φ. (13.37)

d 2∆z/dt 2
� �(1/ωo)[(dvs/dt)(d∆φ/dt)�(d 2vs/dt 2)∆φ�vs(d

2∆φ/dt 2)�(dvs/dt)(d∆φ/dt)] (13.38)

d 2∆z/dt 2
� (qEo/mo) cosφs ∆φ (13.39)

d 2∆φ/dt 2
� 2(dvs/dt)(d∆φ/dt)/vs � (ωoqEocosφs/movs) ∆φ � 0. (13.40)

Comparison with Eq. (13.16) shows that

The dimensionless plot of Figure 13.8 also holds if the vertical axis is normalized to
.∆T/ 2mov

3
s qEo/ω

13.4 COMPRESSION OF PHASE OSCILLATIONS

The theory of longitudinal phase dynamics can be applied to predict the pulselength and energy
spread of particle bunches in rf buckets emerging from a resonant accelerator. This problem is of
considerable practical importance. The output beam may be used for particle physics experiments
or may be injected into another accelerator. In both cases, a knowledge of the micropulse
structure and energy spread are essential.

In this section, we shall study the evolution of particle distributions in rf buckets as the
synchronous velocity increases. In order to develop an analytic theory, attention will be limited to
small phase oscillations in the linear region of restoring force. Again, the derivation is non-
relativistic. Equation (13.16) implies that

The second derivative of Eq. (13.37) is

Equation (13.20) can be rewritten

in the limit that . The mathematics is further simplified by taking ; the wave∆φ « φs d 2vs/dt 2
�0

has constant acceleration. Setting the right-hand sides of Eqs. (13.38)and (13.39) equal gives
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dvs/dt � qEosinφs/mo. (13.41)

vs � qEosinφst/mo (13.42)

d 2∆φ/dt 2
� (2/t) (d∆φ/dt) � (ωo/tanφst) ∆φ � 0. (13.43)

d 2Ψ/dt 2
� ω

2
z Ψ � 0, (13.44)

ωz � ωo/tanφst. (13.45)

ωz � 1/ t � 1/ vs, (13.46)

Ψ � t 1/4
� v1/4

s . (13.47)

By the definition of the synchronous particle,

This implies that

if the origin of the time axis corresponds tovs = 0. The quantityt is the duration of time that the
particles are in the accelerator. Substituting Eqs. (13.41)and (13.42) into Eq. (13.40) gives

Making the substitution , Eq. (13.43) can be writtenΨ � ∆φt

where

Equation (13.45) implies that Eq. (13.43) has an oscillatoryacceleration solution for
. The condition for phase stability remains the same.0 < φs < π/2

Equation (13.44) has the same form as Eq. (11.20), which describes the compression of
betatron oscillations. Equation (13.44) is a harmonic oscillator equation with a slowly varying
frequency. We apply the approximation that changes in the synchronous particle velocity take
place slowly compared to the phase oscillation frequency, or , whereT is the time scaleωzT » 1
for acceleration. The linear phase oscillation frequency decreases as

where Eq. (13.42) has been used to relatet andvs. The quantityΨ is the analogy of the amplitude
of betatron oscillations. Equation (11-29) implies that the product is conserved in aΨ2ωz
reversible compression. Thus, the quantityΨ increases as
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∆φ � Ψ/t � 1/t 3/4
� 1/v3/4

s . (13.48)

∆tf � ∆ti (vi/vf)
3/4. (13.49)

∆Tf � ∆Ti (vf / vi)
3/4. (13.50)

∆Tf/Tf � (∆Ti/Ti) (vi/vf)
5/4. (13.51)

Furthermore,

In summary, the following changes take place in the distribution of particles in an rf bucket:

1. Particles injected with velocityvi and micropulsewidth∆ti emerge from a constant-frequency
accelerator with velocityvf and micropulsewidth

Although the spatial extent of the beam bunch is larger, the increase in velocity results in a
reduced micropulsewidth.

2.Taking the derivative on the time scale of a phase oscillation, Eq. (13.48)implies that
. Combining the above equation with Eq. (13.36) implies thatd∆φ/dt � ωz/t

3/4
� 1/t 5/4

� 1/v5/4
s

the absolute kinetic energy spread of particles in an rf bucket increases as

Linear ion accelerators produce beams with a fairly large kinetic energy spread. If an application
calls for a small energy spread, the particle pulses must be debunched after exiting the accelerator.
The relative energy spread scales as

13.5 LONGITUDINAL DYNAMICS OF IONS IN A LINEAR INDUCTION
ACCELERATOR

Although the linear induction accelerator is not a resonant accelerator, longitudinal motions of
ions in induction linacs are discussed in this chapter because of the similarities to phase
oscillations in rf linear ionaccelerators. The treatment islimited to non-relativistic particles;
electron accelerators are discussed in the next section.

The main problem associated with longitudinal dynamics in an induction accelerator is ensuring
that ions are axially confined so that they cross acceleration gaps during the applied voltage
pulses. A secondary concern is maintenance of a good current profile; this is important when
beam loading of the pulse modulator is significant. In the following treatment, only single-particle
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l � � l (v �

s/vs). (13.52)

½mo(v
�

s�½∆v �)2
� ½mo(vs�½∆v)2

� qVo (13.53)

∆v �
� ∆v (vs/v

�

s). (13.54)

effects are addressed. Cavity voltage waveforms are specified and beam loading is neglected.
To begin, consider a beam pulse of duration∆tp moving through a gap with constant voltage Vo

(Fig. 13.10). The incoming pulse has axial lengthl, longitudinal velocityvs, and velocity spread
∆v. The axial length is . Assume that the gap is narrow and the beam velocity spread isl � vs∆tp
small ( ). The beam emerges with an increased velocity vs'. Every particle entering the∆v/vs « 1
gap leaves it immediately, so that the pulselength is not changed. As shown in Figure 13.10, the
beam length increases to

The change in the velocity spread of the beam can be determined from conservation of energy for
the highest-energy particles:

Keeping only the first-order terms of Eq. (13.53) and noting that , we½mov
�

s
2
� mov

2
s � eVo

find that

The longitudinal velocity spread decreases with acceleration. As in any reversible process, the
area occupied by the particle distribution in phase space (proportional tol∆v) remains constant.
A flat voltage pulse gives no longitudinal confinement. The longitudinal velocity spread causes the
beam to expand, as shown in Figure 13.11a. The expansion can be countered by adding a voltage
ramp to the accelerating waveform (Fig. 13.11b). The accelerator is adjusted so that the
synchronous particle in the middle of the beam bunch crosses the gap when the voltage equalsVo.
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∆z � z � vst. (13.55)

∆V � � (2∆z/l) ∆Vo, (13.56)

Particles lagging behind the synchronous particle experience a higher gap voltage and gain a
larger velocity increment while advanced particles are retarded. This not only confines particles
within the bunch but also provides stability for the entire beam pulse. For example, if the voltage
in an upstream cavity is low, the centroid of the bunch arrives late in subsequent cavities. With
ramped voltage waveforms, the bunch receives extra acceleration and oscillates about the
synchronous particle position.

A simple model for beam confinement in an induction linear accelerator can be developed in the
limit that (1) the beam crosses many gaps during a phase oscillation and (2) the change invs is
small during a phase oscillation. Let the quantity∆z be the distance of a particle from the
snchronous particle position, or

The quantity∆v is the width of the longitudinal velocity distribution at∆z = 0.
The dc part of the cavity voltage waveform can be neglected because of the assumption of

constantvs over time scales of interest. The time-varying part of the gap voltage has the waveform
of Figure 13.11c. The gap voltage that accelerates a particle depends on the position of the
particle relative to the synchronous particle:

where∆Vo is defined in Figure 13.11c. The velocity changes by the amount
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∆v � (q/movs) (�2∆z/l) ∆Vo (13.57)

d∆v/dt � d 2∆z/dt 2
� � (2q∆Vo/molD) ∆z. (13.58)

∆z � ∆zo sinωzt, (13.59)

ωz � 2q∆Vo/molD. (13.60)

∆v � (q∆Vo/2mo) (l/D). (13.61)

∆T/T � (2q∆Vo/mo) (l/D) / vs. (13.62)

crossing a gap. Equation (13.57) holds in the limit that . Particles cross gaps∆v « vs N � vs∆t/D
in time interval∆t if the gaps have uniform spacingD. Therefore, multiplying Eq. (13.57) byN
gives the total change of∆v in ∆t. The longitudinal equation of motion for ion in an induction
linear accelerator is

Equation (13.58) has solution

where

The maximum value of∆v is determined from Eq. (13.59) by substituting :∆zo � l/2

Equation (13.61) infers the allowed spread in kinetic energy,

The longitudinal dynamics of ions in an induction linear accelerator is almost identical to the small
∆φ treatment of phase oscillations in an rfaccelerator. The time-varying gap electric field in
Figure 13.11 can be viewed as an approximation to a sine function expanded about the
synchronous particle position. The main difference between the two types of accelerators is in the
variation of phase oscillation frequency and velocity spread during beamacceleration. The electric
field ramp in an rf linear accelerator is constrained by the condition of constant frequency. The
wavelength increases asvs, and hence the longitudinal confining electric field in the beam rest
frame decreases as 1/vs. This accounts for the decrease in the phase oscillation frequency of Eq.
(13.46). In the induction accelerator, there is the latitude to adjust the longitudinal confinement
gradient along the accelerator.

Equation (13.61) implies that the longitudinal acceptance is increased by higher voltage ramp
(∆Vo) and long beam length compared to the distance between gaps (l/D). If vs varies slowly, Eq.
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(13.61) implies that the magnitude of∆Vo must be reduced along the length of the accelerator to
maintain a constant beam pulselength. Constant pulselength implies that and ;l � vs ∆v � 1/vs
therefore,∆Vo must be reduced proportional to 1/vs

3 for constantD. On the other hand, if∆Vo is
constant throughout the accelerator,l and∆v are constant. This means that the pulselength, or the
time for the beam bunch to pass through the gap, decreases as 1/vs.

The longitudinal shape of the beam bunch is not important when beam loading is negligible.
Particles with a randomized velocity distribution acted on by linear forces normally have a
bell-shaped density distribution; in this case, the beam current profile associated with a pulse looks
like that of Figure 13.12a. When beam loading is significant, it is preferable to have a flat current
pulse, like that of Figure 13.12b. This can be accomplished by nonlinear longitudinal confinement
forces; a confining cavity voltage waveform consistent with the flat current profile is illustrated in
Figure 13.12c. The design of circuits to generate nonlinear waveforms for beam confinement
under varying load conditions is one of the major unanswered questions concerning the feasibility
of linear induction ion accelerators.

13.6 PHASE DYNAMICS OF RELATIVISTIC PARTICLES

Straightforward analytic solutions for longitudinal dynamics in rf linear accelerators are possible
for highly relativistic particles. The basis of the approach is to take the phase velocity of the
accelerating wave exactly equal toc, and to seek solutions in which electrons are captured in the
accelerating phase of the wave. In this situation, there is no synchronous phase because the
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φ � φo � ω∆z/c, (13.63)

∆z � z�ct. (13.64)

φ � φo � ω (t � z/c). (13.65)

dφ/dt � ω (1 � z/c) � ω (1 � β). (13.66)

dpz/dt � d(γmeβc)/dt � d[meβc/ 1�β2]/dt � eEo sinφ. (13.67)

β � cosα. (13.68)

d(cosα/sinα)/dt � (eEo/mec) sinφ � �(dα/dt) (1�cos2α/sin2α). (13.69)

dα/dt � � (eEo/mec) sinφ sin2α. (13.70)

particles (with ) always move to regions of higher phase in the accelerating wave. We shallvz < c
first derive the mathematics of electron capture and then consider the physical implications.

Assume electrons are injected into a traveling wave atz = 0. The quantityφo is the particle
phase relative to the wave at the injection point. Equation (13.17) can be rewritten

where

The quantityz is the position of the electron after timet, andct is the distance that the wave
travels. Thus,∆z is the distance the electron falls back in the wave during acceleration. Clearly,∆z
must be less thanλ/2 or else the electron will enter the decelerating phase of the wave. Equation
(13.63) can also be written

The derivative of Eq. (13.65) is

The relativistic form of Eq. (13.12) for electrons is

Equations (13.66) and (13.67) are two equations in the the unknownsφ andβ. They can be
solved by making the substitution

Equation (13.67) becomes

Manipulation of the trigonometric functions yields
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dφ/dt � (dφ/dα) (dα/dt) � ω (1�cosα). (13.71)

� sinφ dφ � (mecω/eEo) (1 � cosα) dα/sin2α. (13.72)

cosφ � cosφo � (mecω/eEo) [tan(½α) � tan(½αo)]. (13.73)

cosφ � cosφo � (mecω/eEo) (1�β)/(1�β) � (1�βo)/(1�βo) . (13.74)

cosφ � cosφo � (mecω/eEo) (1�βo)/(1�βo) � 1. (13.75)

Eo > (mecω/e) (1�βo)/(1�βo). (13.76)

Equation (13.66) is rewritten

Substituting Eq. (13.71) into Eq. (13.70) gives the desired equation,

Integrating Eq. (13.72) with the lower limit given by the injection parameters, we find that

Noting that , the electron phase relative to thetan(½α) � (1�cosα)/(1�cosα) � (1�β)/(1�β)
accelerating wave is given in terms ofβ by

The solution is not oscillatory;φ increases monotonically asβ changes fromβo to 1 and the
particle lags behind the wave. Acceleration takes place as long as the particle phase is less than

. Note that since there are no phase oscillations, there is no reason to restrict theφ � 180�
particle phase to . The important point to realize is that if acceleration takes place fastφ < 90�
enough, electrons can be trapped in a single rf bucket and accelerated to arbitrarily high energy.
With high enoughEo, the electrons never reach phase . This process is calledelectronφ � 180�
capture. In this regime, time dilation dominates so that the particle asymptotically approaches a
constant phase,φ.

The condition for electron capture can be derived from Eq. (13.74) by assuming that the final
particleβ is close to unity:

The limit proceeds from the fact thatφ should approach 90� for optimum acceleration andφo

must be greater than 0�. Equation (13.75) implies that

As an example, consider injection of 1 MeV electrons into a traveling wave accelerator based on a
2 GHz (ω = 1.26 × 1010 s-1) iris-loaded waveguide. The quantityβo equals 0.9411. According to
Eq. (13.76), the peak electric field of the wave must exceed 3.7 MV/m. This is a high but feasible
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T � Eo sinφf L, (13.77)

dz� � (mec
2/E) dz, (13.78)

value.
The dynamics of relativistic electron capture is illustrated in Figure 13.13. Figure 13.13a shows

the relative position of electrons in the accelerating wave as a function of energy in a 1 GeV
accelerator. Figure 13.13b graphs energy versus phase. Note that most of the acceleration takes
place near the final asymptotic value of phase,φf. The output beam energy is

whereL is the total length of the accelerator. A choice of gives the highest acceleratingφf � 90�
gradient.

In the beam rest frame, the accelerator appears to be moving close to the speed of light. The
length of the accelerator is shortened by Lorentz contraction. It is informative to calculate the
apparent accelerator length in the beam frame. Letdzbe an element of axial length in the
accelerator frame anddz' be the length of the element measured in the beam frame. According to
Equation (2.24), the length elements are related by , ordz� � dz/γ
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E � mec
2
� To � eEo sinφf z. (13.79)

dz� � dz/(1 � To/mec
2
� eEo sinφf z/mec

2). (13.80)

whereE is the total energy of the electrons. We have seen that the accelerating gradient is almost
constant for electrons captured in the rf waveform. The total energy is approximated by

Combining Eqs. (13.78) and (13.79),

Integrating Eq. (13.80) fromz = 0 to z = L gives



Phase Dynamics

435

L �
� (mec

2/eEosinφf) ln (1 � To/mec
2
� eEosinφfL/mec

2)/(1 � To/mec
2)

� L (mec
2/Tf) ln(Ef/Ei).

(13.81)

∆vz � cβ� � cβ�, (13.82)

As an example, consider electron motion with the acceleration historyillustrated in Figure 13.13.
The peak accelerating field is 5 MV/m, f = 3 GHz, and electrons are injected with kinetic energy 1
MeV. The final phase is near 90� for particles with injection phase angles near 0�. These particles
are accelerated mainly at the peak field; the accelerator must have a length L = 200 m to generate
a 1 GeV beam. Substituting in Eq. (13.81), the apparent accelerator length in the beam frame is
only 0.7 m.

Equation (13.81) can also be applied to induction linear electron accelerators if the quantity
is replaced by the average accelerating gradient of the machine. Consider, for instance, anEosinφf

induction accelerator with a 50 MeV output beam energy. The injection energy is usually high in
such machines; 2.5 MeV is typical. Gradients are lower than rf accelerators because oflimits on
isolation core packing and breakdown on vacuum insulators in the cavity. An average gradient of
1 MV/m implies a total lengthL = 50 m. Substituting into Eq. (13.81), the apparent length isL' =
1.5 m.

The short effective length explains the absence of phase oscillations in relativistic rf linacs. As
viewed in the beam frame, the accelerator is passed before there is time for any relative
longitudinal motion. The short effective length has an important implication for the design of
low-current linear accelerators. The accelerator appears so short that it is unnecessary to add
transverse focusing elements for beam confinement; the beam is simply aimed straight through.
Radial defocusing of particles (see Chapter 14) is reduced greatly at highγ.

Induction linear electron accelerators are used for high-current pulsed beams. Transverse
focusing is required in these machines to prevent space charge expansion of the beam and to
reduce the severity of resonant transverse instabilities. Nonetheless, space charge effects and the
growth of instabilities are reduced when electrons have highγ. In particular, the radial force from
beam space charge decreases as 1/γ2. This is the main reason that the injector of an electron linear
accelerator is designed to operate at high voltage.

We have seen in Section 13.5 that cavity voltage waveforms have a strong effect on the current
pulse shape in an induction accelerator for ions. To demonstrate that this is not true for relativistic
particles, consider an electron beam in an accelerator with average energy . Assume thatγmec

2

there is a spread of energy parametrized by resulting from variations in cavity voltage±∆γ
waveforms. We shall demonstrate the effect of energy spread by determining how far a beam
pulse travels before there is a significant increase in pulselength. The beam bunch length in the
accelerator frame is denoted asL. The total spread in axial velocity is
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β� � 1 � 1/(γ�∆γ)2, (13.83)

β� � 1 � 1/(γ�∆γ)2, (13.84)

∆vz � 2c (∆γ/γ3). (13.85)

∆t � (L/2)/(∆vz/2) � (L/c) (γ3/∆γ). (13.86)

D � γ2L/(∆γ/γ). (13.87)

where

and

Applying the binomial theorem, the axial velocity spread is

Let ∆t be the time it takes for the beam to double its length:

The beam travels a distanceD = c∆t during this time interval. Substituting from Eq. (13.85), we
find that

As an example, consider a 50-ns pulse of 10-MeV electrons with large energy spread,
. The beam pulse is 15 m long. Equation (13.87) implies that the distance traveled∆γ/γ � 0.5

during expansion is 12 km, much longer than any existing or proposed induction accelerator. The
implication is that electron beam pulses can be propagated through and synchronized with an
induction accelerator even with very poor voltage waveforms. On the other hand, voltage shaping
is important if the output beam must have a small energy spread.
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14

Radio-Frequency Linear Accelerators

Resonant linear accelerators are usually single-pass machines. Charged particles traverse each
section only once; therefore, the kinetic energy of the beam is limited by the length of the
accelerator. Strong accelerating electric fields are desirable to achieve the maximum kinetic
energy in the shortest length. Although linear accelerators cannot achieve beam, output energy as
high as circular accelerators, the following advantages dictate their use in a variety of
applications: (1) the open geometry makes it easier to inject and extract beams; (2) high-flux
beams can be transported because of the increased options for beam handling and high-power rf
structures; and (3) the duty cycle is high. The duty cycle is defined as the fraction of time that the
machine produces beam output.
   The operation of resonant linear accelerators is based on electromagnetic oscillations in tuned
structures. The structures support a traveling wave component with phase velocity close to the
velocity of accelerated particles. The technology for generating the waves and the interactions
between waves and particles were described in Chapters 12 and 13. Although the term radio
frequency (rf) is usually applied to resonant accelerators, it is somewhat misleading. Although
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some resonant linear accelerators have been constructed with very large or inductive structures,
most present accelerators use resonant cavities or waveguides with dimensions less than 1 m to
contain electromagnetic oscillations; they operate in the microwave regime (> 300 MHz).
   Linear accelerators are used to generate singly-charged light ion beams in the range of 10 to
300 MeV or multiply charged heavy ions up to 4 GeV (17 MeV/nucleon). These accelerators
have direct applications such as radiation therapy, nuclear research, production of short-lived
isotopes, meson production, materials testing, nuclear fuel breeding, and defense technology. Ion
linear accelerators are often used as injectors to form high-energy input beams for large circular
accelerators. The recent development of the radio-frequency quadrupole (RFQ), which is
effective for low-energy ions, suggests new applications in the 1-10 MeV range, such as
high-energy ion implantation in materials. Linear accelerators for electrons are important tools
for high-energy
physics research because they circumvent the problems of synchrotron radiation that limit beam
energy in circular accelerators. Electron linear accelerators are also used as injectors for circular
accelerators and storage rings. Applications for high-energy electrons include the generation of
synchrotron radiation for materials research and photon beam generation through the free
electron laser process.
   Linear accelerators for electrons differ greatly in both physical properties and technological
realization from ion accelerators. The contrasts arise partly from dissimilar application
requirements and partly from the physical properties of the particles. Ions are invariably non-
relativistic; therefore, their velocity changes significantly during acceleration. Resonant linear
accelerators for ions are complex machines, often consisting of three or four different types of
acceleration units. In contrast, high-gradient electron accelerators for particle physics research
have a uniform structure throughout their length. These devices are described in Section 14.1.
Electrons are relativistic immediately after injection and have constant velocity through the
accelerator. Linear electron accelerators utilize electron capture by strong electric fields of a
wave traveling at the velocity of light. Because of the large power dissipation, the machines are
operated in a pulsed mode with low-duty cycle. After a description of the general properties of
the accelerators, Section 14.1 discusses electron injection, beam breakup instabilities, the design
of iris-loaded wave-guides with T/k = c, optimization of power distribution for maximum kinetic
energy, and the concept of shunt impedance.
   Sections 14.2-14.4 review properties of high-energy linear ion accelerators. The four common
configurations of rf ion accelerators are discussed in Sections 14.2 and 14.3: the Wideröe
accelerator, the independently-phased cavity array, the drift tube linac, and the coupled cavity
array. Starting from the basic Wideröe geometry, the rationale for surrounding acceleration gaps
with resonant structures is discussed. The configuration of the drift tube linac is derived
qualitatively by considering an evolutionary sequence from the Wideröe device. The principles
of coupled cavity oscillations are discussed in Section 14.3. Although a coupled cavity array is
more difficult to fabricate than a drift tube linac section, the configuration has a number of
benefits for high-flux ion beams when operated in a particular mode (the B/2 mode). Coupled
cavities have high accelerating gradient, good frequency stability, and strong energy coupling.
The latter property is essential for stable electromagnetic oscillations in the presence of
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significant beam loading. Examples of high-energy ion accelerators are included to illustrate
strategies for combining the different types of acceleration units into a high-energy system.
   Some factors affecting ion transport in rf linacs are discussed in Section 14.4. Included are the
transit-time factor, gap coefficients, and radial defocusing by rf fields. The transit-time factor is
important when the time for a particle to cross an acceleration gap is comparable to half the rf
period. In this case, the peak energy gain (reflecting the integral of charge times electric field
during the transit) is less than the product of charge and peak gap voltage. The transit-time
derating factor must be included to determine the synchronous particle orbit. The gap coefficient
refers to radial variations of longitudinal electric field. The degree of variation depends on the
gap geometry and rf frequency. The spatial dependence of Ez leads to increased energy spread in
the output beam or reduced longitudinal acceptance. Section 14.4 concludes with a discussion of
the effects of the radial fields of a slow traveling wave on beam containment. The existence and
nature of radial fields are derived by a transformation to the rest frame of the wave in it appears
as electrostatic field pattern. The result is that orbits in cylindrically symmetric rf linacs are
radially unstable if the particles are in a phase region of longitudinal stability. Ion linacs must
therefore incorporate additional focusing elements (such as an FD quadrupole array) to ensure
containment of the beam.
   Problems of vacuum breakdown in high-gradient rf accelerators are discussed in Section 14.5.
The main difference from the discussion of Section 9.5 is the possibility for geometric growth of
the number of secondary electrons emitted from metal surfaces when the electron motion is in
synchronism with the oscillating electric fields. This process is called multipactoring. Electron
multipactoring is sometimes a significant problem in starting up rf cavities; ultimate limits on
accelerating gradient in rf accelerators may be set by ion multipactoring.
   Section 14.6 describes the RFQ, a recently-developed configuration. The RFQ differs almost
completely from other rf linac structures. The fields are azimuthally asymmetric and the main
mode of excitation of the resonant structure is a TE mode rather than a TM mode. The RFQ has
significant advantages for the acceleration of high-flux ion beams in the difficult low-energy
regime (0.1-5 MeV). The structure utilizes purely electrostatic focusing from rf fields to achieve
simultaneous average transverse and longitudinal containment. The electrode geometries in the
device can be fabricated to generate precise field variations over small-scale lengths. This gives
the RFQ the capability to perform beam bunching within the accelerator, eliminating the need for
a separate buncher and beam transport system. At first glance, the RFQ appears to be difficult to
describe theoretically. In reality, the problem is tractable if we divide it into parts and apply
material from previous chapters. The properties of longitudinally uniform RFQs, such as the
interdependence of accelerating gradient and transverse acceptance and the design of shaped
electrodes, can be derived with little mathematics.
   Section 14.7 reviews the racetrack microtron, an accelerator with the ability to produce
continuous high-energy electron beams. The racetrack microtron is a hybrid between linear and
circular accelerators; it is best classified as a recirculating resonant linear accelerator. The
machine consists of a short linac (with a traveling wave component with T/k = c) and two
regions of uniform magnetic field. The magnetic fields direct electrons back to the entrance of
the accelerator in synchronism with the rf oscillations. Energy groups of electrons follow
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separate orbits which require individual focusing and orbit correction elements. Synchrotron
radiation limits the beam kinetic energy of microtrons to less than 1 GeV. Beam breakup
instabilities are a major problem in microtrons; therefore, the output beam current is low (< 100
:A). Nonetheless, the high-duty cycle of microtrons means that the time-averaged electron flux
is much greater than that from conventional electron linacs.

14.1 ELECTRON LINEAR ACCELERATORS

Radio-frequency linear accelerators are used to generate high-energy electron beams in the range
of 2 to 20 GeV. Circular election accelerators cannot reach high output kinetic energy because of
the limits imposed by synchrotron radiation. Linear accelerators for electrons are quite different
from ion accelerators. They are high-gradient, traveling wave structures used primarily for
particle physics research. Accelerating gradient is the main figure of merit; consequently, the
efficiency and duty cycle of electron linacs are low. Other accelerator configurations are used
when a high time-averaged flux of electrons at moderate energy is required. One alternative, the
racetrack microtron, is described in Section 14.7.

A. General Properties

Figure 14.1 shows a block diagram of an electron linac. The accelerator typically consists of a
sequence of identical, iris-loaded slow-wavestructures that support traveling waves. The
waveguides are driven by high-power klystron microwave amplifiers. The axial electric fields of
the waves are high, typically on the order of 8 MV/m. Parameters of the 20-GeV accelerator
at the Stanford Linear Accelerator Center are listed in Table 14.1. The accelerator is over 3 km
in length; the open aperture for beam transport is only 2 cm in diameter. The successful transport
of the beam through such a long, narrow tube is a consequence of the relativistic contraction of
the apparent length of the accelerator (Section 13.6). A cross section of the accelerator is
illustrated in Figure 14.2. A scale drawing of the rf power distribution system is shown in Figure
14.3.
   The features of high-energy electron linear accelerators are determined by the following
considerations.

1. Two factors motivate the use of strong accelerating electric fields: (a) high gradient is
favorable for electron capture (Section 13.6) and (b) the accelerator length for a given
final beam energy is minimized.

2. Resistive losses per unit length are large in a high-gradient accelerator because power
dissipation in the waveguide walls scales as Ez

2. Dissipation is typically greater than 1
MW/m. Electron linacs must be operated on an intermittent duty cycle with a beam
pulselength of a few microseconds.
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3. An iris-loaded waveguide with relatively large aperture can support slow waves with
T/k = c. Conduction of rf energy along the waveguide is effective; nonetheless, the waves
are attenuated because of the high losses. There is little to be gained by reflecting the
traveling waves to produce a standing wave pattern. In practice, the energy of the
attenuated wave is extracted from the waveguide at the end of an accelerating section and
deposited in an external load. This reduces heating of the waveguides.

4. A pulsed electron beam is injected after the waveguides are filled with rf energy. The
beam pulse length is limited by the accelerator duty cycle and by the growth of beam
breakup instabilities. Relatively high currents ( #0.1 A) are injected to maximize the
number of electrons available for experiments.
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5. The feasibility of electron linacs is a consequence of technological advances in
high-power rf amplifiers. Klystrons can generate short pulses of rf power in the 30-MW
range with good frequency stability. High-power klystrons are driven by pulsed power
modulators such as the PFN discussed in Section 9.12.

The waveguides of the 2.5-GeV accelerator at the National Laboratory for High Energy Physics
(KEK), Tsukuba, Japan, have a diameter of 0.1 m and an operating frequency of 2.856 GHz. The
choice of frequency results from the availability of high-power klystrons from the development
of the SLAC accelerator. An acceleration unit consists of a high-power coupler, a series of four
iris-loaded waveguides, a decoupler, and a load. The individual wave-guides are 2 m long. The
inner radius of the irises has a linear taper of 75 :m per cell along the length of the guide; this
maintains an approximately constant Ez along the structure, even though the traveling wave is 
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attenuated. Individual waveguides of a unit have the same phase velocity but vary in the
relative dimensions of the wall and iris to compensate for their differing distance from the rf
power input. There are five types of guides in the accelerator; the unit structure is varied to
minimize propagation of beam-excited modes which could contribute to the beam breakup
instability. Construction of the guides utilized modern methods of electroplating and precision
machining. A dimensional accuracy of ± 2 :m and a surface roughness of 200 D was achieved,
making postfabrication tuning unnecessary.
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B. Injection

The pulsed electron injector of a high-power electron linear accelerator is designed for high
voltage (> 200 kV) to help in electron capture. The beam pulselength may vary from a few
nanoseconds to 1 :s depending on the research application. The high-current beam must be
aimed with a precision of a few milliradians to prevent beam excitation of undesired rf modes in
the accelerator. Before entering the accelerator, the beam is compressed into micropulses by a
buncher. A buncher consists of an rf cavity or a short section of iris-loaded waveguide operating
at the same frequency as the main accelerator. Electrons emerge from the buncher cavity with a
longitudinal velocity dispersion. Fast particles overtake slow particles, resulting in downstream
localization of the beam current to sharp spikes. The electrons must be confined within a small
spread in phase angle ( ) to minimize the kinetic energy spread of the output beam.
   The micropulses enter the accelerator at a phase between 0° and 90°. As we saw in Section
13.6, the average phase of the pulse increases until the electrons are ultra-relativistic.  For the
remainder of the acceleration cycle, acceleration takes place near a constant phase called the
asymptotic phase. The injection phase of the micropulses and the accelerating gradient are
adjusted to give an asymptotic phase of 90°. This choice gives the highest acceleration gradient
and the smallest energy spread in the bunch.
   Output beam energy uniformity is a concern for high-energy physics experiments. The output
energy spread is affected by variations in the traveling wave phase velocity. Dimensional
tolerances in the waveguides on the order of 10-3 cm must be maintained for a 1% energy spread.
The structures must be carefully machined and tuned. The temperature of the waveguides under
rf
power loading must be precisely controlled to prevent a shift in phase velocity from thermal
expansion.

C. Beam Breakup Instability

The theory of Section 13.6 indicated that transverse focusing is unnecessary in an electron linac
because of the shortened effective length. This is true only at low beam current; at high current,
electrons are subject to the beam breakup instability [W. K. H. Panofsky and M. Bander, Rev.
Sci. Instrum. 39, 206 (1968); V. K. Neil and R. K. Cooper, Part. Accel. 1, 111 (1970)] also
known as the transverse instability or pulse shortening. The instability arises from excitation of
TM110 cavity modes in the spaces between irises. Features of the TM110 mode in a cylindrical
cavity are illustrated in Figure 14.4. Note that there are longitudinal electric fields of opposite
polarity in the upper and lower portions of the cavity and that there is a transverse magnetic field
on the axis. An electron micropulse (of sub-nanosecond duration) can be resolved into a broad
spectrum of frequencies. If the pulse has relatively high current and is eccentric with respect to
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the cavity, interaction between the electrons and the longitudinal electric field of the TM110 mode 

takes place. The mode is excited near the entrance of the accelerator by the initial micropulses of
the macropulse. The magnetic field of the mode deflects subsequent portions of the macropulse,
causing transverse sweeping of the beam at frequency T110. The sweeping beam can transfer
energy continually to TM110 excitations in downstream cavities. The result is that beam sweeping
grows from the head to the tail of the microsecond duration macropulse and the strength of
TM110 oscillations grows along the length of the machine. Sweeping motion leads to beam loss.
The situation is worsened if the TM110 excitation can propagate backward along the iris-loaded
waveguide toward the entrance to the accelerator or if the beam makes many passes through the
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same section of accelerator (as in the microtron). This case is referred to as the regenerative
beam breakup instability.



Radio-frequency Linear Accelerators

448

The beam breakup instability has the following features.

1. Growth of the instability is reduced by accurate injection of azimuthally symmetric
beams.

2. The energy available to excite undesired modes is proportional to the beam current.
Instabilities are not observed below a certain current; the cutoff depends on the
macropulselength and the Q values of the resonant structure.

3. The amplitude of undesired modes grows with distance along the accelerator and with
time. This explains pulse shortening, the loss of late portions of the electron macropulse.

4. Mode growth is reduced by varying the accelerator structure. The phase velocity for
TM01 traveling waves is maintained constant, but the resonant frequency for TM110
standing waves between irises is changed periodically along the accelerator.

Transverse focusing elements are necessary in high-energy electron linear accelerators to
counteract the transverse energy gained through instabilities. Focusing is performed by solenoid
lenses around the waveguides or by magnetic quadrupole lenses between guide sections.

D. Frequency Equation

The dispersion relationship for traveling waves in an iris-loaded waveguide was introduced in
Section 12-10. We shall determine the approximate relationship between the inner and outer
radii of the irises for waves with phase velocity T/k = c at a specified frequency. The frequency
equation is a first-order guide. A second-order waveguide design is performed with computer
calculations and modeling experiments.
   Assume that *, the spacing between irises, is small compared to the wavelength of the
traveling wave; the boundary fields approximate a continuous function. The tube radius is Ro and
the aperture radius is R. The complete solution consists of standing waves in the volume between
the irises and a traveling wave matched to the reactive boundary at r = Ro. The solution must
satisfy the following boundary conditions:

The last two conditions proceed from the fact that E and B must be continuous in the absence of
surface charges or currents.
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(14.4)

(14.5)

(14.6)

(14.7)

(14.8)

(14.9)

   Following Section 12.3, the solution for azimuthally symmetric standing waves in the space
between the irises is

T'he Y0 term is retained because the region does not include the axis. Applying Eq. (14.1), Eq.
(14.4) becomes

The toroidal magnetic field is determined from Eq. (12.45) as

The traveling wave has an electric field of the form .We shall see in
Section 14.4 that the axial electric field of the traveling wave is approximately constant over the
aperture. Therefore, the net displacement current carried by a wave with phase velocity equal to
c is

The toroidal magnetic field of the wave at r = R is

The frequency equation is determined by setting  for the cavities and for the traveling wave
equal at r = R [Eqs. (14.2) and (14.3)1:

Equation (14.9) is a transcendental equation that determines T in terms of R and Ro to generate a
traveling wave with phase velocity equal to the speed of light. A plot of the right-hand side of
the equation is given in Figure 14.5. A detailed analysis shows that power flow is maximized and
losses minimized when there are about four irises per wavelength. Although the assumptions
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(14.10)

underlying Eq. (14.9) are not well satisfied in this limit, it still provides a good first-order
estimate.

E. Electromagnetic Energy Flow

Radio-frequency power is inserted into the waveguides periodically at locations separated by a
distance l. For a given available total power P, and accelerator length L, we can show that there
is an optimum value of  l such that the final beam energy is maximized. In analogy with standing
wave cavities, the quantity Q characterizes resistive energy loss in the waveguide according to

In Eq, (14.10), dP/dz is the power lost per unit length along the slow-wave structure and U is the
electromagnetic energy per unit length. Following the discussion of Section 12.10, the group
velocity of the traveling waves is equal to
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(14.11)

(14.12)

(14.13)

(14.14)

(14.15)

Multiplying the numerator and denominator by the area of the waveguide implies

where P is the total power flow. Combining Eqs. (14.10) and (14.11),
,or

where Po is the power input to a waveguide section at z = 0. The electromagnetic power flow is
proportional to the Poynting vector  where Ez is the magnitude of the peak
axial electric field. We conclude that electric field as a function of distance from the power input
is described by

where .An electron traveling through an accelerating section of length l gains an
energy

Substituting from Eq. (14.13) gives

In order to find an optimum value of l, we must define the following constraints:

1.The total rf power Pt and total accelerator length L are specified.  The power input to an
accelerating section of length l is .

2. The waveguide properties Q, vg, and T are specified.
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The goal is to maximize the total energy  by varying the number of power input
points. The total power scales as

where the first factor is proportional to the input power flux to a section and the second factor is
the number of sections. Therefore, with constant power, Ezo scales as . Substituting the scaling
for Ezo in Eq. (14.15) and multiplying by L/l, we find that the beam output energy scales as
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(14.17)
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or

Inspection of Figure 14.6 shows that T is maximized when l/lo = 1.3; the axial electric field drops
to 28% of its initial value over the length of a section. It is preferable from the point of view of
particle dynamics to maintain a constant gradient along the accelerator. Figure 14.6 implies that 
l/lo can be reduced to 0.8 with only a 2% drop in the final energy. In this case, the output electric
field in a section is 45% of the initial field.
   Fields can also be equalized by varying waveguide properties over the length of a section. If
the wall radius and the aperture radius are decreased consistent with Eq. (14.9), the phase
velocity is maintained at c while the axial electric field is raised for a given power flux.
Waveguides can be designed for constant axial field in the presence of decreasing power flux. In
practice, it is difficult to fabricate precision waveguides with continuously varying geometry. A
common compromise is to divide an accelerator section into subsections with varying geometry.
The sections must be carefully matched so that there is no phase discontinuity between them.
This configuration has the additional benefit of reducing the growth of beam breakup
instabilities.

F. Shunt Impedance

The shunt impedance is a figure-of-merit quantity for electron and ion linear accelerators. It is
defined by

where Pt is the total power dissipated in the cavity walls of the accelerator, Vo is the total
accelerator voltage (the beam energy in electron volts divided by the particle charge), and L is
the total accelerator length. The shunt impedance Zs has dimensions of ohms per meter. An
alternate form for shunt impedance is

where dP/dz is the resistive power loss per meter. The power loss of Eq. (14.17) has the form of
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a resistor of value ZsL in parallel with the beam load. This is the origin of the term shunt
impedance.
   The efficiency of a linear accelerator is given by

where Zb is the beam impedance, . The shunt impedance for most accelerator rf
structures lies in the range of 25 to 50 MS/m. As an example, consider a 2.5-GeV linear electron
accelerator with a peak on-axis gradient of 8 MV/m. The total accelerator length is 312 m. With
a shunt impedance of 50 MS/m, the total parallel resistance is 1.6 x 1010 S. Equation (14.17)
implies that the power to maintain the high acceleration gradient is 400 MW.

14.2 LINEAR ION ACCELERATOR CONFIGURATIONS

Linear accelerators for ions differ greatly from electron machines. Ion accelerators must support 
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(14.21)

(14.22)

traveling wave components with phase velocity well below the speed of light. In the energy
range accessible to linear accelerators, ions are non-relativistic; therefore, there is a considerable
change in the synchronous particle velocity during acceleration. Slow-wave structures are not
useful for ion acceleration. An iris-loaded waveguide has small apertures for . The
conduction of electromagnetic energy via slow waves is too small to drive a multi-cavity
waveguide. Alternative methods of energy coupling are used to generate traveling wave
components with slow phase velocity.
   An ion linear accelerator typically consists of a sequence of cylindrical cavities supporting
standing waves. Cavity oscillations are supported either by individual power feeds or through
inter-cavity coupling via magnetic fields. The theory of ion accelerators is most effectively
carried out by treating cavities as individual oscillators interacting through small coupling terms.
   Before studying rf linear ion accelerators based on microwave technology, we will consider the
Wideröe accelerators [R.Wideroe, Arch.  Elektrotechn. 21, 387 (1928)] (Fig. 14.7a), the first
successful linear accelerator. The Wideröe accelerator operates at a low frequency (1-10 MHz);
it still has application for initial acceleration of heavy ions. The device consists of a number of
tubes concentric with the axis connected to a high-voltage oscillator. At a particular time, half
the tubes are at negative potential with respect to ground and half the tubes are positive. Electric
fields are concentrated in narrow acceleration gaps; they are excluded from the interior of the
tubes. The tubes are referred to as drift tubes because ions drift at constant velocity inside the
shielded volume. Assume that the synchronous ion crosses the first gap at t = 0 when the fields
are aligned as shown in Figure 14.7b. The ion is accelerated across the gap and enters the
zero-field region in the first drift tube. The ion reaches the second gap at time

The axial electric fields at t = t1 are distributed as shown in Figure 14.7c if  t1 is equal to half the
rf period, or

The particle is accelerated in the second gap when Eq. (14.21) holds.
   It is possible to define a synchronous orbit with continuous acceleration by increasing the
length of subsequent drift tubes. The velocity of synchronous ions following the nth gap is

here To is the injection kinetic energy, Vo is the peak gap voltage, and Ns is the
synchronous phase. The length of drift tube n is
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The drift tubes of Figure 14.7a are drawn to scale for the acceleration of Hg+ ions injected at 2
MeV with a peak gap voltage of 100 kV and a frequency of 4 MHz.
   The Wideröe accelerator is not useful for light-ion acceleration and cannot be extrapolated to
produce high-energy heavy ions. At high energy, the drift tubes are unacceptably long, resulting
in a low average accelerating gradient. The drift tube length is reduced if the rf frequency is
increased, but this leads to the following problems:

1.The acceleration gaps conduct large displacement currents at high frequency, loading
the rf generator.

2.Adjacent drift tubes act as dipole antennae at high frequency with attendant loss of rf
energy by radiation.

The high-frequency problems are solved if the acceleration gap is enclosed in a cavity with
resonant frequency T. The cavity walls reflect the radiation to produce a standing
electromagnetic oscillation. The cavity inductance in combination with the cavity and gap
capacitance constitute an LC circuit. Displacement currents are supported by the electromagnetic
oscillations. The
power supply need only contribute energy to compensate for resistive losses and beam loading.
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   A resonant cavity for ion acceleration is shown in Figure 14.8a. The TM010 mode produces
good electric fields for acceleration. We have studied the simple cylindrical cavity in Section
12.3. The addition of drift tube extensions to the cylindrical cavity increases the capacitance on
axis, thereby lowering the resonant frequency. The resonant frequency can be determined by a
perturbation analysis or through the use of computer codes. The electric field distribution for a
linac cavity computed by the program SUPERFISH is shown in Figure 14.8b.
   Linear ion accelerators are composed of an array of resonant cavities. We discussed the
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synthesis of slow waves by independently phased cavities in Section 12.9. Two frequently 

encountered cases of cavity phasing are illustrated in Figures 14.9a and 14.9b. In the first, the
electric fields of all cavities are in phase, while in the second there is a phase change of 180°
between adjacent cavities. The synchronous condition for the in-phase array is satisfied if ions
traverse the inter-gap distance Ln in one rf period:

where  and . Hence, an accelerator with the phasing of Figure 14.9a is
referred to as a $8 linac. Similarly, the accelerator of Figure 14.9b is a $8/2 linac because the
synchronous condition implies that

In this notation, the Wideröe accelerator is a $8/2 structure.
   The advantages of an individually-phased array are that all cavities are identical and that a
uniform accelerating gradient can be maintained. The disadvantage is technological; each cavity
requires a separate rf amplifier and waveguide. The cost of the accelerator is reduced if a number
of cavities are driven by a single power supply at a single feed point. Two geometries that
accomplish this are the drift tube or Alvarez linac [L.W. Alvarez, Phys.  Rev. 70, 799 (1946)]
and the coupled cavity array. We shall study the drift tube accelerator in the remainder of this
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section.
Coupled cavities are treated in Section 14.3.
   The concept of the drift tube linac is most easily understood by following an evolution from
the independently-phased array. The $8 cavity array of Figure 14.10a is an improvement over
the independently phase array in terms of reduction of microwave hardware. There are separate
power feeds but only one amplifier. Synchronization of ion motion to the rf oscillations is
accomplished by varying the drift lengths between cavities. The structure of Figure 14.10b is
a mechanically simplified version in which the two walls separating cavities are combined. In
the absence of the drift tubes, the cavities have the same resonant frequency because  T010 does
not depend on the cavity length (Table 12.1). This reflects the fact that the capacitance of a
cylindrical cavity scales as 1/d while the inductance increases as d. The additional capacitance of
the acceleration gap upsets the balance. It is necessary to adjust the gap geometry in different
cavities to maintain a constant resonant frequency. The capacitance is determined by the drift
tube diameter and the gap width. Figure 14.10b illustrates variation of drift tube diameter to
compensate for increasing cavity length along the direction of acceleration. Resonant frequencies
of individual cavities must be matched to within a factor of 1/Q so that all cavities are excited by
the driving wave; a typical requirement is 1 part in 104. The design procedure for a cavity array
often consists of the following stages:

1. Approximate dimensions are determined by analytic or computer calculations.

2. Measurements are performed on a low-power model.

3. The final cavity array is tuned at low power. Small frequency corrections can be made
by deforming cavity walls (dimpling) or by adjusting tuning slugs which change the
capacitance or inductance of individual cavities.

The electric fields and wall currents for the TM010 mode in a $8 structure are illustrated in Figure
14.9a. Note the distribution of electric field and current on the wall separating two cavities:

1. The currents in the two cavities are opposite and approximately equal; therefore, the
wall carries zero net current.

2. Electric fields have equal magnitude and direction on both sides of the wall; therefore,
the surface charge densities on the two sides of the wall have equal magnitude and
opposite sign. There is zero net charge per area on the wall.

The field pattern is almost unchanged if the wall is removed (Fig. 14.10c). Eliminating the
intervening walls leads to the drift tube accelerator of Figure 14.10c. Shaped drift tubes with
increasing length along the direction of acceleration are supported by rods. The rods are located
at positions of zero radial electric field; they do not seriously perturb the field distribution. An
alternate view of the DTL is that it is a long cylindrical cavity with a single rf power feed to
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drive the TM010 mode; the variation of drift tube length and diameter maintains synchronization
with accelerated particles and compensates the tube perturbations to maintain a constant axial
electric field.
Magnetic quadrupole lenses for beam focusing are located inside the drift tubes. Power and
cooling water for the magnets enter along the tube supports. The development of strong
permanent magnetic materials (such as orientated samarium-cobalt) has generated interest in
adjustable permanent magnet quadrupole lenses. One of the main operational problems in DTLs
is 
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maintaining the TM010 mode in a complex structure with many competing modes. Contributions
of modes with transverse electric fields are particularly dangerous because they lead to beam
loss. An effective solution to stabilize the rf oscillations is to incorporate tuning elements in the
structure. Post couplers are illustrated in Figure 14.10d. The posts are orthogonal to the drift tube
supports. They have little effect on the fundamental acceleration mode which has only
longitudinal electric fields. On the other hand, the combination of drift tube support and post
coupler causes a significant perturbation of other modes that have transverse electric fields. The
effect is to shift the frequency of competing modes away from that of the fundamental so that
they are less likely to be excited. A second purpose of the post couplers is to add periodic
loading of the drift tube structures. Rotation of the post adds a small shunt capacitance to
selected drift tubes. The variable loading is used to adjust the distribution of fundamental mode
accelerating fields along the resonant cavity.

14.3 COUPLED CAVITY LINEAR ACCELERATORS

For a constrained frequency (set by rf power tube technology) and peak electric field (set by
breakdown limits), a $8/2 linac has twice the average accelerating gradient as a $8 structure
such as the drift tube linac. For a given beam output energy, a  $8/2 accelerator is half as long as
a $8 machine. Practical $8/2 geometries are based on coupled cavity arrays. In this section, we
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shall analyze the coupled cavity formalism and study some practical configurations.
   To begin, we treat two cylindrical resonant cavities connected by a coupling hole (Fig. 14.11a).
The cavities oscillate in the TM010 mode. Each cavity can be represented as a lumped element LC
circuit with  (Fig. 14.11b). Coupling of modes through an on-axis hole is
capacitive. The electric field of one cavity makes a small contribution to displacement current in
the other (Fig. 14.11c). In the circuit model we can represent the coupling by a capacitor Cc
between the two oscillator circuits (Fig. 14.llb). If coupling is weak, . Similarly, an
azimuthal slot near the outer diameter of the wall between the cavities results in magnetic
coupling. Some of the toroidal magnetic field of one cavity leaks into the other cavity, driving
wall currents through inductive coupling (Fig. 14.11d). In the circuit model, a magnetic coupling
slot is represented by a mutual inductance (Fig. 14.11e).
   The following equations describe voltage and current in the circuit of Figure 14.11b:

When coupling is small, voltages and currents oscillate at frequency to and the quantity
i is much smaller than I1 or I2. In this case, Eq. (14.30) has the approximate form

Assuming solutions of the form , Eqs. (14.26)-(14.31) can be combined to give

Substituting  and , Eqs. (14.32) and (14.33) can be written in matrix form:
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(14.34)



Radio-frequency Linear Accelerators

465



Radio-frequency Linear Accelerators

466

(14.35)

The equations have a nonzero solution if the determinant of the matrix equals zero, or

Equation (14.35) has two solutions for the resonant frequency:

   There are two modes of oscillation for the coupled two-cavity system. Substituting Eqs.
(14.36) and (14.37) into Eq. (14.32) or (14.33) shows that V1 = -V2 for the first mode and V1 = V2
for the second. Figure 14.12 illustrates the physical interpretation of the modes. In the first mode,
electric fields are aligned; the coupling hole does not influence the characteristics of the
oscillation (note that To is the oscillation frequency of a single cavity without the central region).
We have previously derived this result for the drift tube linac. In the second mode, the fields are
anti-aligned. The interaction of electric fields near the hole cancels coupling through the
aperture. A coupled two-cavity system can oscillate in either the $8 or the $8/2 mode, depending
on the input frequency of the rf generator. A similar solution results with magnetic coupling.
   In a coupled cavity linac, the goal is to drive a large number of cavities from a single power
feed. Energy is transferred from the feed cavity to other cavities via magnetic or electric
coupling. Assume that there are N identical cavities oscillating in the TM010 mode with uniform
capacitive coupling, represented by Cc. Figure 14.13 illustrates current and voltage in the circuit
model of the nth cavity. The equations describing the circuit are
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The assumption of small coupling is inherent in Eq. (14.40). Taking time variations of the form
exp(jTt), Eqs. (14.38)-14.40 can be combined into the single finite difference equation

where 6 and S are defined as above.
   We have already solved a similar equation for the thin-lens array in Section 8.5. Again, taking
a trial solution with amplitude variations between cells of the form

we find that

The resonant frequencies of the coupled cavity system can be determined by combining Eq.
(14.43) with appropriate boundary conditions. The cavity oscillation problem is quite similar to
the problem of an array of unconstrained, coupled pendula. The appropriate boundary condition
is that the displacement amplitude (voltage) is maximum for the end elements of the array.
Therefore, the phase term in Eq. (14.42) is zero. Applying the boundary condition in the end
cavity implies that
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Equation (14.44) is satisfied if

The quantity m has a maximum value N-1 because there can be at most N different values of Vn
in the coupled cavity system. 
   A coupled system of N cavities has N modes of oscillation with frequencies given by

The physical interpretation of the allowed modes is illustrated in Figure 14.14. Electric field
amplitudes are plotted for the seven modes of a seven-cavity system. In microwave
nomenclature, the modes are referenced according to the value of :. The 0 mode is equivalent to
a $8 structure while the B mode corresponds to $8/2.
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   At first glance, it a pears that the B mode is the optimal choice for a high-gradient accelerator.
Unfortunately, this mode cannot be used because it has a very low energy transfer rate between 

cavities. We can demonstrate this by calculating the group velocity of the traveling wave
components of the standing wave. In the limit of a large number of cavities, the positive-going
wave can be represented as 
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The wavenumber k is equal to :/d. The phase velocity is

where To is the resonant frequency of an uncoupled cavity. For the B mode, Eq. (14.48) implies

Equation (14.49) is the $8/2 condition adjusted for the shift in resonant oscillation caused by
cavity coupling.
   The group velocity is

Note that vg is zero for the 0 and B modes, while energy transport is maximum for the B/2 mode.
   The B/2 mode is the best choice for rf power coupling but it has a relatively low gradient
because half of the cavities are unexcited. An effective solution to this problem is to displace the 
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unexcited cavities to the side and pass the ion beam through the even-numbered cavities. The
result is a $8/2 accelerator with good power coupling. The side-coupled linac [See B. C. Knapp,
E. A. Knapp, G. J. Lucas, and J. M. Potter, IEEE Trans. Nucl. Sci. NS-12, 159 (1965)] is
illustrated in Figure 14.15a. Intermediate cavities are coupled to an array of cylindrical cavities
by magnetic coupling slots. Low-level electromagnetic oscillations in the side cavities act to
transfer energy along the system. There is little energy dissipation in the side cavities. Figure
14.15b illustrates an improved design. The side cavities are reentrant to make them more
compact (see Section 12.2). The accelerator cavity geometry is modified from the simple
cylinder to reduce shunt impedance. The simple cylindrical cavity has a relatively high shunt
impedance because wall current at the outside corners dissipates energy while making little
contribution to the cavity inductance.
   The disk and washer structure (Fig. 14.16) is an alternative to the side-coupled linac. It has
high shunt impedance and good field distribution stability. The accelerating cavities are defined
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by "washers." The washers are suspended by supports connected to the wall along a radial electric
field null. The coupling cavities extend around the entire azimuth. The individual sections of the
disk-and-washer structure are strongly coupled. The perturbation analysis we used to treat
coupled 
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cavities is inadequate to determine the resonant frequencies of the disk-and-washer structure. The
development of strongly-coupled cavity geometries results largely from the application of digital
computers to determine normal modes.
   In contrast to electron accelerators, ion linear accelerators may be composed of a variety of
acceleration structures. Many factors must be considered in choosing the accelerating
components, such as average gradient, field stability, shunt impedance, fabrication costs, and
beam throughput. Energy efficiency has become a prime concern; this reflects the rising cost of
electricity as well as
an expansion of interest in the accelerator community from high-energy physics to commercial
applications. Figure 14.17 shows an accelerator designed for medical irradiation. Three types of
linear accelerators are used. Notice that the factor of 4 increase in frequency between the low- and
high-energy sections. Higher frequency gives higher average gradient. The beam micro-bunches
are compressed during acceleration in the drift-tube linac (see Section 13.4) and are matched into
every fourth bucket of the coupled cavity linac. 
   Parameters of the Los Alamos Meson Facility (LAMF) accelerator are listed in Table 14.2. The
machine, illustrated in Figure 14.18, was designed to accelerate high-current proton beams for
meson production. Parameters of the UNILAC are listed in Table 14.3. The UNILAC, illustrated
in Figure 14.19, accelerates a wide variety of highly ionized heavy ions for nuclear physics
studies.

14.4 TRANSIT-TIME FACTOR, GAP COEFFICIENT, AND RADIAL
DEFOCUSING

The diameter of accelerator drift tubes and the width of acceleration gaps cannot be chosen
arbitrarily. The dimensions are constrained by the properties of electromagnetic oscillations. In
this section, we shall study three examples of rf field properties that influence the design of linear
accelerators: the transit-time factor, the gap coefficient, and the radial defocusing forces of
traveling waves. 
   The transit-time factor applies mainly to drift tube accelerators with narrow acceleration gaps.
The transit-time factor is important when the time for particles to cross the gap is comparable to
or longer than the half-period of an electromagnetic oscillation. If d is the gap width, this
condition can be written

where vs is the synchronous velocity. In this limit, particles do not gain energy .
Instead, they are accelerated by a time-averaged electric field smaller than .
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(14.56)

(14.57)

   Assume that the gap electric field has time variation

The longitudinal equation of motion for a particle crossing the gap is

Two assumptions simplify the solution of Eq. (14.53).

1.The time t = 0 corresponds to the time that the particle is at the middle of the gap.
 
2. The change in particle velocity over the gap is small compared to vs.

The quantity N  is equivalent to the particle phase in the limit of a gap of zero thickness (see Fig.
13.1). The change in longitudinal motion is approximately

Note that the term involving sinTt is an odd function; its integral is zero. The total change in
momentum is

The momentum gain of a particle in the limit d Y 0 is

The ratio of the momentum gain for a particle in a gap with nonzero width to the ideal thin gap is
defined as the transit-time factor:

The transit-time factor is also approximately equal to the ratio of energy gain in a finite-width gap



Radio-frequency Linear Accelerators

480

(14.58)

to that in a zero-width gap.
   Defining a particle transit time as , Eq. (14.57) can be rewritten

The transit-time factor is plotted in Figure 14.20 as a function of .
   As an application example, consider acceleration of 5 MeV Cs+ ions in a Wideröe accelerator
operating at f = 2 MHz. The synchronous velocity is  2.6 × 106 m/s. The transit time across a 2-cm
gap is )t = 7.5 ns. The quantity  equals 0.95; the transit-time factor is 0.963. If the 

synchronous phase is 60° and the peak gap voltage is 100 kV, the cesium ions gain an average
energy of (100)(0.963)(sin60°) = 83 keV per gap.
   The gap coefficient characterizes the radial variation of accelerating fields across the dimension
of the beam. Variations in Ez lead to a spread in beam energy; particles with large-amplitude
transverse oscillations gain a different energy than particles on the axis. Large longitudinal
velocity spread is undesirable for research applications and may jeopardize longitudinal
confinement in rf buckets. We shall first perform a non-relativistic derivation because the gap
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coefficient is primarily of interest in linear ion accelerators.
   The slow-wave component of electric field chiefly responsible for particle acceleration has the
form

As discussed in Section 13.3, a slow wave appears to be an electrostatic field with no magnetic
field when observed in a frame moving at velocity vs. The magnitude of the axial electric field is
unchanged by the transformation. The on-axis electric field in the beam rest frame is

where 8’ is the wavelength in the rest frame. In the nonrelativistic limit,   so that

The origin and sign convention in Eq. (14.60) are chosen so that a positive particle at z' = 0 has
zero phase. In the limit that the beam diameter is small compared to 8’, the electrostatic field can
be described by the paraxial approximation. According to Eq. (6.5), the radial electric field is

The equation  implies that

The energy gain of a particle at the outer radius of the beam (rb) is reduced by a factor
proportional to the square of the gap coefficient:

The gap coefficient must be small compared to unity for a small energy spread. Equation (14.64)
sets a limit on the minimum wavelength of electromagnetic waves in terms of the beam radius
and allowed energy spread:
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As an example, consider acceleration of a 10-MeV deuteron beam of radius 0.01m. To obtain an
energy spread less than 1%, the wavelength of the slow wave must be greater than 0.31 m. Using
a synchronous velocity of 3 x 107 m/s, the rf frequency must be lower than f < 100 MHz.
   This derivation can also be applied to demonstrate radial defocusing of ion beams by the fields
of a slow wave. Equation (14.62) shows that slow waves must have radial electric fields. Note
that the radial field is positive in the range of phase  and negative in the range

. Therefore, the rf fields radially defocus particles in regions of axial stability.
The radial forces must be compensated in ion accelerators by transverse focusing elements,
usually magnetic quadrupole lenses. The stability properties of a slow wave are graphically
illustrated in Figure 14.21. The figure shows three-dimensional variations of the electrostatic
confinement potential (see Section 13.3) of an accelerating wave viewed in the wave rest frame. It
is clear that there is no position in which particles have stability in both the radial and axial
directions.

   The problems of the gap coefficient and radial defocusing are reduced greatly for relativistic
particles. For a relativistic derivation, we must include the fact that the measured wavelength of
the slow wave is not the same in the stationary frame and the beam rest frame. Equation (2.23)
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implies that the measurements are related by

where ( is the relativistic factor, . Again, primed symbols denote the
synchronous particle rest frame.
   The radial and axial fields in the wave rest frame can be expressed in terms of the stationary
frame wavelength:

Note that the peak value of axial field is unchanged in a relativistic transformation ( ).
Transforming Eq. (14.68) to the stationary frame, we find that

with the replacement . Equation (14.69) differs from Eq. 14.63 by the ( factor in
the denominator of the gap coefficient. The radial variation of the axial accelerating field is
considerably reduced at relativistic energies.
   The transformation of radial electric fields to the accelerator frame is more complicated. A pure
radial electric field in the rest frame corresponds to both a radial electric field and a toroidal
magnetic field in the stationary frame:

Furthermore, the total radial force exerted by the rf fields on a particle is written in the stationary
frame as

The net radial defocusing force in the stationary frame is
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Comparison with Eq. (14.62) shows that the defocusing force is reduced by a factor of (2. Radial
defocusing by rf fields is negligible in high-energy electron linear accelerators.

14.5 VACUUM BREAKDOWN IN RF ACCELERATORS

Strong electric fields greater than 10 MV/m can be sustained in rf accelerators. This results partly
from the fact that there are no exposed insulators in regions of high electric field. In addition, rf
accelerators are run at high duty cycle, and it is possible to condition electrodes to remove surface
whiskers. The accelerators are operated for long periods of time at high vacuum, minimizing
problems of surface contamination on electrodes. 
   Nonetheless, there are limits to the voltage gradient set by resonant particle motion in the
oscillating fields. The process is illustrated for electrons in an acceleration gap in Figure 14.22.
An electron emitted from a surface during the accelerating half-cycle of the rf field can be
accelerated to an opposing electrode. The electron produces secondary electrons at the surface. If
the
transit time of the initial electron is about one-half that of the rf period, the electric field will be in
a 

direction to accelerate the secondary electrons back to the first surface. If the secondary electron
coefficient * is greater than unity, the electron current grows. Table 14.4 shows maximum
secondary electron coefficients for a variety of electrode materials. Also included are the incident
electron energy corresponding to peak emission and to * = 1. Emission falls off at a higher
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electron energy. Table 14.4 gives values for clean, outgassed surfaces. Surfaces without special
cleaning may have a value of * as high as 4.
   The resonant growth of electron current is called multipactoring, implying multiple electron
impacts. Multipactoring can lead to a number of undesirable effects. The growing electron current
absorbs rf energy and may clamp the magnitude of electric fields at the multipactoring level.
Considerable energy can be deposited in localized regions of the electrodes, resulting in
outgassing
or evaporation of material. This often leads to a general cavity breakdown.
   Conditions for electron multipactoring can be derived easily for the case of a planar gap with
electrode spacing d. The electric field inside the gap is assumed spatially uniform with time
variation given by

The non-relativistic equation of motion for electrons is

The quantity N represents the phase of the rf field at the time an electron is produced on an
electrode. Equation (14.74) can be integrated directly. Applying the boundary conditions that x =
0 and dx/dt = 0 at t = 0, we find that

Resonant acceleration occurs when electrons move a distance d in a time interval equal to an odd
number of rf half-periods. When this condition holds, electrons emerging from the impacted
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(14.76)

(14.77)

(14.78)

(14.79)

electrode are accelerated in the - x direction; they follow the same equation of motion as the
initial electrons. The resonance condition is

for n = 0, 1, 2, 3,.... Combining Eqs. (14.75) and (14.76), the resonant condition can be rewritten

because . Furthermore, we can use Eq. (14.75) to find the velocity of
electrons arriving at an electrode:

The solution of Eq. (14.74) is physically realizable only for particles leaving the initial electrode
within a certain range of N. First, the electric field must be negative to extract electrons from the
surface at t = 0, or sinN > 0. A real solution exists only if electrons arrive at the opposite electrode
with positive velocity, or cosN > 0. These two conditions are met in the phase range
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(14.80)

Figure 14.23 is a plot of Eq. (14.77) showing the breakdown parameter  versus the rf
phase at which electrons leave the surface. Electron resonance is possible, in principle, over a
range of gap voltage from 0 to . 
   Electron multipactoring is a significant problem in the low-energy sections of linear ion
accelerators. Consider, for example, an acceleration gap for 2-MeV protons. Assume that the
proton transit time )t is such that . This implies that . Substituting the above
condition in Eq. (14.78) and taking the n = 0 resonance condition, the electron energy at impact is

The quantity $ equals 0.065 for 2-MeV protons. The peak electron
energy occurs when cosN = 1 (N = 0); for the example it is 440 eV. Table 14.4 shows that this
value is close to the energy of peak secondary electron emission. Electrons emitted at other
phases arrive at the opposing electron with lower energy; therefore, they are not as likely to
initiate a resonant breakdown. For this reason, the electron multipactoring condition is often
quoted as

Equation (14.80) is expressed in terms of 8, the vacuum wavelength of the rf oscillations.
   Electron multipactoring for the case quoted is probably not significant for values of n greater
than zero because the peak electron energy is reduced by a factor of about 2n2. Therefore,
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(14.81)

breakdowns are usually not observed until the gap reaches a voltage level near that of Eq. (14.80).
For an rf frequency f = 400 MHz, an acceleration gap 0.8 cm in width has T)t = 1 for 2-MeV
protons. This corresponds to a peak voltage of 730 V. At higher field levels, the resonance
condition can be met over longer pathlengths at higher field stresses. This corresponds to
high-energy electrons, which generally have secondary emission coefficients less than unity.
Therefore, with clean surfaces it is possible to proceed beyond multipactoring by raising the rf
electric field level rapidly. This may not be the case with contaminated electrodes; surface effects
contribute much of the mystery and aggravation associated with rf breakdown. 
   The ultimate limits for rf breakdown in clean acceleration gaps were investigated
experimentally by Kilpatrick [W.D. Kilpatrick, "Criterion for Vacuum Sparking to Include Both
RF and DC," University of California Radiation Laboratory, UCRL-2321, 1953]. The following
formula is consistent with a wide variety of observations:

Note that Eq. (14.81) is identical to Eq. 14.80 with the replacement of the electron mass by that of
the proton. The Kilpatrick voltage limit is about a factor of 2000 times the electron multipactoring
condition. The similarity of the equations suggests proton multipactoring as a mechanism for
high-voltage rf breakdown. The precise mechanisms of proton production on electrode surfaces
are unknown. Proton production may be associated with thin surface coatings. Present research on
extending rf systems past the Kilpatrick limit centers on the use of proton-free electrodes.

14.6 RADIO-FREQUENCY QUADRUPOLE

The rf quadrupole [I.M. Kapchinskii and V. A. Teplyakov, Priboty i Teknika Eksperimenta 2, 19
(1970); R. H. Stokes, K. R. Crandall, J. E. Stovall, and D. A. Swenson, IEEE Trans. Nucl. Sci.
NS-26, 3469 (1979)]  is an ion accelerator in which both acceleration and transverse focusing are
performed by rf fields. The derivations of Section 14.4 (showing lack of absolute stability in an rf
accelerator) were specific to a cylindrical system; the fields in an RFQ are azimuthally
asymmetric. There is no moving frame of reference in which RFQ fields can be represented as an
electrostatic distribution. We shall see that the electric fields in the RFQ consist of positive and
negative traveling waves; the positive wave continually accelerates ions in the range of stable
phase. The beam is focused by oscillating transverse electric field components. These fields
provide net beam focusing if the accelerating fields are not too high.
   The major application of the RFQ is in low-energy ion acceleration. In the past, low-velocity
ion acceleration presented one of the main technological difficulties for high-flux accelerators. A
conventional ion beam injector consists of an ion source floating at high voltage and an
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electrostatic acceleration column. Space charge forces are strong for low-velocity ion beams; this 

fact motivates the choice of a high injection voltage, typically greater than 1 MV. The resulting
system with adequate insulation occupies a large volume. The extracted beam must be bunched
for injection into an rf accelerator. This implies long transport sections with magnetic quadrupole
lenses. Magnetic lenses are ineffective for focusing low-energy ion beams, so that flux limits are
low.
   In contrast, the RFQ relies on strong electrostatic focusing in a narrow channel; this allows
proton beam current in the range of 10 to 100 mA. An additional advantage of the RFQ is that it
can combine the functions of acceleration and bunching. This is accomplished by varying the
geometry of electrodes so that the relative magnitudes of transverse and longitudinal electric
fields vary through the machine. A steady-state beam can be injected directly into the RFQ and
reversibly bunched while it is being accelerated. 
   The quadrupole focusing channel treated in Chapter 8 has static fields with periodically
alternating field polarity along the beam axis. In order to understand the RFQ, we will consider
the geometry illustrated in Figure 14.24. The quadrupole electrodes are axially uniform but have
time-varying voltage of the form . It is valid to treat the fields near the axis in the
electrostatic limit if , where a is the distance between the electrodes and the axis. In this
case, the electric fields are simply the expressions of Eqs. (4.22) and (4.23)multiplied by sinTt:
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(14.84)

(14.85)

(14.89)

(14.90)

The oscillating electric fields near the axis are supported by excitation of surrounding microwave
structures. Off-axis fields must be described by the full set of Maxwell equations.
   The non-relativistic equation for particle motion in the x direction is

Equation (14.84) can be solved by the theory of the Mathieu equations. We will take a simpler
approach to arrive at an approximate solution. Assume that the period for a transverse particle
orbit oscillation is long compared to . In this limit, particle motion has two components; a
slow betatron oscillation (parametrized by frequency S) and a rapid small-amplitude motion at
frequency T. We shall seek a solution by iteration using the trial solution

where

Substituting Eq. (14.85) into Eq. (14.84), we find that

The first term on the left-hand side and the second term on the right-hand side of Eq. (14.89) are
dropped according to Eqs. (14.88) and (14.86). The result is an equation for the high-frequency
motion:

 or

The second step is to substitute Eq. (14.90) into Eq. (14.84) and average over a fast oscillation
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(14.91)

(14.92)

period to find the long-term motion. Terms containing sinTt average to zero. The remaining terms
imply the following approximate equation for x0:

where  denotes the average over a time 2B/T. Equation (14.91) implies that S has the real
value

The long-term motion is oscillatory; the time-varying quadrupole fields provide net focusing.
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Numerical solutions to Eq. (14.84) are plotted in Figure 14.25 for  and . The phase
relationship of Eq. (14.90) guarantees that particles are at a larger displacement when the fields are 
focusing. This is the origin of the average focusing effect. Orbit solutions in the y direction are
similar.
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The quadrupole lens of Figure 14.24 is useful only for focusing. It exerts no longitudinal force on
ions. Axial field components are introduced if the shape of the electrodes is modified to that of
Figure 14.26. The distance between the horizontal electrodes and the axis is modulated with spatial
period D. There is a similar modulation of the vertical electrodes 90° out of phase. We postulate
transverse fields of the form

Again, the electrostatic approximation is invoked near the axis. Following the discussion of
Section 4.4, Eqs. (14.93) and (14.94) are valid if (1) they are consistent with the Laplace equation
and (2) the generating electrode surfaces lie on an equipotential. We shall show that both
conditions can be satisfied.
   Assume that a particle enters the system at the origin near time . The electric fields in
the x-z plane are plotted in Figure 14.27a. The particle experiences a defocusing, quadrupolelike
transverse field but also sees an accelerating component of field. Assume further than the particle
moves a distance D/4 in the time interval . The particle position and field configuration are
sketched at  in Figure 14.27c. Transverse fields are focusing, while the axial
component of the electric field is still positive. A synchronous particle orbit can be defined for the
system.
   We can find the synchronous orbit by determining the axial electric fields and solving the
longitudinal equation of motion. If the electrostatic potential field pattern satisfies the Laplace

equation, then
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(14.95)

(14.96)

(14.97)

(14.98)

Substituting from Eqs. (14.93) and (14.94) and integrating, we find

The standing wave pattern of Eq. (14.96) can be resolved into two traveling waves,

The negative-going wave in the first term can be neglected. The positive-going component will
interact strongly with particles moving at the synchronous velocity,

Assume that the synchronous particle enters the system at the origin of Figure 14.27 with velocity
vs at time . Subsequently, the synchronous particle experiences a constant
accelerating axial electric field of magnitude
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(14.99)

The choice of axial origin and rf field phase illustrated in Figure 14.27 makes N synonymous with
the particle phase defined in Figure 13.3. As we found in Section 13.1, particle bunches have
longitudinal stability if the synchronous phase is in the range . In contrast to a drift
tube accelerator, an RFQ can be designed with only two traveling wave components. An alternate
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(14.100)

(14.101)

(14.102)

(14.103)

view is that the RFQ provides almost continuous acceleration. The equation of  motion for the
synchronous particle is

Substituting from Eq. (14.98), Eq. (14.100) can be rewritten as

If the field modulation factor , is constant, Eq. (14.101) indicates that the length of modulations
should increase linearly moving from entrance to exit of the RFQ.
   The transverse equation of motion for a particle passing z = 0 at time N/T is

Again, we retain only the part of the force resonant with synchronous particles. Applying the
synchronous condition [Eq. (14.98)], Eq. (14.102) becomes

The first term on the right-hand side represents the usual transverse focusing from the rf
quadrupole. This component of motion is solved by the same method as the axially uniform
oscillating quadrupole. The second term represents a defocusing force arising from the axial
modulation of the quadrupole electrodes. The origin of this force can be understood by inspection
of Figure 14.27. A sequence of particle position and electrode polarities is shown for a particle
with a phase near 90°. On the average, the electrode spacing in the x direction is smaller during
transverse defocusing and larger during the focusing phase for . This brings about a
reduction of the average focusing force.
   The solution for average betatron oscillations of particles is

where
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(14.105)

(14.106)

(14.107)

The same result is determined for motion in the y direction. There is net transverse focusing if S is
a real number, or

The longitudinal electric field is proportional to ,. Therefore, there are limits on the accelerating
gradient that can be achieved while preserving transverse focusing:

Note that high longitudinal gradient is favored by high pole tip field (Eo) and a narrow beam
channel (a).
   The following parameters illustrate the results for the output portion of a 2.5-MeV RFQ
operating at 440 MHz. The channel radius is a = 0.0025 m, the synchronous phase is , the
cell length is 0.05 m, and the pole tip field is 10 MV/m, well below the Kilpatrick limit. The
limiting longitudinal gradient is 4.4 MV/m. The corresponding modulation factor is , = 0.05. A
typical RFQ design accelerates protons to 2.5 MeV in a length less than 2 m. 
   Equations (14.93), (14.94), and (14.96) can be used to find the electrostatic potential function
following the same method used in Section 4.4. The result is 

The equipotential surfaces  determine the three-dimensional electrode shape. The
equation for the minimum displacement of the vertical vanes from the axis is

This function is plotted in Figure 14.28. For a modulation factor , = 0.02 and an average minimum
electrode displacement of 0.0025 m, the distance from the electrode to the axis varies between
0.0019 and 0.0030 m.
   The design of RFQ electrodes becomes more complex if the modulation factor is varied to add
bunching capability. The design procedure couples results from particle orbit computer codes into
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a computer-controlled mill to generate complex electrodes such as that illustrated in Figure 14.29.
The structure transports an incoming 30-mA, 30-keV proton beam. Electrode modulations increase
gradually along the direction of propagation, adding longitudinal field components. The
synchronous phase rises from 0 to the final value. Note the increasing modulation depth and cell 
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length along the direction of acceleration.
   A cross section of a complete RFQ is illustrated in Figure 14.30. The volume outside the
transport region is composed of four coupled cylindrical section cavities. The desired excitation
modes for the cavities have axial magnetic fields and properties which are uniform along the
longitudinal direction. Field polarities and current flows are illustrated for the quadrupole mode. A
440-MHz cavity has a radius of about 0.2 m. The mode for the quadrupole oscillation in all four
cavities is designated TE210. This terminology implies the following:

1. Electric fields are transverse to the z direction in the rf portion of the cavity.

2. Field quantities vary in azimuth according to cos(22).

3. The electric field is maximum on axis and decreases monotonically toward the wall.    

4. There is no axial variation of field magnitudes in the standing wave.

Coupling of the four lines through the narrow transport region is not strong; equal distribution of
energy demands separate drives for each of the lines. The usual procedure is to surround the RFQ
with an annular resonator (manifold) driven at a single feed point. The manifold symmetrizes the rf
energy; it is connected to the transmission lines by multiple coupling slots.
   Other modes of oscillation are possible in an RFQ cavity. The dipole mode illustrated in Figure
14.30b is particularly undesirable since it results in electrostatic deflections and beam loss. The
dipole mode frequency does not differ greatly from that of the quadrupole. Another practical
problem is setting end conditions on the electrodes to maintain a uniform electric field magnitude
over the length. Problems of mode coupling and field uniformity multiply as the length of the RFQ
increases. This is the main reason why RFQ applications are presently limited to low-energy
acceleration. The RFQ has been studied as a pre-accelerator for heavy ions. In this case, the
frequency is low. Low-frequency RFQs are sometimes fabricated as a nonresonant structure
driven by an oscillator like the Wideröe accelerator.

14.7 RACETRACK MICROTRON

The extensive applications of synchrotron radiation to atomic and solid-state physics research has
renewed interest in electron accelerators in the GeV range. The microtron is one of the most
promising electron accelerators for research. Its outstanding feature is the ability to generate a
continuous beam of high-energy electrons with average current approaching 100 :A. The time-
average output of a microtron is much higher than a synchrotron or high-electron linac, which
produce pulses of electrons at relatively low repetition rates.
   The racetrack microtron [V.Veksler, Compt.  Rend.  Acad.  Sci.  U. S. S. R. 43, 444 (1944)] is
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illustrated in Figure 14.31a. Electrons are accelerated in a short linac section. Uniform field sector 
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magnets at each end of the accelerator confine the electrons. Electrons at a variety of energy levels
are contained simultaneously in the machine. Electron orbits in the magnets are half-circles. It is
easily demonstrated that electrons return to the linear accelerator axis after each revolution,
independent of their energy. The size of the orbit increases as the electron energy increases.
   The microtron combines linear accelerator technology with circular accelerator particle
dynamics. Beam recirculation allows more efficient utilization of the linac. In contrast to the
high-energy electron linear accelerators of Section 14.1 (where the machine length is a major
constraint), acceleration gradient is not the primary concern in the microtron. This means that the
accelerator need not operate at high field stress; therefore, power dissipation is a factor of 25-100
times lower than a high-gradient electron linac. This accounts for the capability of CW steady-state
operation. The phase velocity of traveling wave components in the microtron linac is equal to the
speed of light. In contrast to high-energy electron linacs, microtrons have phase stability. The orbit
size (and, hence, the time to return to the linac) depends on electron energy. Therefore, electrons
can be longitudinally confined during acceleration, even at low values of accelerating gradient.
   Some parameters of a medium-energy microtron are listed in Table 14.5. The machine is
designed as a pre-accelerator in a three-microtron facility to produce an 840-MeV beam. The
14-MeV  niicrotron with its associated injection and extraction system is illustrated in Figure
14.31b. The injected beam is generated by a 2-MV Van de Graaff accelerator. A beam chopper in
the terminal of the electrostatic accelerator produces short pulses of electrons phased-matched to
the linac. The complex series of lenses and deflection magnets matches the transverse and
longitudinal distributions of the electron beam to the acceptance of the microtron. The origin of the
parameters in Table 14.5 will be evident after we develop the theory of microtron equilibrium
orbits.
   In order to describe the microtron analytically, assume that the sector fields have sharp
boundaries and a uniform field magnitude, Bo. Electrons are injected with initial total energy Uo
and gain an energy )U in each pass through the linear accelerator. Assume, further, that

, so that the electron velocity is always approximately equal to the speed of light. We
have shown that acceleration in linear accelerators arises from a traveling wave component of the
form

The energy gain of a relativistic electron traversing an accelerator of length L is

where N is the phase of the particle with respect to the traveling wave.  The energy gain for
synchronous electrons passing through the linac is independent of their total energy.
   The index n designates the number of times that an electron has passed through the linear
accelerator; the orbits in Figure 14.31 are labeled accordingly. The time for an electron to traverse
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(14.108)

the microtron is 

where

The quantity U is the total energy of an electron on the nth orbit:
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(14.109)

(14.110)

(14.111)

(14.112)

The condition for synchronous electrons is that they arrive at the entrance to the linac at the same
phase of the rf period. In other words, the traversal time must be an integer multiple of the rf
period. Letting T be the frequency of rf oscillations in the linac, this condition is written

As electrons gain energy, the particle velocity is constant but the orbit size increases. The traversal
time of high-energy particles is longer than that of low-energy particles. The difference in traversal
times between particles on the n and n-1 orbits is

Clearly, for synchronization )tn must also equal an integer multiple of the rf period:

As an example, we pick q = 1. This means that electrons take one extra rf period for a traversal
with each energy increment. Following Table 14.5, assume a 20-turn microtron with an injection
energy of 2 MeV. The bending magnetic field is 0.1 T, and the linear accelerator length is 0.8 M.
The energy gain per turn is )U = 0.6 MeV, implying an average acceleration gradient of 0.75
MV/m. Substituting into Eq. (14.112), the matched frequency is T = 1.5 × x 1010 s-1, or f = 2.4
GHz. Electrons injected at 2 MeV are boosted to 2.6 MeV in their first passage through the linac.
The initial gyroradius in the bending field is 0.174 m; the total distance around the system on the
first orbit is 2.7 m. Equation 14.111 implies that the time for the first traversal equals 22 rf periods.
This is a high number; the particle must return to the linac entrance with equal phase after an
interval of . Synchronization requires excellent bending field uniformity and a constant
energy input beam with little velocity dispersion. The problem becomes more acute as electrons
are accelerated. Electrons on the highest-energy orbit take 42 rf periods to traverse the system. The
synchronization problem limits the practical number of turns in a single niicrotron. A choice of q >
1 worsens the problem.
   The separation between adjacent orbits on the side opposite the linac is
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For the parameters of the example, *r = 0.04 in. The large orbit separation makes extraction of
high-energy electrons relatively easy.
   The two main problems of rnicrotrons are beam steering and beam breakup instabilities.
Regarding the first problem, the uniform magnetic field of the microtron has horizontal focusing
but no vertical focusing. Lenses must be added to each beam line on the straight sections opposite
the accelerator. Even with the best efforts to achieve bending field uniformity, it is necessary to
add beam steering magnets with active beam sensing and compensation to meet the
synchronization condition. The beam breakup instability is severe in the microtron because the
current of all beams is concentrated in the high-Q resonant cavities of the linear accelerator. The
beam breakup instability is the main reason why microtron average currents are limited to less than
1 mA. It
has also impeded the development of microtrons with superconducting linear accelerator cavities.
These cavities have extremely high values of Q for all modes.

Phase stability is an interesting feature of microtrons. In contrast to high-energy electron linear
accelerators, variations of electron energy lead to phase shifts because of the change in orbit
pathlength. For instance, a particle with energy greater than that of the synchronous particle has a
larger gyroradius; therefore, it enters the linac with increased phase. For longitudinal stability, the
higher-energy electrons must receive a reduced energy increment in the linac. This is true if the
synchronous phase is in a region of decreasing field, . Particle phase orbits are
the inverse of those in a linear ion accelerator.
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   The double-sided microtron (DSM) illustrated in Figure 14.32a is an alternative to the racetrack
niicrotron. The DSM has linear accelerators in both straight sections. Beam deflection is
performed by four 45° sector magnets. The major advantage, compared to the racetrack microtron,
is that approximately double the electron energy can be achieved for the same magnet mass. The
45° sector magnet has the feature that the orbits of electrons of any energy are reflected at exactly
90° (see Fig. 14.32b).

   Unfortunately, the DSM has unfavorable properties for electron focusing. Figure 14.32c shows a
particle trajectory on the main orbit compared to an orbit displaced horizontally off-axis. Note that
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there is no focusing; the DSM has neutral stability in the horizontal direction. Furthermore, the
sector magnets contribute defocusing forces in the vertical direction. There are edge-focusing
effects because the magnets boundaries are inclined 45° to the particle orbits. Reference to Section
6.9, shows that the inclination gives a negative focal length resulting in defocusing.
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15

Cyclotrons and Synchrotrons

The termcircular acceleratorrefers to any machine in which beams describe a closed orbit. All
circular accelerators have a vertical magnetic field to bend particle trajectories and one or more
gaps coupled to inductively isolated cavities to accelerate particles. Beam orbits are often not true
circles; for instance, large synchrotrons are composed of alternating straight and circular sections.
The main characteristic of resonant circular accelerators is synchronization between oscillating
acceleration fields and the revolution frequency of particles.

Particle recirculation is a major advantage of resonant circular accelerators over rf linacs. In a
circular machine, particles pass through the same acceleration gap many times (102 to greater than
108). High kinetic energy can be achieved with relatively low gap voltage. One criterion to
compare circular and linear accelerators for high-energy applications is the energy gain per length
of the machine; the cost of many accelerator components is linearly proportional to the length of
the beamline. Dividing the energy of a beam from a conventional synchrotron by the
circumference of the machine gives effective gradients exceeding 50 MV/m. The gradient is
considerably higher for accelerators with superconducting magnets. This figure of merit has not
been approached in either conventional or collective linear accelerators.

There are numerous types of resonant circular accelerators, some with specific advantages and
some of mainly historic significance. Before beginning a detailed study, it is useful to review
briefly existing classes of accelerators. In the following outline, a standard terminology is defined
and the significance of each device is emphasized.



Cyclotrons and Synchrotrons

501

Most resonant circular accelerators can be classed as either cyclotrons or synchrotrons. One
exception is the microtron (Section 14.7), which is technologically akin to linear accelerators. The
microtron may be classified as a cyclotron for relativistic electrons, operating well beyond the
transition energy (see Section 15.6). The other exception is the synchrocyclotron (Section 15.4).

A. Cyclotron

A cyclotron has constant magnetic field magnitude and constant rf frequency. Beam energy is
limited by relativistic effects, which destroy synchronization between particle orbits and rf fields.
Therefore, the cyclotron is useful only for ion acceleration. The virtue of cyclotrons is that they
generate a continuous train of beam micropulses. Cyclotrons are characterized by large-area
magnetic fields to confine ions from zero energy to the output energy.

1. Uniform-Field Cyclotron

The uniform-field cyclotron has considerable historic significance. It was the first accelerator to
generate multi-MeV particle beams for nuclear physics research. The vertical field is uniform in
azimuth. The field magnitude is almost constant in the radial direction, with small positive field
index for vertical focusing. Resonant acceleration in the uniform-field cyclotron depends on the
constancy of the non-relativistic gyrofrequency. The energy limit for light ion beams is about
15-20 MeV, determined by relativistic mass increase and the decrease of magnetic field with
radius. There is no synchronous phase in a uniform-field cyclotron.

2. Azimuthally-Varying-Field (AVF) Cyclotron

The AVF cyclotron is a major improvement over the uniform-field cyclotron. Variations are
added to the confining magnetic field by attaching wedge-shaped inserts at periodic azimuthal
positions of the magnet poles. The extra horizontal-field components enhance vertical focusing. It
is possible to tolerate an average negative-field index so that the bending field increases with
radius. With proper choice of focusing elements and field index variation, the magnetic field
variation balances the relativistic mass increase, resulting in a constant-revolution frequency. An
AVF cyclotron with this property is called an isochronous cyclotron. An additional advantage of
AVF cyclotrons is that the stronger vertical focusing allows higher beam intensity. AVF machines
have supplanted the uniform-field cyclotron, even in low-energy applications.

3. Separated-Sector Cyclotron

The separated-sector cyclotron is a special case of the AVF cyclotron. The azimuthal field
variation results from splitting the bending magnet into a number of sectors. The advantages of
the separated sector cyclotron are (1) modular magnet construction and (2) the ability to locate rf
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feeds and acceleration gaps between the sectors. The design of separated-sector cyclotrons is
complicated by the fact that particles cannot be accelerated from low energy. This feature can be
used to advantage; beams with lower emittance (better coherence) are achieved if an independent
accelerator is used for low-energy acceleration.

4. Spiral Cyclotron

The pole inserts in a spiral cyclotron have spiral boundaries. Spiral shaping is used in both
standard AVF and separated-sector machines. In a spiral cyclotron, ion orbits have an inclination
at the boundaries of high-field regions. Vertical confinement is enhanced by edge focusing
(Section 6.9). The combined effects of edge focusing and defocusing lead to an additional vertical
confinement force.

5. Superconducting Cyclotron

Superconducting cyclotrons have shaped iron magnet poles that utilize the focusing techniques
outlined above. The magnetizing force is supplied by superconducting coils, which consume little
power. Superconducting cyclotrons are typically compact machines because they are operated at
high fields, well above the saturation level of the iron poles. In this situation, all the magnetic
dipoles in the poles are aligned; the net fields can be predicted accurately.

B. Synchrocyclotron

The synchrocyclotron is a precursor of the synchrotron. It represents an early effort to extend the
kinetic energy limits of cyclotrons. Synchrocyclotrons have a constant magnetic field with
geometry similar to the uniform-field cyclotron. The main difference is that the rf frequency is
varied to maintain particle synchronization into the relativistic regime. Synchrocyclotrons are
cyclic machines with a greatly reduced time-averaged output flux compared to a cyclotron.
Kinetic energies for protons to 1 GeV have been achieved. In the sub-GeV energy range,
synchrocyclotrons were supplanted by AVF cyclotrons, which generate a continuous beam.
Synchrocyclotrons have not been extended to higher energy because of technological and
economic difficulties in fabricating the huge, monolithic magnets that characterize the machine.

C. Synchrotron

Synchrotrons are the present standard accelerators for particle physics research. They are cycled
machines. Both the magnitude of the magnetic field and the rf frequency are varied to maintain a
synchronous particle at a constant orbit radius. The constant-radius feature is very important;
bending and focusing fields need extend over only a small ring-shaped volume. This minimizes the
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cost of the magnets, allowing construction of large-diameter machines for ion energies of up to
800 GeV. Synchrotrons are used to accelerate both ions and electrons, although electron
machines are limited in energy by emission of synchrotron radiation. The main limits on achievable
energy for ions are the cost of the machine and availability of real estate. Cycling times are long in
the largest machines, typically many seconds. Electron synchrotrons and proton boosters cycle at
frequencies in the range of 15 to 60 Hz.

1. Weak Focusing Synchrotron

Early synchrotrons used weak focusing. The bending magnets were shaped to produce a field with
index in the range 0 <n < 1. With low focusing force, the combined effects of transverse particle
velocity and synchrotron oscillations (see Section 15.6) resulted in beams with large cross section.
This implies costly, large-bore magnets.

2. Strong Focusing Synchrotron

All modern synchrotrons use transverse focusing systems composed of strong lenses in a
focusing-defocusing array. Strong focusing minimizes the beam cross section, reducing the
magnet size. Beam dynamics are more complex in a strong focusing synchrotron. The magnets
must be constructed and aligned with high precision, and care must be taken to avoid resonance
instabilities. Advances in magnet technology and beam theory have made it possible to overcome
these difficulties.

Alternating Gradient Synchrotron (AGS) . The bending field in an alternating gradient
synchrotron is produced by a ring of wedge-shaped magnets which fit together to form an annular
region of vertical field. The magnets have alternate positive and negative field gradient withn » 1.
The combination of focusing and defocusing in the horizontal and vertical directions leads to net
beam confinement.

Separated Function Synchrotron. Most modern synchrotrons are configured as separated
function synchrotrons. The bending field is provided by sector magnets with uniform vertical field.
Focusing is performed by quadrupole magnetic lens set between the bending magnets. Other
magnets may be included for correction of beam optics.

3. Storage Ring

A storage ring usually has the same focusing and bending field configuration as a separated
function synchrotron, but provides no acceleration. The magnetic fields are constant in time. An
rf cavity may be included for longitudinal beam manipulations such as stacking or, in the case of
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electrons, maintaining kinetic energy in the presence of radiation loss. A storage ring contains
energetic particles at constant energy for long periods of time. The primary applications are for
colliding beam experiments and synchrotron radiation production.

4. Collider

A collider is a synchrotron, storage ring, dual synchrotron, or dual storage ring with special
geometry to allow high-energy charged particles moving in opposite directions to collide head-on
at a number of positions in the machine. The use of colliding beams significantly increases the
amount of energy available to probe the structure of matter for elementary particle physics.
Colliders have been operated (or are planned) for counter-rotating beams of protons (pp collider),
electrons and positrons (e-e+), and protons and antiprotons (p ).p

Section 15.1 introduces the uniform-field cyclotron and the principles of circular resonant
accelerators. The longitudinal dynamics of the uniform-field cyclotron is reviewed in Section 15.2.
The calculations deal with an interesting application of the phase equations when there is no
synchronous particle. The model leads to the choice of optimum acceleration history and tolimits
on achievable kinetic energy. Sections 15.3 and 15.4 are concerned with AVF, or isochronous,
cyclotrons. Transverse focusing is treated in the first section. Section 15.4 summarizes
relationships between magnetic field and rf frequency to preserve synchronization in fixed-field,
fixed-frequency machines. There is also a description of the synchrocyclotron.

Sections 15.5-15.7 are devoted to the synchrotron. The first section describes general features
of synchrotrons, including focusing systems, energy limits, synchrotron radiation, and the
kinematics of colliding beams. The longitudinal dynamics of synchrotrons is the subject of Section
15.6. Material includes constraints on magnetic field and rf frequency variation for
synchronization, synchrotron oscillations, and the transition energy. To conclude, Section 15.7
summarizes the principles and benefits of strong focusing. Derivations are given to illustrate the
effects of alignment errors in a strong focusing system. Forbidden numbers of betatron
wavelengths and mode coupling are discussed qualitatively.

15.1 PRINCIPLES OF THE UNIFORM-FIELD CYCLOTRON

The operation of the uniform-field cyclotron [E. 0. Lawrence, Science72, 376 (1930)] is based on
the fact that the gyrofrequency for non-relativistic ions [Eq. (3.39)] is independent of kinetic
energy. Resonance between the orbital motion and an accelerating electric field can be achieved
for ion kinetic energy that is small compared to the rest energy. The configuration of the
uniform-field cyclotron is illustrated in Figure 15.1a. Ions are constrained to circular orbits by a
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fo � qBo/2πmi � (1.52×107) Bo(tesla)/A, (15.1)

Tmax � 48 (Z�RB)2/A, (15.2)

vertical field between the poles of a magnet. The ions are accelerated in the gap between two
D-shaped metal structures (dees) located within the field region. An ac voltage is applied
to the dees by an rf resonator. The resonator is tuned to oscillate nearωg.

The acceleration history of an ion is indicated in Figure 15.1b. The acceleratorillustrated has
only one dee excited by a bipolar waveform to facilitate extraction. A source, located at the center
of the machine continuously generates ions. The low-energy ions are accelerated to the opposite
electrode during the positive-polarity half of the rf cycle. After crossing the gap, the ions are
shielded from electric fields so that they follow a circular orbit. When the ions return to the gap
after a time interval they are again accelerated because the polarity of the dee voltage isπ/ωgo
reversed. An aperture located at the entrance to the acceleration gaplimits ions to a small range
of phase with respect to the rf field. If the ions were not limited to a small phase range, the output
beam would have an unacceptably large energy spread. In subsequent gap crossings, the ion
kinetic energy and gyroradius increase until the ions are extracted at the periphery of the magnet.
The cyclotron is similar to the Wideröe linearaccelerator (Section 14.2); the increase in the
gyroradius with energy is analogous to the increase in drift-tube length for the linear machine.

The rf frequency in cyclotrons is relatively low. The ion gyrofrequency is

whereA is the atomic mass number,mi/mp. Generally, frequency is in the range of 10 MHz for
magnetic fields near 1 T. The maximum energy of ions in a cyclotron is limited by relativistic
detuning and radial variations of the magnetic field magnitude. In a uniform-field magnet field, the
kinetic energy and orbit radius of non-relativistic ions are related by

whereTmax is given in MeV,R in meters, andB in tesla. For example, 30-MeV deuterons require a
1-T field with good uniformity over a 1.25-m radius.

Transverse focusing in the uniform-field cyclotron is performed by an azimuthally symmetric
vertical field with a radial gradient (Section 7.3). The main differences from the betatron are that
the field index is small compared to unity ( and ) and that particle orbits extendνr � 1 νz « 1
over a wide range of radii. Figure 15.2 diagrams magnetic field in a typical uniform-field cyclotron
magnet and indicates the radial variation of field magnitude and field index,n. The field index is
not constant with radius. Symmetry requires that the field index be zero at the center of the
magnet. It increases rapidly with radius at the edge of the pole. Cyclotron magnets are designed
for smalln over most of the field area to minimize desynchronization of particle orbits. Therefore,
vertical focusing in a uniform-field cyclotron is weak.

There is no vertical magnetic focusing at the center of the magnet. By a fortunate coincidence,



Cyclotrons and Synchrotrons

507



Cyclotrons and Synchrotrons

508

electrostatic focusing by the accelerating fields is effective for low-energy ions. The electric field
pattern between the dees of a cyclotron act as the one-dimensional equivalent of the electrostatic
immersion lens discussed in Section 6.6. The main difference from the electrostatic lens is that ion
transit-time effects can enhance or reduce focusing. For example, consider the portion of the
accelerating half-cycle when the electric field is rising. Ions are focused at the entrance side of the
gap and defocused at the exit. When the transit time is comparable to the rf half-period, the
transverse electric field is stronger when the ions are near the exit, thereby reducing the net
focusing. The converse holds in the part of the accelerating half-cycle with falling field.

In order to extract ions from the machine at a specific location, deflection fields must be
applied. Deflection fields should affect only the maximum energy ions. Ordinarily, static electric
(magnetic) fields in vacuum extend a distance comparable to the spacing between electrodes
(poles) by the properties of the Laplace equation (Section 4.1). Shielding of other ions is
accomplished with a septum (separator), an electrode or pole that carries image charge or current
to localize deflection fields. An electrostatic septum is illustrated in Figure 15.3. A strong radial
electric field deflects maximum energy ions to a radius wheren > 1. Ions spiral out of the machine
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∆R � (R/2) (2qVo sinφs/T). (15.3)

V(t) � Vo sinωt, (15.4)

along a well-defined trajectory. Clearly, a septum should not intercept a substantial fraction of the
beam. Septa are useful in the cyclotron because there is a relatively large separation between
orbits. The separation for non-relativistic ions is

For example, with a peak dee voltageVo = 100 kV,φs = 60�, R = 1 m, and T = 20 MeV, Eq.
(15.3) implies that∆R = 0.44 cm.

15.2 LONGITUDINAL DYNAMICS OF THE UNIFORM-FIELD
CYCLOTRON

In the uniform-field cyclotron, the oscillation frequency of gap voltage remains constant while the
ion gyrofrequency continually decreases. The reduction inωg with energy arises from two causes:
(1) the relativistic increase in ion mass and (2) the reduction of magnetic field magnitude at large
radius. Models of longitudinal particle motion in a uniform-field cyclotron are similar to those
for a traveling wave linear electron accelerator (Section 13.6); there is no synchronous phase. In
this section, we shall develop equations to describe the phase history of ions in a uniform-field
cyclotron. As in the electron linac, the behavior of a pulse of ions is found by following individual
orbits rather than performing an orbit expansion about a synchronous particle. The model predicts
the maximum attainable energy and energy spread as a function of the phase width of the ion
pulse. The latter quantity is determined by the geometry of the aperture illustrated in Figure 15.1.
The model indicates strategies to maximize beam energy.
The geometry of the calculation is illustrated in Figure 15.4. Assume that the voltage of dee1
relative to dee2 is given by

whereω is the rf frequency. The following simplifying assumptions facilitate development of a
phase equation:

1. Effects of the gap width are neglected. This is true when the gap width divided by the
ion velocity is small compared to 1/ω.

2. The magnetic field is radially uniform. The model is easily extended to include the
effects of field variations.

3. The ions circulate many times during the acceleraton cycle, so that it is sufficient to
approximate kinetic energy as a continuous variable and to identify the centroid of the
particle orbits with the symmetry axis of the machine.
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φ � ωt � θ(t). (15.5)

dφ/dt � ω � dθ/dt � ω � ωg, (15.6)

ωg � qBo/γmi � qc2Bo/E. (15.7)

The phase of an ion at azimuthal positionθ and timet is defined as

Equation (15.5) is consistent with our previous definition of phase (Chapter 13). Particles
crossing the gap from deel to dee2 att = 0 haveφ = 0 and experience zero accelerating voltage.
The derivative of Eq. (15.5) is

where

The quantityE in Eq. (15.7) is the total relativistic ion energy, . In the limit thatE � T � mic
2

, the gyrofrequency is almost constant and Eq. (15.6) implies that particles haveT « mic
2

constant phase during acceleration. Relativistic effects reduce the second term in Eq. (15.6). If the
rf frequency equals the non-relativistic gyrofrequency , then dφ/dt is always positive.ω � ωgo
The limit of acceleration occurs whenφ reaches 180�. In this circumstance, ions arrive at the gap
when the accelerating voltage is zero; ions are trapped at a particular energy and circulate in the
cyclotron at constant radius.
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∆Em � qVo sinφm. (15.8)

∆φ � (dφ/dt) (π/ωg) � π [(ωE/c2qBo) � 1]. (15.9)

∆φ/∆E � dφ/dE � (π/qVo sinφ) [(ωE/c2qBo) � 1]. (15.10)

sinφ dφ � (π/qVo) [(ωE/c2qBo) � 1] dE. (15.11)

cosφ � cosφo � (π/qVo) [(ω/2c2qBo) (E 2
� Eo) � (E � Eo)], (15.12)

cosφ � cosφo � (π/qVo) (1 � ω/ωgo) T � (π/2qVomic
2) (ω/ωgo) T 2. (15.13)

Equation (15.4), combined with the assumption of small gap width, implies that particles
making theirmth transit of the gap with phaseφm gain an energy.

In order to develop an analytic phase equation, it is assumed that energy increases continually and
that phase is a continuous function of energy,φ(E). The change of phase for a particle during the
transit through a dee is

Dividing Eq. (15.9) by Eq. (15.8) gives an approximate equation forφ(E):

Equation (15.10) can be rewritten

Integration of Eq. (15.11) gives an equation for phase as a function of particle energy:

whereφo is the injection phase. The cyclotron phase equation is usually expressed in terms of the
kinetic energy T. Taking and , Eq. (15.12) becomesT � E � m2

oc ωgo � qBo/mi

During acceleration, ion phase may traverse the range . The content of Eq.0� < φ < 180�
(15.13) can be visualized with the help of Figure 15.5. The quantity cosφ is plotted versusT with
φo as a parameter. The curves are parabolas. In Figure 15.5a, the magnetic field is adjusted so that

. The maximum kinetic energy is defined by the intersection of the curve with cosφ = - 1.ω � ωo
The best strategy is to inject the particles in a narrow range nearφo = 0. Clearly, higher kinetic
energy can be obtained if (Fig. 15.5b). The particle is injected withφo > 0. It initiallyω < ωo
gains on the rf field phase and then lags. A particle phase history is valid only if cosφ remains
between -1 and +1. In Figure 15.5b, the orbit withφo = 45� is not consistent with acceleration to
high energy. The curve forφo = 90� leads to a higher final energy thanφo = 135�.
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cosφ � �1 for T � Tmax (15.14)

cosφ � �1 for T � ½Tmax. (15.15)

The curves of Figure 15.5 depend onVo, mi, and . The maximum achievable energyω/ωgo
corresponds to the curve illustrated in Figure 15.5c. The particle is injected atφo = 180�. The rf
frequency is set lower than the non-relativistic ion gyrofrequency. The two frequencies are equal
whenφ approaches 0�. The curve of Figure 15.5c represents the maximum possible phase
excursion of ions during acceleration and therefore the longest possible time of acceleration.
Defining Tmax as the maximum kinetic energy, Figure 15.5c implies, the constraints

and

The last condition proceeds from the symmetric shape of the parabolic curve. Substitution of Eqs.
(15.14) and (15.15) in Eq. (15.13) gives two equations in two unknowns forTmax and . Theω/ωgo
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ω/ωgo � 1/(1 � Tmax/2mic
2) (15.16)

Tmax � 16qVomic
2/π. (15.17)

solution is

and

Equation (15.17) is a good approximation when .T « mic
2

Note that the final kinetic energy is maximized by takingVo large. This comes about because a
high gap voltage accelerates particles in fewer revolutions so that there is less opportunity for
particles to get out of synchronization. Typical acceleration gap voltages are ±100 kV. Inspection
of Eq. (15.17) indicates that the maximum kinetic energy attainable is quite small compared
to mic

2. In a typical cyclotron, the relativistic mass increase amounts to less than 2%. The small
relativistic effects are important because they accumulate over many particle revolutions.

To illustrate typical parameters, consideracceleration of deuterium ions. The rest energy is 1.9
GeV. If Vo = 100 kV, Eq. (15.17) implies thatTmax = 31 MeV. The peak energy will be lower if
radial variations of magnetic field are included. WithBo = 1.5 T, the non-relativistic
gyrofrequency isfo = 13.6 MHz. For peak kinetic energy, the rf frequency should be about 13.5
MHz. The ions make approximately 500 revolutions during acceleration.

15.3 FOCUSING BY AZIMUTHALLY VARYING FIELDS (AVF)

Inspection of Eqs. (15.6) and (15.7) shows that synchronization in a cyclotron can be preserved
only if the average bending magnetic field increases with radius. A positive field gradient
corresponds to a negative field index in a magnetic field with azimuthal symmetry, leading to
vertical defocusing. A positive field index can be tolerated if there is an extra source of vertical
focusing. One way to provide additional focusing is to introduce azimuthal variations in the
bending field. In this section, we shall study particle orbits in azimuthally varying fields. The intent
is to achieve a physical understanding of AVF focusing through simple models. The actual design
of accelerators with AVF focusing [K.R. Symon,et. al., Phys. Rev.103, 1837 (1956); F.T. Cole,
et .al., Rev. Sci. Instrum.28, 403 (1957)] is carried out using complex analytic calculations and,
inevitably, numerical solution of particle orbits. The results of this section will be applied to
isochronous cyclotrons in Section 15.4. In principle, azimuthally varying fields could be used for
focusing in accelerators with constant particle orbit radius, such as synchrotrons or betatrons.
These configurations are usually referred to as FFAG (fixed-field, alternating-gradient)
accelerators. In practice, the cost of magnets in FFAG machines is considerably higher than more
conventional approaches, so AVF focusing is presently limited to cyclotrons.
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Figure 15.6a illustrates an AVF cyclotron field generated by circular magnet poles with
wedge-shaped extensions attached. We begin by considering extensions with boundaries that lie
along diameters of the poles; more general extension shapes, such as sections with spiral
boundaries, are discussed below. Focusing by fields produced by wedge-shaped extensions is
usually referred to asThomas focusing[L.H. Thomas, Phys. Rev.54, 580 (1938)]. The raised
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Bz(R,θ) � Bo(R) Φ(R,θ), (15.18)

Φ(R,θ) � 1 � f(R) g(θ), (15.19)

Bz(R,θ) � Bo(R) [1 � f(R) sinNθ], (15.20)

Φ(θ) � 1 � f(R) sinNθ. (15.21)

F(R) � [(Bz(R,θ) � Bo(R))/Bo(R)]2
� (1/2π) �

2π

0

[Φ(R,θ) � 1]2 dθ. (15.22)

regions are called hills, and the recessed regions are called valleys. The magnitude of the vertical
magnetic field is approximately inversely proportional to gap width; therefore, the field is stronger
in hill regions. An element of field periodicity along a particle orbit is called asector; a sector
contains one hill and one valley. The number of sectors equals the number of pole extensions and
is denotedN. Figure 15.6a shows a magnetic field withN = 3. The variation of magnetic with
azimuth along a circle of radiusR is plotted in Figure 15.6b. The definition of sector (as applied to
the AVF cyclotron) should be noted carefully to avoid confusion with the termsector magnet.

The terminology associated with AVF focusing systems is illustrated in Figure 15.6b. The
azimuthal variation of magnetic field is calledflutter. Flutter is represented as a function of
position by

where is themodulation functionwhich parametrizes the relative changes of magneticΦ(R,θ)
field with azimuth. The modulation function is usually resolved as

whereg(θ) is a function with maximum amplitude equal to 1 and an average value equal to zero.
The modulation function has aθ-averaged value of 1. The functionf(R) in Eq. (15.19) is the
flutter amplitude.

The modulation function illustrated in Figure 15.6b is a step function. Other types of variation
are possible. The magnetic field corresponding to a sinusoidal variation of gap width is
approximately

so that

The flutter function F(R) is defined as the mean-squared relative azimuthal fluctuation of
magnetic field along a circle of radiusR:

For example,F(R) = f(R)2 for a step-function variation and for the sinusoidalF(R) � ½ f(R)2

variation of Eq. (15.21).
Particle orbits in azimuthally varying magnetic bending fields are generally complex. In order to

develop an analytic orbit theory, simplifying assumptions will be adopted. We limit consideration
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to a field with sharp transitions of magnitude between hills and valleys (Fig. 15.6b). The hills and
valleys occupy equal angles. The step-function assumption is not too restrictive; similar particle
orbits result from continuous variations of gap width. Two limiting cases will be considered to
illustrate the main features of AVF focusing: (1) small magnetic field variations (f « 1) and (2)
large field variations with zero magnetic field in the valleys. In the latter case, the bending field is
produced by a number of separated sector magnets. Methods developed in Chapters 6 and 8 for
periodic focusing can be applied to derive particle orbits.

To begin, takef « 1. As usual, the strategy is to find the equilibrium orbit and then to investigate
focusing forces in the radial and vertical directions. The magnetic field magnitude is assumed
independent of radius; effects of average field gradient will be introduced in Section 15.4. In the
absence of flutter, the equilibrium orbit is a circle of radius . With flutter, theR � γmic/qBo
equilibrium orbit is changed from the circular orbit to the orbit of Figure 15.7a. In the sharp field
boundary approximation, the modified orbit is composed of circular sections. In the hill regions,
the radius of curvature is reduced, while the radius of curvature is increased in the valley regions.
The main result is that the equilibrium orbit is not normal to the field boundaries at the hill-valley
transitions.

There is strong radial focusing in a bending field with zero average field index; therefore, flutter
has little relative effect on radial focusing in the limit f « 1. Focusing in a cyclotron is conveniently
characterized by the dimensionless parameterν (see Section 7.2), the number of betatron
wavelengths during a particle revolution. Following the discussion of Section 7.3, we find that
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ν
2
r � 1 (15.23)

focal length� (γmic/q[2Bof]) / |tanβ| � �R/2f |tanβ|, (15.24)

Ab �
1 0

�2f tanβ/R 1
(15.25)

|β| � πf/2N, (15.26)

Ab �
1 0

�πf 2/NR 1
(15.26)

Ad �
1 πR/N

0 1
(15.26)

for a radially uniform average field magnitude.
In contrast, flutter plays an important part in vertical focusing. Inspection of Figure 15.7a shows

that the equilibrium orbit crosses between hill and valley regions at an angle to the boundary. The
vertical forces acting on the particle are similar to those encountered in edge focusing (Section
6.9). The field can be resolved into a uniform magnetic field of magnitudeBo[l - f (R)]
superimposed on fields of magnitude 2Bof(R) in the hill regions. Comparing Figure 15.7a to
Figure 6.20, the orbit is inclined so that there is focusing at both the entrance and exit of a hill
region. The vertical force arises from the fringing fields at the boundary; the horizontal field
components are proportional to the change in magnetic field, 2Bof(R). Following Eq. 6.30, the
boundary fields act as a thin lens with positive focal length

whereβ is the angle of inclination of the orbit to the boundary. The ray transfer matrix
corresponding to transit across a boundary is

The inclination angle can be evaluated from the geometric construction of Figure 15.7b. The
equilibrium orbit crosses the boundary at aboutr = R. The orbit radii of curvature in the hill and
valley regions areR(1 ± f). To first order, the inclination angle is

whereN is the number of sectors. The ray transfer matrix for a boundary is expressed as

for smallβ. Neglecting variations in the orbit length through hills and valleys caused by the flutter,
the transfer matrix for drift is
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A �

1 πR/N

�πf 2/NR 1�½(πf/N)2
(15.29)

cosµ � 1 � ½µ2
� ½TrA � 1 � ½(πf/N)2, (15.30)

µ � πf/N. (15.31)

νz � 2Nµ/2π � f. (15.32)

ν
2
z � F. (15.33)

A focusing cell, the smallest element of periodicity, consists of half a sector (a drift region and one
boundary transition). The total ray transfer matrix is

The phase advance in the vertical direction is

or

The net phase advance during one revolution is equal to 2Nµ. The number of betatron oscillations
per revolution is therefore

The final form is derived by substituting from Eq. (15.31). The vertical number of betatron
wavelengths can also be expressed in terms of a flutter function as

Equation (15.33) is-not specific to a step-function field. It applies generally for all modulation
functions.

Stronger vertical focusing results if the hill-valley boundaries are modified from the simple
diametric lines of Figure 15.6. Consider, for instance, spiral-shaped pole extensions, as shown in
Figure 15.8. At a radiusR, the boundaries between hills and valleys are inclined at an angleζ(R)
with respect to a diameter. Spiral-shaped pole extensions lead to an additional inclination of
magnitudeζ(R) between the equilibrium particle orbit and the boundary. The edge fields from the
spiral inclination act to alternately focus and defocus particles, depending on whether the particle
is entering or leaving a hill region. For example, the spiral of Figure 15.8 is defocusing at a
hill-to-valley transition. A focusing-defocusing lens array provides net focusing.

The effect of boundary inclination can easily be derived in the limit thatf « 1 and combined with
Thomas focusing for a totalνz. A focusing cell extends over a sector; a cell consists of a drift
region of length , a thin lens of focal length , a second drift region, and a lensπR/N �2f tanζ/R
with focal length . The total ray transfer matrix for a sector is�2f tanζ/R
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A �

[1�2fπ tanζ/N�(2πf tanζ/N)2] [2πR/N�2fπ2R tanζ/N2]

[�4πf 2 tan2ζ/NR] [1�2πf tanζ/N]
(15.34)

µ � 2πf tanζ / N. (15.35)

ν
2
z � f 2 (1 � 2tanζ) � F (1 � 2tanζ). (15.36)

Again, identifying TrA with cosµ, we find that

Following the method used above, the number of vertical betatron oscillations per revolution is
expressed simply as

Vertical focusing forces can be varied with radius through the choice of the spiral shape. The
Archimedean spiral is often used; the boundaries of the pole extensions are defined by
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r � A [θ � 2πJ/2N], (15.37)

tanζ(r) � d(rθ)/dr � 2r/A. (15.38)

where J = 0, 1, 2,...,2N - 1. The corresponding inclination angle is

Archimedean spiral pole extensions lead to vertical focusing forces that increase with radius.
An analytical treatment of AVF focusing is also possible for a step-function field withf = 1. In

this case (corresponding to the separated sector cyclotron), the bending field consists of regions
of uniform magnetic field separated by field-free regions. Focusing forces arise from the shape of
the sector magnet boundaries. As an introduction, consider vertical and radial focusing in a
single-sector magnet with inclined boundaries (Fig. 15.9a). The equilibrium orbit in the magnetic
field region is a circular section of radiusR centered vertically in the gap. The circular section
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β � ½α (15.39)

ν
2
z � (1 � 2 tanζ) (15.40)

ν
2
r � 2 tanζ. (15.41)

subtends an angleα. Assume that the boundary inclinations,β, are equal at the entrance and exit
of the magnet.

In the vertical direction, the ray transfer matrix for the magnet is the product of matrices
representing edge focusing at the entrance, a drift distanceαR, and focusing at the exit. We can
apply Eqs. (15.27) and (15.28) to calculate the total ray transfer matrix. In order to calculate
focusing in the radial direction, we must include the effect of the missing sector field introduced
by the inclination angle P. For the geometry of Figure 15.9a, the inclination reduces radial
focusing in the sector magnet. Orbits with and without a boundary inclination are plotted in
Figure 15.9b. Figure 15.9c shows the equilibrium particle orbit and an off-axis parallel orbit in a
sector magnet with . The boundary is parallel to a line through the midplane of theβ � ½α

magnet; the gyrocenters of both orbits also lie on this line. Therefore, the orbits are parallel
throughout the sector and there is no focusing. A value of inclination moves theβ < ½α

gyrocenter of the off-axis particle to the left; the particle emerges from the sector focused toward
the axis. The limit on for radial focusing in a uniform-field sector magnet is

We now turn our attention to the AVF sector field with diametric boundaries shown in Figure
15.10. The equilibrium orbits can be constructed with compass and straightedge. The orbits are
circles in the sector magnets and straight lines in between. They must match in position and angle
at the boundaries. Figures 15.10a, b show solutions withN = 2 andN = 3 for hills and valleys
occupying equal azimuths ( ). Note that in all cases the inclination angle of the orbit at aα � π/N
boundary is one-half the angular extent of the sector, . Figures 15.10c and d illustrate theβ � ½α

geometric construction of off-axis horizontal orbits for conditions corresponding to stability
( ) and instability ( ). The case ofN = 2 is unstable for allα > π/N,β < ½α α < π/N,β > ½α

choices ofα. This arises because particles are overfocused when . This effect is clearlyα > π/N
visible in Figure 15.10e. It is generally true that particle orbits are unstable in any type of AVF
field with N = 2.

Spiral boundaries may also be utilized in separated sector fields. Depending on whether the
particles are entering or leaving a sector, the edge-focusing effects are either focusing or
defocusing in the vertical direction. Applying matrix algebra and the results of Section 6.9, it is
easy to show thatνz is

for . Spiral boundaries contribute alternate focusing and defocusing forces in the radialα � π/N
direction that are 180� out of phase with the axial forces. For , the number of radialα � π/N
betatron oscillations per revolution is approximately
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15.4 THE SYNCHROCYCLOTRON AND THE AVF CYCLOTRON

Following the success of the uniform-field cyclotron, efforts were made to reach higher beam
kinetic energy. Two descendants of the cyclotron are the synchrocyclotron and the AVF
(isochronous) cyclotron. The machines resolve the problem of detuning between particle
revolutions and rf field in quite different ways. Synchrocyclotrons have the same geometry as the
SF cyclotron. A large magnet with circular poles produces an azimuthally symmetric vertical field
with positive field index. Ions are accelerated from rest to high energy by an oscillating voltage
applied between dees. The main difference is that the frequency is varied to preserve synchronism.

There are a number of differences in the operation of synchrocyclotrons and cyclotrons.
Synchrocyclotrons are cycled, rather than continuous; therefore, the time-average beam current is
much lower. The longitudinal dynamics of particles in a synchrocyclotron do not follow the model
of Section 15.2 because there is a synchronous phase. The models for phase dynamics developed
in Chapter 13 can be adapted to the synchrocyclotron. The machine can contain a number of
confined particle bunches with phase parameters centered about the bunch that has ideal matching
to the rf frequency. The beam bunches are distributed as a group of closely spaced turns of
slightly different energy. The acceptance of the rf buckets decreases moving away from the ideal
match, defining a range of time over which particles can be injected into the machine. In research
applications, the number of bunches contained in the machine in a cycle is constrained by the
allowed energy spread of the output beam.

There are technological limits on the rate at which the frequency of oscillators cpn be swept.
These limits were particularly severe in early synchrocyclotrons that used movable mechanical
tuners rather than the ferrite tuners common on modern synchrotrons. The result is that the
acceleration cycle of a synchrocyclotron extends over a longer period than the acceleration time
for an ion in a cyclotron. Typically, ions perform between 10,000 and 50,000 revolutions during
acceleration in a synchrocyclotron. The high recirculation factor implies lower voltage between
the dees. The cycled operation of the synchrocyclotron leads to different methods of beam
extraction compared to cyclotrons. The low dee voltage implies that orbits have small separation
(< 1 mm), ruling out the use of a septum. On the other hand, all turns can be extracted at the same
time by a pulsed field because they are closely spaced in radius. Figure 15.11illustrates one
method of beam extraction from a synchrocyclotron. A pulsed electric field is used to deflect ions
on to a perturbed orbit which leads them to a magnetic shield. The risetime of voltage on the
kicker electrodes should be short compared to the revolution time of ions. Pulsed extraction is
characteristic of cycled machines like the synchrocyclotron and synchrotron. In large synchrotrons
with relatively long revolution time, pulsed magnets with ferrite cores are used for beam
deflection.

Containment of high-energy ions requires large magnets. For example, a 600-MeV proton has a
gyroradius of 2.4 m in a 1.5-T field. This implies a pole diameter greater than 15 ft.
Synchro-cyclotron magnets are among the largest monolithic, iron core magnets ever built. The
limitation of this approach is evident; the volume of iron required rises roughly as the cube of the
kinetic energy. Two synchrocyclotrons are still in operation: the 184-in. machine at Lawrence
Berkeley Laboratory and the CERN SC.
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ω � qBo/mi, (14.42)

B(R) � γ(R)miω/q, (15.43)

The AVF cyclotron has fixed magnetic field and rf frequency; it generates a continuous-beam
pulse train. Compensation for relativistic mass increase is accomplished by a magnetic field that
increases with radius. The vertical defocusing of the negative field index is overcome by the
focusing methods described in Section 15.3.

We begin by calculating the radial field variations of theθ-averaged vertical field necessary for
synchronization. The quantityB(R) is the averaged field around a circle of radiusR andBo is the
field at the center of the machine. Assume that flutter is small, so that particle orbits approximate
circles of radiusR, and letB(R) represent the average bending field atR. Near the origin (R = 0),
the AVF cyclotron has the same characteristics as a uniform field cyclotron; therefore, the rf
frequency is

wheremi is the rest energy of the ion. Synchronization with the fixed frequency at all radii implies
that

or
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B(R)/Bo � γ(R). (15.44)

R �

γ(R) βmic

qB(R)
�

mic

qB(R)
γ2
�1 �

mic

qBo

γ2
�1
γ

. (15.45)

B(R)/Bo � γ(R) � 1 � (qBoR/mic
2)2 . (15.46)

n(R) � � [R/B(R)] [dB(R)/dR] � � (γ2
�1). (15.47)

The average magnetic field is also related to the average orbit radius and ion energy through Eq.
(3.38):

Combining Eqs. (15.44) and (15.45), we find

Equation (15.46) gives the following radial variation of the field index:

Two methods for generating a bending field with negative field index (positive radial gradient) are
illustrated in Figure 15.12. In the first, the distance between poles decreases as a function of
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ν
2
r � 1 � n � F(R)n 2/N2

� ..., (15.48)

ν
2
z � n � F(R) � 2F(R) tan2ζ � F(R)n 2/N2

� .... (15.49)

radius. This method is useful mainly in small, low-energy cyclotrons. It has the following
drawbacks for large research machines:

1. The constricted gap can interfere with the dees.

2. The poles must be shaped with great accuracy.

3. A particular pole shape is suitable for only a single type of ion.

A better method to generate average radial field gradient is the use oftrimming coils, illustrated in
Figure 15.12b. Trimming coils (ork coils) are a set of adjustable concentric coils located on the
pole pieces inside the magnet gap. They are used to shift the distribution of vertical field. With
adjustable trimming coils, an AVF cyclotron canaccelerate a wide range of ion species.

In the limit of small flutter amplitude (f « 1), the radial and vertical betatron oscillations per
revolution in an AVF cyclotron are given approximately by

Equations (15.48) and (15.49) are derived through a linear analysis of orbits in an AVF field in the
small flutter limit. The terms on the right-hand side represent contributions from various types of
focusing forces. In Eq. (15.48), the terms have the following interpretations:

Term 1: Normal radial focusing in a bending field.

Term 2: Contribution from an average field gradient (n < 0 in an AVF cyclotron).

Term 3: Alternating-gradient focusing arising from the change in the actual field index
between hills and valleys. Usually, this is a small effect.

A term involving the spiral angleζ is absent from the radial equation. This comes about because
of cancellation between the spiral term and a term arising from differences of the centrifugal force
on particles between hills and valleys.

The terms on the right-hand side of Eq. (15.49) for vertical motion represent the following
contributions:

Term 1: Defocusing by the average radial field gradient.

Term 2: Thomas focusing.
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νr � γ (15.50)

Term 3: FD focusing by the edge fields of a spiral boundary.

Term 4: Same as the third term of Eq. (15.48).

Symmetry considerations dictate that the field index and spiral angle near the center of an AVF
cyclotron approach zero. The flutter amplitude also approaches zero at the center because the
effects of hills and valleys on the field cancel out at radii comparable to or less than the gap width
between poles. As in the conventional cyclotron, electrostatic focusing at the acceleraton gaps
plays an important role for vertical focusing of low-energy ions. At large radius, there is little
problem in ensuring good radial focusing. Neglecting the third term, Eq. (15.48) may be rewritten
as

using Eq. (15.47). The quantityνr is always greater than unity; radial focusing is strong.
Regarding vertical focusing, the combination of Thomas focusing and spiral focusing in Eq.
(15.49) must increase with radius to compensate for the increase in field index. This can be
accomplished by a radial increase ofF(R) or ζ(R). In the latter case, boundary curves with
increasingζ (such as the Archimedean spiral) can be used. Isochronous cyclotrons have the
property that the revolution time is independent of the energy history of the ions. Therefore, there
are no phase oscillations, and ions have neutral stability with respect to the rf phase. The magnet
poles of high-energy isochronous cyclotrons must be designed with high accuracy so that particle
synchronization is maintained through the acceleration process.

In addition to high-energy applications, AVF cyclotrons are well suited to low-energy medical
and industrial applications. The increased vertical focusing compared to a simple gradient field
means that the accelerator has greater transverse acceptance. Higher beam currents can be
contained, and the machine is more tolerant to field errors (see Section 15.7). Phase stability is
helpful, even in low-energy machines. The existence of a synchronous phase implies higher
longitudinal acceptance and lower beam energy spread. The AVF cyclotron is much less
expensive per ion produced than a uniform-field cyclotron.

In the range of kinetic energy above 100 MeV, the separated sector cyclotron is a better choice
than the single-magnet AVF cyclotron. The separated sector cyclotron consists of three or more
bending magnets separated by field-free regions. It has the following advantages:

1. Radio-frequency cavities for beam acceleration can be located between the sectors
rather than between the magnet poles. This allows greater latitude in designing the
focusing magnetic field and the acceleration system. Multiple acceleration gaps can be
accommodated, leading to rapid acceleration and large orbit separation.

2. The bending field is produced by a number of modular magnets rather than a single
larger unit. Modular construction reduces the problems of fabrication and mechanical
stress. This is particularly important at high energy.
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The main drawback of the separated sector cyclotron is that it cannot accelerate ions from zero
energy. The beam transport region is annular because structures for mechanical support of the
individual magnet poles must be located on axis. Ions are pre-accelerated for injection into a
separated sector cyclotron. Pre-acceleration can be accomplished with a low-energy AVF
cyclotron or a linac. The injector must be synchronized so that micropulses are injected into the
high-energy machine at the proper phase.

Figure 15.13a shows the separated sector cyclotron at the Swiss Nuclear Institute. Parameters
of the machine are summarized in Table 15.1. The machine was designed for a high average flux
of light ions to generate mesons for applications to radiation therapy and nuclear research. The
accelerator has eight spiral sector magnets with a maximum hill field of 2.1 T. Large waveguides
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connect rf supplies to a four acceleration gaps. In operation, the machine requires 0.5 MW of rf
input power. The peak acceleration gap voltage is 500 kV. The maximum orbit diameter of the
cyclotron is 9 in for a maximum output energy of 590 MeV (protons). The time-averaged beam
current is 200 µA. A standard AVF cyclotron with four spiral-shaped sectors is used as an
injector. An increase of average beam current to 1 mA is expected with the addition of a new
injector. The injector is a spiral cyclotron with four sectors. The injector operates at 50.7 MHz
and generates 72-MeV protons. Figure 15.13b is an overhead view of the magnets and rf cavities
in the separated sector cyclotron. Six selected orbits are illustrated at equal energy intervals from
72 to 590 MeV. Note that the distance an ion travels through the sector field increases with orbit
radius (negative effective field index). The diagram also indicates the radial increase of the
inclination angle between sector field boundaries and the particle orbits.

15.5 PRINCIPLES OF TliE SYNCHROTRON

Synchrotrons are resonant circular particle accelerators in which both the magnitude of the
bending magnetic field and the rf frequency are cycled. An additional feature of most modem
synchrotrons is that focusing forces are adjustable independent of the bending field. Independent
variation of the focusing forces, beam-bending field, and rf frequency gives synchrotrons two
capabilities that lead to beam energies far higher than those from other types of circular
accelerators:

1. The betatron wavelength of particles can be maintained constant as acceleration proceeds. This
makes it possible to avoid the orbital resonances that limit the output energy of the AVF
cyclotron.

2. The magnetic field amplitude is varied to preserve a constant particle orbit radius during
acceleration. Therefore, the bending field need extend over only a small annulus rather than fill a
complete circle. This implies large savings in the cost of the accelerator magnets. Furthermore,
the magnets can be fabricated as modules and assembled into ring accelerators exceeding 6 km
in circumference.

The main problems of the synchrotron are (1) a complex operation cycle and (2) low average flux.
The components of a modem separated function synchrotron are illustrated in Figure 15.14. An

ultra-high-vacuum chamber for beam transport forms a closed loop. Circular sections may be
interrupted by straight sections to facilitate beam injection, beam extraction, and experiments.
Acceleration takes place in a cavity filled with ferrite cores to provide inductive iso a over a
broad frequency range. The cavity is similar to a linear inductionaccelerator cavity. The two
differences are (1) an ac voltage is applied across the gap and (2) the ferrites are not driven to
saturation to minimize power loss.
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Beam bending and focusing are accomplished with magnetic fields. The separated function
synchrotron usually has three types of magnets, classified according to the number of poles used
to generate the field.Dipole magnets(Fig. 15.15a) bend the beam in a closed orbit.Quadrupole
magnets(Fig. 15.15b) (grouped as quadrupole lens sets) focus the beam.Sextupole magnets(Fig.
15.15c) are usually included to increase the tolerance of the focusing system to beam energy
spread. The global arrangement of magnets around the synchrotron is referred to as afocusing
lattice. The lattice is carefully designed to maintain a stationary beam envelope. In order to avoid
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resonance instabilities, the lattice design must not allow betatron wavelengths to equal a
characteristic dimension of the machine (such as the circumference). Resonance conditions are
parametrized in terms offorbidden valuesof νr andνz.

A focusing cell is strictly defined as the smallest element of periodicity in a focusing system.
A period of a noncircular synchrotron contains a large number of optical elements. A cell may
encompass a curved section, a straight section, focusing and bending magnets, and transition
elements between the sections. The termsuperperiodis usually used to designate the minimum
periodic division of a synchrotron, while focusing cell is applied to a local element of periodicity
within a superperiod. The most common local cell configuration is theFODO cell. It consists of a
focusing quadrupole (relative to ther or z direction), a dipole magnet, a defocusing quadrupole,
and another dipole. Horizontal focusing forces in the bending magnets are small compared to that
in the quadrupoles. For transverse focusing, the cell is represented as a series of focusing and
defocusing lenses separated. by drift (open) spaces.

The alternating-gradient synchrotron (AGS) is the precursor of the separated function
synchrotron. The AGS has a ring of magnets which combine the functions of beam bending and
focusing. Cross sections of AGS magnets are illustrated in Figure 15.16. A strong positive or
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negative radial gradient is superimposed on the bending field; horizontal and vertical focusing
arises from the transverse fields associated with the gradient (Section 7.3). The magnet of
Figure 15.16a gives strong radial focusing and horizontal defocusing, while the opposite holds for
the magnet of Figure 15.16b.

Early synchrotrons utilized simple gradient focusing in an azimuthally symmetric field. They
were constructed from a number of adjacent bending magnets with uniform field index in the
range 0 <n < 1. These machines are now referred to asweak focusing synchrotronsbecause the
betatron wavelength of particles was larger than the machine circumference. The zero-gradient
synchrotron (ZGS) (Fig. 15.16c) was an interesting variant of the weak focusing machine.
Bending and focusing were performed by sector magnets with uniform-field magnitude (zero
gradient). The sector field boundaries were inclined with respect to the orbits to give vertical
focusing [via edge focusing (Section 6.9)] and horizontal focusing [via sector focusing (Section
6.8)]. The advantage of the ZGS compared to other weak focusing machines was that higher
bending fields could be achieved without local saturation of the poles.
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R � 3.3E/B (m), (15.51)

P � 2cE4ro/3R2(moc
2)3 (watts), (15.52)

ro � q 2/4πεomoc
2. (15.53)

re � 2.82 × 10�15 m. (15.54)

P � cVo/2πR. (15.55)

E � [3Vo(moc
2)3R/4πro]

0.25. (15.56)

The limit on kinetic energy in an ion synchrotron is set by the bending magnetic field magnitude
and the area available for the machine. The ring radius of relativistic protons is given by

where is the average magnetic field (in tesla) andE is the total ion energy in GeV. Most ionB
synchrotrons accelerate protons; protons have the highest charge-to-mass ratio and reach the
highest kinetic energy per nucleon for a given magnetic field. Synchrotrons have been used for
heavy-ion acceleration. In this application, ions are pre-accelerated in a linear accelerator and
directed through a thin foil to strip electrons. Only ions with high charge states are selected for
injection into the synchrotron.

The maximum energy in an electron synchrotron is set by emission ofsynchrotron radiation.
Synchrotron radiation results from the continuous transverse acceleration of particles in a circular
orbit. The total power emitted per particle is

whereE is the total particle energy andR is the radius of the circle. Power in Eq. (15.52) is given
in electron volts per second if all energies on the right-hand side are expressed in electron volts.
The quantityro is the classical radius of the particle,

The classical radius of the electron is

Inspection of Eqs. (15.52) and (15.53) shows that synchrotron radiation has a negligible effect
in ion accelerators. Compared to electrons, the power loss is reduced by a factor of . To(me/mi)

4

illustrate the significance of synchrotron radiation in electronaccelerators, consider a synchrotron
in which electrons gain an energyeVo per turn. The power input to electrons (in eV/s) is

Setting Eqs. (15.52) and (15.55) equal, the maximum allowed total energy is
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∆θ � (mec
2/E) (15.57)

For example, withR = 20 m andVo = 100 kV, the maximum energy is E = 2.2 GeV. Higher
energies result from a larger ring radius and higher power input to the accelerating cavities, but
the scaling is weak. The peak energy achieved in electron synchrotrons is about 12 GeV forR =
130 m. Linear accelerators are the only viable choice to reach higher electron energy for particle
physics research. Nonetheless, electron synchrotrons are actively employed in other areas of
applied physics research. They are a unique source of intense radiation over a wide spectral range
via synchrotron radiation. New synchrotron radiation facilities are planned as research tools in
atomic and solid-state physics.

Synchrotron radiation has some advantageous effects on electron beam dynamics in
synchrotrons. The quality of the beam (or the degree to which particle orbit parameters are
identical) is actually enhanced by radiation. Consider, for instance, the spread in longitudinal
energy in a beam bunch. Synchrotron radiation is emitted over a narrow cone of angle

in the forward direction relative to the instantaneous electron motion. Therefore, the emission of
photons slows electrons along their main direction of motion while making a small contribution to
transverse motion. According to Eq. (15.52), higher-energy electrons lose more energy; therefore,
the energy spread of an electron bunch decreases. This is the simplest example of beam cooling.
The process results in a reduction of the random spread of particle orbits about a mean; hence, the
termcooling.

The highest-energy accelerator currently in operation is located at the Fermi National
Accelerator Laboratory. The 2-km-diameter proton synchrotron consists of two accelerating
rings, built in two stages. In the main ring (completed in 1971), beam focusing and bending are
performed by conventional magnets. Beam energies up to 450 GeV have been achieved in this
ring. After seven years of operation, an additional ring was added in the tunnel beneath the
main ring. This ring, known as the energy doubler, utilizes superconducting magnets. The higher
magnetic field makes it possible to generate beams with 800 GeV kinetic energy. The total
experimental facility, with beam transport elements and experimental areas designed to
accommodate the high-energy beams, is known as the Tevatron. A scale drawing of the
accelerator and experimental areas is shown in Figure 15.17a. Protons, extracted from a
750-kV electrostatic accelerator, are accelerated in a 200-MeV linear accelerator. The beam is
then injected into a rapid cycling booster synchrotron which increases the energy to 8 GeV. The
booster synchrotron cycles in 33 ms. The outputs from 12 cycles of the booster synchrotron are
used to fill the main ring during a constant-field initial phase of the main ring acceleration cycle.
The booster synchrotron has a circumference equal to 1/13.5 that of the main ring. The 12 pulses
are injected head to tail to fill most of the main ring circumference.

A cross section of a superconducting bending magnet from the energy doubler is shown in
Figure 15.17b. It consists of a central bore tube of average radius 7 cm surrounded by
superconducting windings with a spatial distribution calculated to give a highly uniform bending
field. The windings are surrounded by a layer of stainless steel laminations to clamp the windings
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securely to the tube. The assembly is supported in a vacuum cryostat by fiberglas supports,
surrounded by a thermal shield at liquid nitrogen temperature. A flow of liquid helium maintains
the low temperature of the magnet coils. Bending magnets in the energy doubler are 6.4 m in
length. A total of 774 units are necessary. Quadrupoles are constructed in a similar manner; a total
of 216 focusing magnets are required. The parameters of the FNAL accelerator are listed in Table
15.2.

Storage rings consist of bending and focusing magnets and a vacuum chamber in which
high-energy particles can be stored for long periods of time. The background pressure must be
very low to prevent particle loss through collisions. Storage rings are filled with particles by a
high-energy synchrotron or a linear accelerator. Their geometry is almost identical to the
separated function synchrotron. The main difference is that the particle energy remains constant.
The magnetic field is constant, resulting in considerable simplification of the design. A storage
ring may have one or more acceleration cavities to compensate for radiative energy loss of
electrons or for longitudinal bunching of ions.
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cβ�1 � c (β1 � βi) / (1 � βuβ1). (15.59)

cβ�2 � �cβu, (15.58)

One of the main applications of storage rings is in colliding beam facilities for high-energy particle
physics. A geometry used in the ISR (intersecting storage ring) at CERN is shown in Figure
15.18. Two storage rings with straight and curved sections are interleaved. Proton beams
circulating in opposite directions intersect at small angles at eight points of the ring.
Proton-proton interactions are studied by detectors located near the intersection points.

Colliding beams have a significant advantage for high-energy physics research. The main
requisite for probing the nature of elementary particles is that a large amount of energy must be
available to drive reactions with a high threshold. When a moving beam strikes a stationary target
(Fig. 15.19a), the kinetic energy of the incident particle is used inefficiently. Conservation of
momentum dictates that a large portion of the energy is transformed to kinetic energy of the
reaction products. The maximum energy available to drive a reaction in Figure 15.19a can be
calculated by a transformation to the center-of-momentum (CM) frame. In the CM frame, the
incident and target particles move toward one another with equal and opposite momenta. The
reaction products need not have kinetic energy to conserve momentum when viewed in the CM
frame; therefore, all the initial kinetic energy is available for the reaction.

For simplicity, assume that the rest mass of the incident particle is equal to that of the target
particle. Assume the CM frame moves at a velocitycβu relative to the stationary frame. Using Eq.
(2.30), the velocity of the target particle in the CM frame is given by

and the transformed velocity of the incident particle is

Both particles have the same value ofγ’ in the CM frame; the condition of equal and opposite
momenta implies
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2 � β
�

1. (15.60)

βu � (1/β1) � (1/β2
1) � 1. (15.61)

T � (γ1�1) moc
2, (15.62)

Tcm � 2 (γ�1�1) moc
2, (15.63)

γ1 � 1/ 1�β2
1, γ

�

1 � 1/ 1�β2
u.

Combining Eqs. (15.58), (15.59), and (15.60), we find that

Equation (15.61) allows us to compare the energy invested in the incident particle,

to the maximum energy available for particle reactions,

where
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Tcm � 2 (γ1�1) moc
2. (15.63)

Table 15.3 showsTcm/T as a function ofγ1, along with equivalent kinetic energy values for
protons. In the non-relativistic range, half the energy is available. The fraction drops off at high
kinetic energy. Increasing the kinetic energy of particles striking a stationary target gives
diminishing returns. The situation is much more favorable in an intersecting storage ring. The
stationary frame is the CM frame. The CM energy available from ring particles withγ1 is



Cyclotrons and Synchrotrons

543

For example, a 21-GeV proton accelerator operated in conjunction with an intersecting storage
ring can investigate the same reactions as a 1000-GeV accelerator with a stationary target. The
price to pay for this advantage is reduction in the number of measurable events for physics
experiments. A stationary target is usually at solid density. The density of a stored beam is
more than 10 orders of magnitude lower. A major concern in intersecting storage rings is
luminosity, a measure of beam density in physical space and velocity space. Given a
velocity-dependent cross section, the luminosity determines the reaction rate between the beams.
The required luminosity depends on the cross section of the reaction and the nature of the event
detectors.

A list of accelerators and storage rings with the most energetic beams is given in Table 15.4.
The energy figure is the kinetic energy measured in the accelerator frame. The history of
accelerators for particle physics during the last 50 years has been one of an exponential increase in
the available CM energy. Although this is attributable in part to an increase in the size of
equipment, the main reason for the dramatic improvement has been the introduction of new
acceleration techniques. When a particular technology reached the knee of its growth curve, a
new type of accelerator was developed. For example, proton accelerators evolved from
electrostatic machines to cyclotrons. The energy energy limit of cyclotrons was resolved by
synchrocyclotrons which lead to the weak focusing synchrotron. The development of strong
focusing made the construction of large synchrotrons possible. Subsequently, colliding beam
techniques brought about a substantial increase in CM energy from existing machines. At
present, there is considerable activity in converting the largest synchrotrons to colliding beam
facilities.

In the continuing quest for high-energy proton beams for elementary particle research, the next
stated goal is to reach a proton kinetic energy of 20 TeV (20 × 1012 eV). At present, the only
identified technique to achieve such an extrapolation is to build an extremely large machine. A
20-TeV synchrotron with conventional magnets operating at an average field of I T has a radius
of 66 km and a circumference of 414 km. The power requirements of conventional magnets in
such a large machine are prohibitive; superconducting magnets are essential. Superconducting
magnets can be designed in two ranges. Superconducting coils can be combined with a
conventional pole assembly for fields below saturation. Because superconducting coils sustain a
field with little power input, there is also the option for high-field magnets with completely
saturated poles. A machine with 6-T magnets has a circumference of 70 km.

Studies have recently been carried out for a superconducting super collider (SSC) [see, M.
Tigner, Ed.,Accelerator Physics Issues for a Superconducting Super Collider, University of
Michigan, UM HE 84-1, 1984]. This machine is envisioned as two interleaved 20-TeV proton
synchrotrons with counter-rotating beams and a number of beam intersection regions. Estimates
of the circumference of the machine range from 90 to 160 km, depending on details of the magnet
design. The CM energy is a factor of 40 higher than that attainable in existing accelerators. If it is
constructed, the SSC may mark the termination point of accelerator technology in terms of
particle energy; it is difficult to imagine a larger machine. Considerations of cost versus rewards in
building the SSC raise interesting questions about economic limits to our knowledge of the
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δS/S
, (15.64)

universe.

15.6 LONGITUDINAL DYNAMICS OF SYNCHROTRONS

The description of longitudinal particle motion in synchrotrons has two unique aspects compared
to synchrocyclotrons and AVF cyclotrons. The features arise from the geometry of the machine
and the high energy of the particles:

1. Variations of longitudinal energy associated with stable phase confinement of particles
in an rf bucket result in horizontal particle oscillations. The synchrotron oscillations sum
with the usual betatron oscillations that arise from spreads in transverse velocity.
Synchrotron oscillations must be taken intoaccount in choosing the size of thegood field
region of focusing magnets.

2. The range of stable synchronous phase in a synchrotron depends on the energy of
particles. This effect is easily understood. At energies comparable to or less thanmoc

2,
particles are non-relativistic; therefore, their velocity depends on energy. In this regime,
low-energy particles in a beam bunch take a longer time to complete a circuit of the
accelerator and return to the acceleration cavity. Therefore, the accelerating voltage must
rise with time atφs for phase
stability ( ). At relativistic energies, particle velocity is almost independent of0 < φs < π/2
energy; the particle orbit circumference is the main determinant of the revolution time.
Low-energy particles have smaller orbit radii and therefore take less time to return to the
acceleration gap. In this case, the range of stable phase is . The energy thatπ/2 < φs < π

divides the regimes is called thetransition energy. In synchrotrons that bridge the
transition energy, it is
essential to shift the phase of the rf field before the bunched structure of the beam is lost.
This effect is unimportant in electron synchrotrons because electrons are always injected
above the transition energy.

Models are developed in this section to describe the longitudinal dynamics of particles in
synchrotrons. We begin by introducing the quantityγt, the transition gamma factor. The parameter
characterizes the dependence of particle orbit radius in the focusing lattice to changes in
momentum. We shall see thatγt corresponds to the relativistic mass factor at the transition energy.
After calculating examples ofγt in different focusing systems, we shall investigate the equilibrium
conditions that define a synchronous phase. The final step is to calculate longitudinal oscillations
about the synchronous particle.

The transition gamma factor is defined by
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γ
2
t �

δp/ps

δR/R
, (15.65)

δp/ps � (δr/R) � (δB/Bo). (15.66)

γ
2
t �

δp/ps

δr/R
� (1 � n) �

ωr

ωgo

2

. (15.67)

Fr � �γomoω
2
r δr � qBoc, (15.68)

γomoω
2
r δr � qBoc � γomoc

2/R � δγmoc
2/R � γmoc

2 δr/R2. (15.69)

whereps is the momentum of the synchronous particle andS is the pathlength of its orbit around
the machine. In a circular accelerator with no straight sections, the equilibrium radius is related to
pathlength byS= 2πR; therefore,

The transition gamma factor must be evaluated numerically for noncircular machines with
complex lattices. We will develop simple analytic expressions forγt in ideal circular accelerators
with weak and strong focusing.

In a weak focusing synchrotron, momentum is related to vertical magnetic field and position by
Eq. (3.38), so thatp � qrB,

for and . The relative change in vertical field can be related to the change inδr « R δB « Bo
radius though Eq. (7.18), so that

The requirement of stable betatron oscillations in a weak focusing machine limitsγt to the range
.0 < γt < 1

We can also evaluateγt for an ideal circular machine with uniform bending field and a strong
focusing system. Focusing in the radial direction is characterized byνr, the number of radial
betatron oscillations per revolution. For simplicity, assume that the particles are relativistic so that
the magnetic forces are almost independent of energy. The quantityR is the equilibrium radius for
particles of momentum . The radial force expanded aboutR isγomoc

whereδr = r - R. The equilibrium radius for momentum is determined by the balance(γo�δγ) moc
of magnetic forces with centrifugal force, .Neglecting second-order terms, we find(γo�δγ) moc

2/r
that

Zero-order terms cancel, leaving
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(δr/R) (ω2
r � ω

2
go) � (δγ/γo) ω

2
go � (δp/p) ω

2
go,

γ
2
t � 1 � (ωr/ωgo)

2
� 1 � ν

2
r . (15.70)

qE � (qVo sinφs/δ). (15.71)

∆ps � (qVo sinφs/δ) (δ/vs), (15.72)

τo � 2πR/vs. (15.73)

dps/dt � qVo sinφs/2πR. (15.74)

ps � pso � (qVo sinφs/2πR) t. (15.75)

or

Note that in a strong focusing system with highνr. Therefore, particle position in a strongγt » 1
focusing system is much less sensitive to momentum errors than in a weak focusing system.

Both the magnetic field and frequency of accelerating electric fields must vary in a synchrotron
to maintain a synchronous particle with constant radiusR. There are a variety of possible
acceleration histories corresponding to different combinations of synchronous phase, cavity
voltage amplitude, magnetic field strength, and rf frequency. We shall derive equations to relate
the different quantities.

We begin by calculating the momentum of the synchronous particle as a function of time.
Assume the acceleration gap has narrow widthδ so that transit-time effects can be neglected. The
electric force acting on the synchronous particle in a gap with peak voltageVo is

The momentum change passing through the gap is the electric force times the transit time, or

wherevs is the synchronous particle velocity. Acceleration occurs over a large number of
revolutions; it is sufficient to approximateps as a continuous function of time. The smoothed
derivative ofps is found by dividing both sides of Eq. (15.72) by the revolution time

The result is

If Vo andφs are constant, Eq. (15.74) has the solution

Either Eq. (15.74) or (15.75) can be used to findps(t). Equation (2.37) can then be used to
determineγs(t) from ps(t). The time history of the frequency is then constrained. The revolution
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ω � (Mc/R) 1 � 1/γ2
s. (15.77)

Bo � (moc/qR) γ
2
s � 1. (15.78)

ω �

MqBo/mo

1 � (qBoR/moc)2
. (15.79)

dp/dt � (qVo/2πR) sinφ, (15.80)

dδp/dt � (qVo/2πR) (sinφ � sinφs) � (qVoωgo/2βsc) (sinφ � sinφs). (15.81)

dφ/dt � ω � Mωg. (15.82)

frequency is through Eq. (2.21). The rf frequency must be anωgo � vs/R � (c/R) 1 � 1/γ2
s

integer multiple of the revolution frequency, . In small synchrotrons,M may equal 1 toω � Mωgo
minimize the rf frequency. In larger machines,M is usually greater than unity. In this case, there
areM circulating beam bunches contained in the ring. The rf frequency is related to the particle
energy by

Similarly, the equation implies that the magnetic field magnitude isBo � γomovs/qR

The rf frequency and magnetic field are related to each other by

As an example of the application of Eqs. (15.75), (15.77), and (15.78), consider the parameters
of a moderate-energy synchrotron (the Bevatron). The injection and final energies for protons are
9.8 MeV and 6.4 GeV. The machine radius is 18.2 m andM = 1. The variations of rf frequency
andBo during an acceleration cycle are plotted in Figure 15.20. The magnetic field rises from
0.025 to 1.34 T and the frequency ( ) increases from 0.37 to 2.6 MHz.f � ω/2π

The reasoning that leads to Eq. (15.74) can also be applied to derive a momentum equation for
a nonsynchronous particle. Again, averaging the momentum change around one revolution,

whereR is the average radial position of the particle. Substituting , we find (as inδp � p � ps
Section 13.3) that

Applying Eq. (15.6), changes of phase can be related to the difference between the orbital
frequency of a nonsynchronous particle to the rf frequency,

The orbital frequency must be related to variations of relativistic momentum in order to generate a
closed set of equations. The revolution time for a nonsynchronous particle is ,τ � 2πr/v � 2π/ωg
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δτ/τo � �δωg/ωgo � (δr/R) � (δv/vs) � (δr/R) � (δβ/βs). (15.83)

(δp/ps) � δγ/γo � δβ/βs � δβ/βs / (1 � β
2
s). (15.84)

�δωg/ωgo � (δr/R) � (δp/ps) / γ
2
s � [(1/γ2

t ) � (1/γ2
s)] (δp/ps). (15.85)

Differential changes inτ arise from variations in particle velocity and changes in orbit radius. The
following equations pertain to small changes about the parameters of the synchronous particle
orbit:

The differential change in momentum ( ) isp � γmoβc

The final form is derived from Eq. (2.22) with some algebraic manipulation. Noting that
, we find thatδβ/βs � (1 � β

2
s) (δp/ps)

Equation (15.85) implies that
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dωg/dt � � (dδp/dt) (ωgo/ps) [(1/γ2
t ) � (1/γ2

s)]. (15.86)

d 2φ/dt 2
� � M (dωg/dt). (15.87)

d 2φ/dt 2
� (Mω

2
go/γomoc
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2
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s)] (sinφ � sinφs). (15.88)
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2
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�

1

γ
2
s

(15.89)

Equations (15.81), (15.82), and (15.86) can be combined into a single equation for phase in the
limit that the parameters of the synchronous particle and the rf frequency change slowly compared
to the time scale of a phase oscillation. This is an excellent approximation for the long
acceleration cycle of synchrotrons. Treatingω as a constant in Eq. (15.82), we find

Combining Eqs. (15.85), (15.86), and (15.87), the following equation describes phase dynamics in
the synchrotron:

Equation (15.88) describes a nonlinear oscillator; it is similar to Eq. (13.21) with the exception of
the factor multiplying the sine functions. We discussed the implications of Eq. (13.21) in Section
13.3, including phase oscillations, regions ofacceptance for longitudinal stability, and
compression of phase oscillations. Phase oscillations in synchrotrons have two features that are
not encountered in linear accelerators:

1. Phase oscillations lead to changes of momentum aboutps and hence to oscillation of
particle orbit radii. These radial oscillations are calledsynchrotron oscillations.

2. The coefficient of the sine terms may be either positive or negative, depending on the
average particle energy.

In the limit of small phase excursion ( ), the angular frequency for phase oscillations in a∆φ « 1
synchrotron is

Note that the term in brackets contains dimensionless quantities and a factor proportional to the
ratio of the peak energy gain in the acceleration gap divided by the particle energy. This is a very
small quantity; therefore, the synchrotron oscillation frequency is small compared to the frequency
for particle revolutions or betatron oscillations. The radial oscillations occur at angular frequency
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δr � R (∆φ/M) (ωs/ωgo), (15.90)

Et � (moc
2) νr. (15.91)

z � zo cos(Mµ�φ), (15.92)

ws. In the range well beyond transition ( ), the amplitude of radial oscillations can beγs » γt
expressed simply as

where∆φ is the maximum phase excursion of the particle fromφs.
The behavior of the expression determines the range of stable phase and the[(1/γ2

t ) � (1/γ2
s)]

transition energy. For largeγt or smallγs, the expression is negative. In this case, the stability
range is the same as in a linear accelerator, . At high values ofγs, the sign of the0 < φs < π/2
expression is positive, and the stable phase regime becomes .π/2 < φs < π

In a weak focusing synchrotron,γt is always less than unity; therefore, particles are in the
post-transition regime at all values of energy. Transition is a problem specific to strong focusing
synchrotrons. The transition energy in a strong focusing machine is given approximately by

15.7 STRONG FOCUSING

The strong focusing principle [N. C. Christofilos, U.S. Patent No. 2,736,799 (1950)] was in large
part responsible for the development of synchrotrons with output beam kinetic energy exceeding
10 GeV. Strong focusing leads to a reduction in the dimensions of a beam for a given transverse
velocity spread and magnetic field strength. In turn, the magnet gap and transverse extent of the
good field regioncan be reduced, bringing about significant reductions in the overall size and cost
of accelerator magnets.

Weak focusing refers to beam confinement systems in circular accelerators where the betatron
wavelength is longer than the machine circumference. The category includes the gradient-type
field of betatrons and uniform-field cyclotrons. Strong focusing accelerators have , aλb < 2πR
consequence of the increased focusing forces. Examples are the alternating-gradient configuration
andFD or FODO combinations of quadrupole lenses. Progress in rf linear accelerators took place
largely in the early 1950s after the development of high-power rf equipment. Although some early
ion linacs were built with solenoidal lenses, all modem machines use strong focusing quadrupoles,
either magnetic or electric.

The advantage of strong focusing can be demonstrated by comparing the vertical acceptance of
a weak focusing circular accelerator to that of an altemating-gradient (AG) machine. Assume that
the AG field consists ofFD focusing cells of length I (along the beam orbit) with field index ±n,
wheren » 1. The vertical position of a particle at cell boundaries is given by

where
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µ � cos�1 [cos( nωgo/vs) cosh( nωgo/vs)]

z � zo cos(µS/l � φ), (15.93)

z�
� � (zoµ/l) sin(µS/l � φ). (15.94)

Av � πzoz
�

o � πz2
o µ/l. (15.95)

z � zo cos( nS/R � φ). (15.96)

Av � πz2
o n/R. (15.97)

andM is the cell number. For , the orbit consists of a sinusoidal oscillation extending overµ � 1
many cells with small-scale oscillations in individual magnets. Neglecting the small oscillations,
the orbit equation for particles on the beam envelope is

whereS, the distance along the orbit, is given byS= Ml. The angle of the orbit is approximately

Combining Eqs. (15.93) and (15.94), the vertical acceptance is

In a weak focusing system, vertical orbits are described by

Following the same development, the vertical acceptance is

In comparing Eqs. (15.95) and (15.97), note that the field index for weak focusing must be less
than unity. In contrast, the individual field indices of magnets in the alternating gradient are made
as large as possible, consistent with practical magnet design. Typically, the field indices are chosen
to give . For the same field strength, the acceptance of the strong focusing system isµ � 1
therefore larger by a factor on the order ofR/l or N/2π, whereN is the number of focusing cells.
The quantityN is a large number. For example,N = 60 in the AGS accelerator at Brookhaven
National Laboratory.

The major problem of strong focusing systems is that they are sensitive to alignment errors and
other perturbations. The magnets of a strong focusing system must be located precisely. We shall
estimate the effects of alignment error in a strong focusing system using the transport matrix
formalism (Chapter 8). The derivation gives further insight into the origin of resonant instabilities
introduced in Section 7.2.
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x � x � ε (15.98)

x �
� x �

� ε� (15.99)

un�1 � un � ε, (15.100)

For simplicity, consider a circular strong focusing machine with uniformly distributed cells.
Assume that there is an error of alignment in either the horizontal or vertical direction between
two cells. The magnets may be displaced a distanceε, as shown in Figure 15.21a. In this case, the
position component of an orbit vector is transformed according to

when the particle crosses the boundary. An error in magnet orientation by an angleε' (Fig.
15.21b) causes a change in the angular part of the orbit vector:

The general transformation at the boundary is

where .ε � ( ε, ε
� )

Let A be the transfer matrix for a unit cell of the focusing system and assume that there areN
cells distributed about the circle. The initial orbit vector of a particle isu0. For convenience,u0 is
defined at a point immediately following the imperfection. After a revolution around the machine
and traversal of the field error, the orbit vector becomes
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uN � A N u0 � ε. (15.101)

u2N � A N uN � ε � A 2N u0 � (A N
� I ) ε, (15.102)

unN � A nN u0 � Dnε. (15.103)

Dn � (A (n�1)N
� A (n�2)N

� ... � A N
� I ). (15.104)

ε � a1 ν1 � a2 ν2. (15.105)

λ1 � exp( jµ), λ2 � exp(�jµ). (15.106)

Dnε � a1 ν1 exp[j(n�1)Nµ] � exp[j(n�2)Nµ] � ... � 1

� a2 ν2 exp[�j(n�1)Nµ] � exp[�j(n�2)Nµ] � ... � 1 ,
(15.107)

The orbit vector after two revolutions, is

whereI is the identity matrix. By induction, the transformation of the orbit matrix forn
resolutions is

where

We found in Chapter 8 that the first term on the right-hand side of Eq. 1(15.103) corresponds to
bounded betatron oscillations when stability criteria are satisfied. The amplitude of the term is
independent of the perturbation. Particle motion induced by the alignment error is described by
the second term. The expression forDn can be simplified using the eigenvectors (Section 8.6) of
the matrixA: ν1 andν2. The eigenvectors form a complete set; any two-dimensional vector,
includingε can be resolved into a sum of eigenvectors:

We found in Section 8.6 that the eigenvalues for a transfer matrixA are

where µ is the phase:advance in a cell. Substituting Eq. (15.106) in Eq. (15.103), we find

The sums of the geometric series can be rewritten as
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Dnε �

exp( jnNµ) � 1
exp( jNµ) � 1

a1 ν1 � aexp(�jnNµ) � 1
exp(�jNµ) � 1

a2 ν2. (15.108)

Dnε � [sin(nNµ/2)/sin(nµ/2)]

× [exp[ j(n�1)Nµ/2)] a1 ν1 � exp[�j(n�1)Nµ/2)] a2 ν2].
(15.109)

µ � 2πM/N, (15.110)

ν � M. (15.111)

or, alternately,

The second term in braces is always bounded; it has a magnitude on the order ofε. The first term
in brackets determines the cumulative effect of many transitions across the alignment error. The
term becomes large when the denominator approaches zero; this condition occurs when

whereM is an integer. Equation (15.110) can be rewritten in terms ofν, the number of betatron
wavelengths per revolution:

This is the condition for an orbital resonance. When there is a resonance, the effects of an
alignment error sum on successive revolutions. The amplitude of oscillatory motion grows with
time. The motion induced by an error when is an oscillation superimposed on betatronν � M
and synchrotron oscillations. The amplitude of the motion can be easily estimated. For instance, in
the case of a position error of magnitudeε, it is .ε/sin(Nµ/2)
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An alternate view of the nature of resonant instabilities, mode coupling, is useful for general
treatments of particle instabilities. The viewpoint arises from conservation of energy and the
second law of thermodynamics. The second law implies that there is equipartition of energy
between the various modes of oscillation of a physical system in equilibrium. In the treatment of
resonant instabilities in circularaccelerators, we included two modes of oscillation: (1) the
revolution of particles at frequencyωgo and (2) betatron oscillations. There is considerable
longitudinal energy associated with particle revolution and, under normal circumstances, a small
amount of energy in betatron oscillations.
In a linear analysis, there is no exchange of energy between the two modes. A field error
introduces a nonlinear coupling term, represented by in Eq. (15.103). This term allowsDnε

energy exchange. The coupling is strong when the two modes are in resonance. The second law
implies that the energy of the betatron oscillations increases. A complete nonlinear analysis
predicts that the system ultimately approaches an equilibrium with a thermalized distribution of
particle energy in the transverse and longitudinal directions. In an accelerator, the beam is lost on
vacuum chamber walls well before this state is reached.

In a large circular accelerator, there are many elements of periodicity that can induce resonance
coupling of energy to betatron oscillations. In synchrotrons, where particles are contained for long
periods of time, all resonance conditions must be avoided. Resonances are categorized in terms of
forbidden numbers of betatron wavelengths per revolution. The physical bases of some forbidden
values are listed in Table 15.5.



Bibliography

556

Bibliography

L. L. Alston (Ed.), High Voltage Technology, Oxford University Press, Oxford, 1968.

R. Bakish,Introduction to Electron Beam Technology, Wiley, New York, 1962.

A. P. Banford,The Transport of Charged Particle Beams, Spon, London, 1966.

A. H. W. Beck,Space Charge Waves and Slow Electromagnetic Waves, Pergamon Press,
London, 1958.

M. Y. Bernard,Particles and Fields: Fundamental Equations, in A. Septier, Ed.,Focusing of
Charged Particles, Vol. 1, Academic, New York, 1967.

P.Bonjour, Numerical Methods for Computing Electrostatic and Magnetic Fields, in A. Septier,
Ed.,Applied Charged Particle Optics, Part A, Academic, New York, 1980.

M. Born and E. Wolf,Principles of Optics, Pergamon Press, Oxford, 1965.

D.Boussard,Focusing in Linear Accelerators, in A. Septier, Ed.,Focusing of Charged
Particles, Vol. 2, Academic, New York, 1967.

H. Brechner,Superconducting Magnet Systems, Springer-Verlag, Berlin, 1973.

L. Brillouin, Wave Propagation in Periodic Structures, Dover, New York, 1953.

G. Brewer,Ion Propulsion - Technology and Applications, Gordon and Breach, New York,
1970.

H. Bruck,Accelerateurs Circulaires de Particules, Presses Universitaires de France, Paris,
1966.

R. A. Carrigen, F. P. Huson, and M. Month,Summer School on High Energy Particle
Accelerators, American Institute of Physics, New York, 1981.

J. D. Cobine,Gaseous Conductors, Dover, New York, 1958.



Bibliography

557

R. E. Collin,Foundations for Microwave Engineering, McGraw-Hill, New York, 1966.

T. Collins,Concepts in the Design of Circular Accelerators, in Physics of High Energy
Particle Accelerators(SLAC Summer School, 1982), American Institute of Physics, New
York, 1983.

J.S. Colonias,Particle Accelerator Design - Computer Programs, Academic, New York,
1974.

V.E. Coslett,Introduction to Electron Optics , Oxford University Press, Oxford, 1950.

P. Dahl,Introduction to Electron and Ion Optics , Academic, New York, 1973

H.A. Enge,Deflecting Magnets, in A. Septier, Ed.,Focusing of Charged Particles, Vol. 2,
Academic, New York, 1967.

C.Fert and P. Durandeau,Magnetic Electron Lenses, in A. Septier, Ed.,Focusing of Charged
Particles, Vol. 1, Academic, New York, 1967.

J.F. Francis,High Voltage Pulse Techniques, Air Force Office of Scientific Research,
AFOSR-74-2639-5, 1974.

J. C. Francken,Analogical Methods for Resolving Laplace's and Poisson's Equation, in A.
Septier, Ed.,Focusing of Charged Particles, Vol. 1, Academic, New York, 1967.

A.Galejs and P. H. Rose,Optics of Electrostatic Accelerator Tubes, in A. Septier, Ed.,Focusing
of Charged Particles, Vol. 2, Academic, New York, 1967.

C. Germain,Measurement of Magnetic Fields, in A. Septier, Ed.,Focusing of Charged
Particles, Vol. 1, Academic, New York, 1967.

G. N. Glasoe and J. V. Lebacqz,Pulse Generators, Dover, New York, 1965.

M. Goldsmith,Europe's Giant Accelerator, the Story of the CERN 400 GeV Proton
Synchrotron, Taylor and Francis, London, 1977.

H. Goldstein,Classical Mechanics, Addison-Wesley, Reading, Mass., 1950.

P. Grivet and A. Septier,Electron Optics, Pergamon Press, Oxford, 1972.

K. J. Hanszen and R. Lauer,Electrostatic Lenses, in A. Septier, Ed.,Focusing of Charged
Particles, Vol. 1, Academic, New'York, 1967.



Bibliography

558

E. Harting and F. H. Read,Electrostatic Lenses, Elsevier, Amsterdam, 1976.

W.V. Hassenzahl, R. B. Meuser, and C. Taylor,The Technology of Superconducting Accelerator
Dipoles, in Physics of High Energy Particle Accelerators(SLAC Summer School, 1982),
American Institute of Physics, New York, 1983.

P. W. Hawkes,Electron Optics and Electron Microscopy, Taylor and Francis, London, 1972.

P. W. Hawkes (Ed.),Magnetic Electron Lens Properties, Springer-Verlag, Berlin, 1980.

P.W. Hawkes, Methods ofComputing Optical Properties and Combating Aberrations for
Low-Intensity Beams, in A. Septier, Ed.,Applied Charged Particle Optics, Part A, Academic,
New York, 1980.

P. W. Hawkes,Quadrupoles in Electron Lens Design, Academic, New York, 1970.

P. W. Hawkes,Quadrupole Qptics, Springer-Verlag, Berlin, 1966.

R. Hutter,Beams with Space-charge, in A. Septier, Ed.,Focusing of Charged Particles, Vol. 2,
Academic, New York, 1967.

J. D. Jackson,Classical Electrodynamics, Wiley, New York, 1975.

I. M. Kapchinskii, Dynamics in Linear Resonance Accelerators, Atomizdat, Moscow, 1966.

S. P. Kapitza and V. N. Melekhin,The Microtron , Harwood Academic, New York, 1978. (I. N.
Sviatoslavsky (trans.))

E. Keil, Computer Programs in Accelerator Physics, in Physics of High Energy Particle
Accelerators(SLAC Summer -School, 1982), American Institute of Physics, New York, 1983.

O. Klemperer and M. E. Barnett,Electron Optics, Cambridge University Press, London, 1971.

A. A. Kolomensky and A. N. Lebedev,Theory of Cyclic Accelerators(trans. from Russian by
M. Barbier), North-Holland, Amsterdam, 1966.

R. Kollath (Ed.),Particle Accelerators(trans. from 2nd German edition by W. Summer),
Pittman and Sons, London, 1967.

P. M. Lapostolle and A. Septier (Eds.),Linear Accelerators, North Holland, Amsterdam, 1970.

L. J. Laslett,Strong Focusing in Circular Particle Accelerators, in A. Septier, Ed.,Focusing of



Bibliography

559

Charged Particles, Vol. 2., Academic, New York, 1967.

J. D. Lawson,The Physics of Charged-particle Beams, Clarendon Press, Oxford, 1977.

B. Lehnert,Dynamics of Charged Particles, North-Holland, Amsterdam, 1964.

A. J. Lichtenberg,Phase Space Dynamics of Particles, Wiley, New York, 1969.

R. Littauer,Beam Instrumentation, in Physics of High-energy Particle Accelerators(SLAC
Summer School, 1982), American Institute of Physics, New York, 1983.

J. J. Livingood,Principles of Cyclic Particle Accelerators, Van Nostrand, Princeton, New
Jersey, 1961.

J. J. Livingood,The Optics of Dipole Magnets, Academic, New York, 1969.

M. S. Livingston (Ed.),The Development of High Energy Particle Accelerators, Dover, New
York, 1966.

M. S. Livingston,High Energy Accelerators, Interscience, New York, 1954.

M. S. Livingston,Particle Accelerators, A Brief History , Harvard University Press,
Cambridge. Mass., 1969.

M. S. Livingston and J. P. Blewett,Particle Accelerators, McGraw-Hill, New York, 1962.

G. A. Loew and R. Talman,Elementary Principles of Linear Accelerators, in Physics of High
Energy Particle Accelerators(SLAC Summer School, 1982), American Institute of Physics,
New York, 1983.

W. B. Mann,The Cyclotron, Methuen, London, 1953.

J. W. Mayer, L. Eriksson, and J. A. Davies,Ion Implantation in Semiconductors, Academic,
New York, 1970.

N. W. McLachlan,Theory and Application of Matheiu Functions , Oxford University Press,
Oxford, 1947.

A. H. Maleka,Electron-beam Welding - Principles and Practice, McGraw-Hill, New York,
1971.

R. B. Miller, Intense Charged Particle Beams, Plenum Press, New York, 1982.



Bibliography

560

M. Month (Ed.),Physics of High Energy Particle Accelerators(SLAC Summer School,
1982), American Institute of Physics, New York, 1983.

R. B. Neal (Ed.),The Stanford Two-mile Accelerator, Benjamin, Reading, Mass., 1968.

T. J. Northrup,The Adiabatic Motion of Charged Particles, Interscience, New York, 1963.

H. Patterson,Accelerator Health Physics, Academic, New York, 1973.

E. Perisco, E. Ferrari, and, S. E. Segre,Principles of Particle Accelerators, Benjamin, New
York, 1968.

J. R. Pierce,Theory and Design of Electron Beams, Van Nostrand, Princeton, New Jersey
1954.

D. Potter,Computational Physics, Wiley-Interscience, New York, 1973.

R. E. Rand,Recirculating Electron Accelerators, Harwood Academic, New York, 1984.

S. Ramo, J. R. Whinnery, and T. Van Duzer,Fields and Waves in Communications
Electronics, Wiley, New York, 1965.

E. Regenstreif,Focusing with Quadrupoles, Doublets and Triplets, in A. Septier, Ed.,Focusing
of Charged Particles, Vol, 1, Academic, New York, 1967.

J. Rosenblatt,Particle Accelerators, Methuen, London, 1968.

W. Scharf,Particle Accelerators and Their Uses, Harwood Academic, New York. 1985.

S. Schiller, U. Heisig, and S. Panzer,Electron Beam Technology, Wiley, New York, 1982.

R.W. Southwell,Relaxation Methods in Theoretical Physics, Oxford University Press,
Oxford, 1946.

A. Septier (Ed.),Applied Charged Particle Optics, Part A, Academic, New York, 1980.

A. Septier (Ed.),Applied Charged Particle Optics, Part B, Academic, New York, 1980,

A. Septier (Ed.),Applied Charged Particle Optics, Part C, Very-High Density Beams,
Academic, New York, 1983.

A. Septier (Ed.).Focusing of Charged Particles, Academic, New York, 1967.



Bibliography

561

J. C. Slater,Microwave Electronics, Van Nostrand, Princeton, New Jersey, 1950.

K. G. Steffen,High Energv Beam Optics, Wiley-Interscience, New York, 1965.

E. Stuhlinger,Ion Propulsign for Space Flight, McGraw-Mll, New York, 1964.

P. Sturrock,Static and Dynamic Electron Optics, Cambridge University Press, London, 1955.

M. Tigner and H. Padamsee,Superconducting Microwave Cavities in Accelerators for Particle
Physics, in Physics of High Energv Particle Accelerators(SLAC Summer School, 1982),
American Institute of Physics, New York, 1983.

A. D. Vlasov,Theory of Linear Accelerators, Atomizdat, Moscow, 1965.

C. Weber,Numerical Solutions of Laplace's and Poisson's Equations and the Calculation of
Electron Trajectories and Electron Beams, in A. Septier, Ed.,Focusing of Charged Particles,
Vol. 1, Academic, New York, 1967.

R. G. Wilson and G. R. Brewer,Ion Beans with Applications to Ion Implantation , Wiley,
New York, 1973.

H. Wollnik, Electrostatic Prisms, in A. Septier, Ed.,Focusing of Charged Particles, Vol. 2,
Academic, New York, 1967.

H. Wollnik, Mass Spectrographs and Isotope Separators, in A. Septier, Ed.,Applied Charged
Particle Optics, Part B, Academic, New York, 1980.

O. C. Zienkiewicz,The Finite Element Method in Engineering Science, McGraw-Hill, New
York, 1971.

J.F. Ziegler,New Uses of Ion Accelerators, Plenum, New York, 1975.

V. K. Zworykin, G. A. Morton, E. G. Ramberg, J. Hillier, and A. W. Vance,Electron Optics
and the Electron Microscope, Wiley, New York, 1945.



Index

Index - 1

Index

Aberrations, lens, 132
Acceleration column, electrostatic, 161, 227

breakdown in vacuum, 228f
maximizing breakdown voltage, 231

Acceleration gap, electrostatic focusing,
121,125, 172
Accelerator:

AGS (alternating gradient synchrotron),
503

Alvarez, 456f
AVF (azimuthally varying field)

cyclotron,501, 524f
betatron, 326f
Cockcroft-Walton, 210, 221
coreless linear induction, 317f
coupled cavity, 459f
cyclotron, 504f
drift tube linac (DTL), 456f
electrostatic, 196f
high energy, listing, 542
linear, RF, 437f
electron, 440f
ion, 452f
linear induction, 283f
pulsed power, 258f
racetrack microtron, 493f
radio-frequency quadrupole (RFQ), 482f
recirculating linear induction, 328f
separated function synchrotron, 503,531f
separated sector;cyclotron, 501, 520f
side-coupled linac, 465, 469
spiral cyclotron, 502, 518f
strong-focusing synchrotron, 503
superconducting. cyclotron, 502

synchrocyclotron, 502, 523f
synchrotron, 502, 531f
uniform-field cyclotron, 501, 504f
Van de Graaff, 221f
weak focusing synchrotron, 503, 534
Wideroe, 453

Acceptance:
of aperture, 140, 142
of,focusing-system, 129, 140f
of linear focusing system, 141f
longitudinal, 420f
of strong focusing system, 551
of weak focusing system, 551

Alpha.particle, properties, 10
Ampere, definition, 27
Analog, electrostatic.@potential, 59f
Angular, momentum, canonical, 126, 154

conservation, 126, 152f
Apparent accelerator length, 433f
Applications, accelerator, 6
Archimedean spiral, 519
ATA accelerator:

cavity. geometry, 289, 290
parameters, 288

Atomic mass number, A, 9
Atomic number, Z, 9

Ballistic orbits, definition, 116
Barium titanate, 85
Beam, charged particle, 2

breakup instability,445f
bunching, 423, 445
confinement, 109
cooling, 536
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current measurement, 276f
focus, 110
generation process, 2f
laminar, definition, 113
matching, to focusing system, definition,

141
position measurement, 278

Bessel equation, 369
Bessel functions, 369f
Beta-lambda linac, 456
Beta-lambda/2 linac, 456
Beta, relativistic factor, 18, 24
Betatron, 326f

acceleration cycle, 333, 352f
betatron, condition, 333
betatron oscillations,336, 342f
comparison to linear induction

accelerator,328f
equivalent circuit, 348f
extraction from, 345f
field biasing, 354f
flux biasing, 354f
geometry, 328
high current:

advantages, 327
methods of achieving, 346f

injection into, 334f, 343f
instantaneous circle, 334f
magnetic peeler, 345
mapets, 348
main orbit, 332
maximum beam energy:

electrons, 330
ions, 331f

orbit contraction coils, 345
principle of operation, 327f

Betatron oscillations,138, 342
constant energy, 145f
radial and axial frequencies, 150
reversible compressions, 336f
orbital stability, 150
variable energy, 342

Betatron wavelength, 138
in FD quadrupole channel, 193, 195

Bevatron, 547
Bifrigence, 79
Biot and Savart, law of, 28, 68
Blumlein line, 250f

analysis of operation, 251
circuit, 250f
geometry, 250
properties, 253

Breakdown:
spark:

condition for, in gas, 216
electronegative gases, effect of, 218
in gases, 213f
in oil and water, 212
Paschen's law, 217
self-sustaining discharge, conditions, 216
spark parameters, gases, 218

vacuum, 227f
breakdown levels, effect of pulselength,

229f
breakdown voltage, methods to increase,

230f
conditioning of metal surfaces, effect, 229
effect of beam, 231
effect of exposed insulators, 229
effect of surface whiskers, 227f
electron multipactoring, 479f
exposed insulators, breakdown levels,231
factors affecting, 228f
Kilpatrick limit, RF voltage, 482
with RF voltage, 478f

Brillouin diagram, 407
Busch theorem, 152

Capacitance:
coaxial capacitor, 200
parallel plates, 199
transmission line, 249

Capacitor, 199
coaxial, 200f
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energy transfer between, 259f
impedance, 361
parallel plate, 3 If, 85
in pulsed power circuit, 233
stored electrostatic energy density, 97f
stored energy, 200

Cathode:
cold, 229

effect of plasma closure, 229
immersed, 156

Central orbit, 128
Characteristic impedance:

coaxial transmission line, 241, 246
Guillemin network,255f

LRC circuit, 235
transmission line equivalent PFN, 254
transmission lines, 241

Charge density, 33, 64
Charge layer, 65
Chromaticity, 168
Clock, photon, 16, 19
Cockcroft-Walton accelerator, 210f, 221
Coercive force, 93
Coherence, beam, 2
Collider, 504, 540f

advantages, 541f
available reaction energy, 541
lumiosity, 543
particle dynamics in, 540

Complex conjugate, 359
Complex exponential notation:

relation to trigonometric functions, 358
theory, 357f

Confinement system, magnetic, 68
Constancy, speed of light, 22
Coordinates, cylindrical, 40f
Coordinate transformations, 13f
Corona discharge, 220
Coulomb's law, 27
Curl operator, 49f
Cartesian coordinates, 50
Current, 27

Current density, 33, 60
Current loop, magnetic fields of, 72f
Current measurement, see Pulsed current
measurement
Current sheet, 68
Cutoff frequency, waveguide, 387, 390
CVR (current viewing resistor), 276f

configurations, 277
Cyclotron, 501

AVF:
advantages, 527
energy limits, 527
nature of focusing forces, 526
radial field variations, 524f

AVF focusing, 513f. See also Focusing by
azimuthally varying fields

azimuthally varying field, 501
beam extraction, 508
dees, 506
separated sector, 501

advantages, 527f
spiral, 502
superconducting, 502
trim coils, 525f
uniform-field:

magnetic field, 506f
maximum beam energy, 51 If
phase dynamics, 509f
principles, 501, 504f
transverse focusing, 506f

Delta function, 33
Demagnetization curve, 105
Derivative:

first, finite difference form, 53
second, finite difference form, 54

Deuteron, properties, 10
Diamagnetism, 39
Dielectric constant, relative, 79

plasma, 82
water, 80

Dielectric materials, 64, 77f
accelerator applications, 77
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properties, 78f
saturation, 79

Dielectric strength, 212
Diode, 198

pulsed power, 258
Dirichlet boundary condition, 56
Dispersion, in waveguide, 387
Dispersion relationship, 389
Displacement current, 37, 39f
Displacement current density, expression, 39
Displacement vector, D, 76, 80f

boundary conditions, 81, 83f
Distribution, particle, 140

modification by acceleration gap, 427
Divergence equation, 46
Divergence operator, 47
Divergence theorem, 47
Domains, magnetic, 90
Drift tube, 453
Dynamics, particle, 8f

EAGLE, pulsed power generator, 259, 261
Eddy current, 291
Edge focusing, 132f
Eigenvalues, 184f

of 2X2 matrix, 185
Eigenvectors, 184f

of 2X2 matrix, 185
Elastic sheet, electrostatic potential analog,
59
Electric field, 29f, 45f

between parallel plates, 33
boundary conditions on dielectric

material,81, 83f
boundary conditions on metal surface, 51
in charged cylinder, 64f
energy density, 97f
minimization in electrostatic

accelerator,223f
paraxial approximation, 111f
properties, 52

Electrodes, quadrupole field, 62

Electrolytic tank, electrostatic potential
analog, 60f
Electromagnetic oscillations, 40
Electron, properties, 10
Electron capture, 432
Electron multiplication, in gases, 214f, 219
Electron volt, eV, 9f, 23
Electrostatic energy, storage, 85
Elliptic integrals, 73f

series approximations, 74
Equipotential surface., 52
Energy:

kinetic:
Newtonian, 12f, 23
relativistic, 23

potential, 13
relativistic, 22
rest, 23

Envelope, beam, 110, 154
Equipotential shields, 225f
Eulerian dfference method, 115
Extractor, charged,particle, 121

Faraday rotation, 291f
Faraday's law, 37, 38f
FD focusing channel, 118f, 192f
Ferrite, 287, 293, 294, 299
Ferromagnetic materials, 90f

accelerator applications, 77
applications to magnetic circuits, 102
boundary conditions, 95f
eddy currents, effects, 291f
ferrite, properties, 293f, 299
hysteresis curve, 91f
Metglas, properties, 293f, 299
properties, 90f
relative permeability, 90
saturation, 90, 91
saturation wave, 295
silicon steel, properties,293f, 299
skin depth, 291
terminology, 93
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time-dependent,properties, 291f
FFAG accelerator, 513
Field biasing, betatron, 354f
Field description, advantages, 31
Field emission, 227

enhancement by surface whiskers, 227f
Fowler-Nordheim equation, 227

Field equations, static, 46
Field index, 148

expressions for, 148
in isochronous cyclotron, 525

Field lines, 46
approximation, 110f
focusing properties, 113f
magnetic:

relation to magnetic potential and vector
potential, 71

relation to stream function, 72
Finite difference calculations, 53

accuracy, 159f
Eulerian method, II 5, 15 9
particle orbits, 157f
particle orbits in periodic focusing channel,

179f
time-centered method, 159
two-step method, 159f

Flutter, AVF focusing, 514
Flux, magnetic, 38, 102
Flux biasing, betatron, 354f
Flux forcing, 305f, 350
Flux function, 153

relation to vector potential and stream
function, 154
FNAL accelerator (Tevatron), 536f
f-number, 117
Focal length, 116

relation to transfer matrix, 173
systems with curved axes, 130

Focusing, radial, in uniform magnetic field,
146
Focuging by azimuthally varying fields, 513f

in AVF cyclotron, 526

flutter, 514
flutter amplitude, 514
flutter function, 514
hills and valleys, definition, 514
modulation function, 514
nu, vertical and horizontal, 517f
particle orbits, 514f
sector, definition, 514
separated sector magnets, 521f
separated sector magnets with spiral

boundaries, 521
spiral pole boundaries, effect, 518
Thomas focusing, 514f
transfer matrices, 517f

Focusing cell, defintion, 179
Focusing channels, periodic, 165f

FODO, 533
quadrupole, stability condition,188, 192f
quadrupoles, 187f, 550f
stability properties,183f

Focusing force, average in a periodic system,
139
Focusing lattice, 532
Foil focusing, 124
Force, 11, 22

centrifugal, 41
between charges, 27
Coriolis, 42
electric, 26f, 30
magnetic, 26f, 30f
virtual, 41

Fowler-Nordheim equation, 227
Frames of reference, 13
Frequency domain, 198, 240
Fringing flux, 102

Gamma, relativistic factor, 18
Gap, vacuum, effect in magnetic circuit, 100
Gaussian optics, 108
Gradient, definition, 13
Grading, voltage, 223f
Grading rings:
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effect on vacuum insulation, 227f, 230,
231,232

electrostatic focusing by, 161
electrostatic potential variations, 163f

Grid focusing, 124
Group velocity, 387, 449

in coupled cavities, 466
Guillemin network,255f

choice of circuit elements, 257
properties, 257

Gyrocenter, 44
Gyrofrequency, 44
Gyroradius, 44

in cyclotron, 506

Hamiltonian dynamics, 154
Harmonic oscillator, damped, solution,359f
Helmholtz coils, 75
Hysteresis, 93
Hysteresis curve:

examples, 94
ferromagnetic materials, 91f
measurement, 91
saturation, 92f

Image:
charged particle, 110
definition, 117
formation, equations, 119, 175f
intensifier, 110

Image plane, 117
Image space, 116
Impedance, 360

capacitor, 361
combinations, 362
inductor, 361
resistor, 360
transformation on transmission line, 383

Inductance:
coaxial inductor, 201
solenoid inductor, 202
transmission line, 249

Induction, magnetic, 37, 39
Inductive isolation, 283
Inductive switching, 263f

advantages, 263
circuit analysis, 263f
circuit design, 264, 266
constraints, power compression, 264f
for high power transmission line, 266
power compression, 264f
pulse shaping, 267

Inductor, 199
coaxial, 201
in energy storage circuit, 236
impedance, 361
solenoid, 202
stored energy, 200

Inertial frame, 15
Instability:

orbital, 150
in FD quadrupole channel, 188f, 192f
in separated sector magnets, 521f
in strong focusing system, 554
in thin lens array, 182f

resonance, 143f
in circular accelerator with FD focusing,

195
conditions for, 145

models for, 144
Insulation, 211f

vacuum, 227f
optimization, 229

Insulator:
gas, properties, 213
high voltage vacuum, 85f
properties of some solids and liquids, 212
pulsed behavior, 212
self-healing, 213
transformer oil, properties, fast pulse, 212
water, properties, fast pulse, 212

Integrator, passive, 203f
Invariance, coordinate transformation, 15
Ion, properties, 9
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Irises, in slow wave structures, 394
Iris-loaded waveguide, see slow wave
structure
ISR (Intersecting Storage Ring), 539

KEK 2.5 GeV accelerator, 442f
Kerr effect, 281
Kilpatrick limit, 482
Klystron, 376

Ladder network, 210f
advantages, 211
circuit, 210

LAMF accelerator, 465, 468
Laminar beam, 113, 140, 155
Laplace equation, 50f

analog solutions, 58f
cylindrical coordinates, 57
with dielectrics, 81
finite difference formulation, 53f
cylindrical coordinates, 58
numerical solution with dielectrics, 81
numerical solutions, 53f

Laplacian operator, 50
Laser, electron-beam-controlled discharge,
21
Law, relativistic velocity addition, 22
Laws of motion:

Cartesian coordinates, 12
cylindrical coordinates, 40
Newton's first, 11
Newton's second, 11

LC generator, 238f
Leakage current, 285

in ferrite core induction accelerator, 294f
in laminated core, 298
measurement, 298f

Leakage flux, 102
Length, apparent, 20
Lens, charged particle, 108f

determination of properties, 119
einzel, 124

electrostatic, unipotential, 119, 124
electrostatic aperture:

focal length, 121
properties, 119f

electrostatic immersion, 58,121f
electric fields, 122
focal length, 124
particle orbits, 123, 164
potential variation, 164
transfer matrix, 172f

electrostatic quadrupole, 136
facet, 60
inclined sector magnet boundary, 132f
magnetic quadrupole, 134f

doublet and triplet, 176f
focal lengths, 135
particle orbits, 135

magnetic sector, 127f
power, 117
properties, 115f
solenoidal magnetic, 125f

focal length, 127
particle orbits, 126f

thick, definition, 116
thin:

definition, 115, 116
transfer matrix, 168

toroidal field sector, 13if
Linear accelerator:

induction, 283f
accelerating gradient:

comparison with and without
ferromagnetic cores, 323f

expressions, 315f
factors affecting, 316f

ATA accelerator, 288f
cavity:

equivalent circuit, 286
principles of operation, 284, 286

comparison with betatron, 283, 328f
compensation circuits, 31 If
coreless:
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limitations, 323
principles of operation, 319f

coreless geometries, 317
core reset, 307f
core saturation, problems, 304
damping resistor, role of, 307
electric field distribution in cavity, 313f
ferrite core cavity, 294f
flux forcing, 305
injector configuration, 302
laminated cores, 297
leakage current, 285, 295, 298
longitudinal beam confinement:

electrons, 435f
ions, 427f

longitudinal core stacking, 302
longitudinal dynamics, 426f
radial core stacking, 302f, 306f
recirculating, 328f
relationship to electrostatic accelerator,

284f
reset circuit:

ferrite core cavity driven by Blumlein
line, 309f

long pulse accelerator, 308
properties, 307

series configuration, 286, 287
volt-second product, 287

RF:
choice of waveguide, 406f
energy spread, 426
individually phased cavities, particle

dynamics, 411f
individually phased cavity array, 398, 456
injection into, 423
Kilpatrick limit, 482
micropulsewidth, 425
multipactoring, 479
radio-frequency quadrupole (RFQ), 482f
representation of accelerating field, 416
resolution of electric fields into travelling

waves, 414f

shunt impedance, definition, 452
vacuum breakdown in, 478f

Linear accelerators, advantages, 437
Linear electron accelerator, RF, 440f

beam breakup instability,445f, 447
energy flow, 449f
frequency equation, 447f
geometry, 440f, 451f
injection into, 445
optimizing for maximum beam energy,450f
properties, 440f
pulse shortening, 445f
radial defocusing by RF fields, 478
regenerative beam breakup instability, 446
transverse instability,445f

Linear focusing force, properties, 138
Linear ion accelerator, 452f

Alvarez linac. 456f
beta-lambda structure, 456
beta-lambda/2 structure, 456
comparison with electron accelerator, 452
coupled cavity, 459f
disk and washer structure, 466, 473
drift tube linac, 456f

features, 459
gap coefficient, 475
post-couplers in DTL, 459
radial defocusing by RF fields, 476
resonant cavities in, 455
side-coupled linac, 465, 469
transit-time factor, 473f
Wideroe configuration, 453f

Linear optics, 108
Lorentz contraction, 18f
Lorentz force law, 3, 31
LRC circuit:

equations, 233f
power loss, resonant circuit, 363f
Q parameter, 364f
resonance, 362f
resonance width, 363, 365
solutions:
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critically damped, 235
overdamped, 235
underdamped, 235

L/R time, 204
Luminosity, 543

Magnetic circuits, 99f
permanent, 103f

Magnetic core:
betatrons, 348f
construction, 291
electric field distribution, 299f
energy losses, 99
ferrite, properties, 287
flux forcing, 305f
in inductive accelerator, 287
in inductive switches, 263f
laminated core construction, 297
laminated cores, time-dependent properties,

297f
in magnetic circuit, 101
reset, 264, 307f
saturation, problems, 303f
saturation wave, 295

Magnetic field, 30f, 45f, 93
boundary conditions, ferromagnetic

materials, 95f
of current loop, 74f
electro-optic measurements, 281f
energy density, 97f

calculated from hysteresis curve, 98f
examples, 67f
with gradient, properties, 148
of Helmholtz coils, 75
near current-carrying wire, 67
near two current carrying wires, 71
paraxial approximation, 112f
sector, 127f
sector with gradient, transfer matrix, 170
solenoid, 68f
in torus, 68f

Magnetic intensity, H, 76, 88f, 93

Magnetic materials, 87f
hard, definition, 93
properties, 87f
soft, definition, 93

Magnetic mirror, 112f, 147f
properties of field in, 148f

Magnetic moment, 87f
classical value, 87
quantum mechanical value, 88

Magnetic poles, 95f
determination of shape, 148
North-South convention, 96
saturation effects, 96

Magnetization curve, virgin, 92
Magnetomotive force, 102
Magnets:

AGS (alternating gradient synchrotron), 53
betatron, 348f
cyclotron, 506, 514
dipole, 532f
quadrupole, 532f
sextupole, 532f
synchrotron, 532f

superconducting, 537
Magnification, by lens, 118
MAMI accelerator, 494, 496
Marx generator, 237f
Mass, 10f

relativistic, 22
Mathieu equations, 484
Matrix, transfer, 165f

of AVF system, 517f
of AVF system with spiral boundaries, 518
of circular accelerator with alignment error,

552f
combining optical elements, 173f
determinant, 172
of drift space, 169
eigenvectors and eigenvalues, 184f
of immersion lens, 172
inverse, 171f
multiplication, rules of, 174
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operations, 167
orbital stability condition, 186
properties of, 167f, 172
of quadrupole channel, 188, 192
of quadrupole doublet, 177f
of quadrupole lens, 166f
of quadrupole triplet, 179
raising to power, 183f
relation to phase advance, 186
relation to principal planes and focal lengths

of lens, 173
of sector magnet with gradient, 170f
of thin lens, 168
trace, 184

Maxwell equations, 33f
electromagnetic form, vacuum, 368
listing, 34
static form, 46

Mean free path, for collisions, 214
Mechanics, Newtonian, 10f
Mesh, finite difference, 53, 55
Microbursts, 229
Mcrotron, see Racetrack microtron
Modulator, pulsed power, see Pulsed power
generator
Momentum:

Newtonian, 11
relativistic, 22

Multipactoring, 479f

Necktie diagram, 192, 194
Negative lens effect, 121
Neptune C, pulsed power generator, 259,
260
Neumann boundary condition, 56, 58
Nu, 142f

for AVF cyclotron, 527
for AVF focusing system, 517f
for AVF focusing system with spiral

boundaries, 519
definition, 143
forbidden values, 533, 554f

for separated sector magnets with spiral
boundaries, 521
Nwnerical solutions:

first order differential equation, 158f
Laplace equation, 53f
particle orbits, 157f
particle orbits in acceleration column, 161
particle orbits in immersion lens, 164
second order differential equation, 157f

Object plane, 117
Object space, 116
Oil, transformer:

in coaxial transmission line, 250
insulation properties, 212

Orange spectrometer, 131
Orbit, particle:

in AVF focusing system, 514f
constant magnetic field, 43f, 146
numerical solutions, 157f
in quadrupole channel, 189f
reversible compression, 337f
in RF quadrupole field, 484f
in separated sector cyclotron, 529
in thin lens array, 181f

Orthogonality, of eigenvectors, 184

Paramagnetic materials, 88, 90
Paraxial approximation, basis, 110
Paraxial ray equation, 151, 154f

complete relativistic form, 156
non-relativistic forms, 157
validity conditions, 155

Particle, properties, 9f
Paschen law, 217f
Peaking capacitor circuit, 259f
Periodic focusing, 165f

choice of phase advance, 191
orbit solutions, 179f
stability condition, 186
stability properties,183f

Permanence, magnetic, 102
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Permanent mapets, 103f
energy product, 106
examples of calculations, 107
load line, 107
material properties, 104
operating point, 105f
permanence coefficient, 107

Permeability, relative, 88f
small signal value, 91

Phase, particle, definition, 410f, 414
Phase advance:.

choice of optimum, 191
definition, 181
relation to transfer matrix, 186

Phase dynamics, 408f
asymptotic-phase, electron accelerator, 445
compression of phase oscillations, 424
effective longitudinal force, 419
electron capture, 432, 445
limits of phase oscillations, 419
linear, accelerator, electrons, 430f
linear induction accelerator:

electrons, 435f
ions, 426f

longitudinal acceptance, 420f
longitudinal potential diagram, 420f
in racetrack microtron, 498f
relation between kinetic energy error and

phase, 424
relativistic particles, 430f
in synchrotron, 544f
trapping particles in RF buckets, 422
in uniform-field cyclotron, 509

Phase equations, 414f
applications, 408
approximation:

slowly varying vs, 418, 419
small amplitude, 418

small amplitude, 424f
general form, 417
relativistic limit, 430, 432
for synchrotron, 549

for uniform-field cyclotron, 511
Phase oscillation frequency, 418
Phase space, 140

conservation of phase area, 339, 341
orbits, reversible compression, 339
relativistic particles, 343

Phase stability,410f
condition:

linear accelerator, 413
synchrotron, 550

PIGMI accelerator, 467
Pion, 18
Planck constant, 88
Plasma, dielectric constant, 82
Plasma closure, cold cathode, 229
Plasma source, inductively coupled, 38, 39
Pockels effect, 281
Poisson equation, 65f

numerical solution, 66f
Polar molecules, 77f
Potential:

absolute, 36, 155
electrostatic, 34f, 50

in charge cylinder, 66
definition, 36
expressions, 36, 37

magnetic, 53, 70f
analogy with electrostatics for

ferromagnetic poles, 95
relation to field lines, 71
vector, 34f, 70f

analogy with field lines, 70
of current loop, 72f
definition, 37
expressions, 37
relation to flux function, 154
of two current-carrying wires, 71

Power compression, 259f
role of peaking capacitor circuit, 260f

Power supplies, high voltage, 204f
circuit, half-wave rectifier, 209
ladder network, 210f
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ripple, 209
Precession, orbit, 150
Primary, transformer, 204

inductance, 205
Principal plane, 116

relation to transfer matrix, 173
in system with curved axes, 130

Proton, properties, 10
Pulsed current measurement:

current viewing resistor (CVR), 276f
electro-optical, 281f
magnetic pickup loops, 278f
Rogowski loop, 279f

Pulsed power generator, 231f
accelerator applications, 232
Blumlein line, 250f
characteristic impedance, 235
critically damped LRC circuit, properties,

235
diagnostics on, 267f
impulse generators, 236f
inductive energy storage, 236
LC generator:

circuit, 238f
properties, 239f

Marx generator:
circuit, 237
properties, 238

matching condition to load, 235
peaking capacitor circuit, 260
power compression cycle, 258f
properties, 231
pulse-forming-network, 254f
pulse shaping by saturable core inductors,

267
risetime of current and power, 204
role of saturable core inductor switches,

263
series transmission line circuits, 250f
simple model, 202
switching by saturable core inductors, 266
transmission line:

circuit, 248
properties, 241f

Pulsed voltage measurement, 270f
balanced divider, 273
capacitive divider, 273

compensated, 276
capacitive pickup, 275f
compensated divider with water resistor,

273f
inductive correction with magnetic pickup

loop, 278f
inductive divider, 273
limitations,267f
resistive divider:

compensation, 272f
sources of error, 271f

Pulse-forming-network, 254f
characteristic impedance, 254
Guillemin network,255f
transmission line equivalent circuit, 254

Q parameter:
combinations, 379
cylindrical cavity, 373
definition, 364
resonant circuit, 365

Quadrupole field:
electrostatic, 61f
electrostatic potential, 62
magnetic, 96

Quadrupole focusing channel, 187
betatron wavelength, 193, 195
choice of phase advance, 191
resonance instabilities in circular

accelerator, 194f
stability condition,188, 192f

Quadrupole lens:
doublet, 176f

transfer matrix, 177
approximate form, 178

magnetic, 134
radio-frequency (RF), 483f
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transfer matrix, 166
approximate form, 178

triplet, 178
transfer matrix, 179

Racetrack microtron, 493f
advantages 493
double-sided microtron (DSM), 498f
injection into, 494f
geometry, 493f
problems of focusing and beam breakup

instability, 497f
spatial separation between orbits, 497
synchronous particle condition, 495f

Radio-frequency quadrupole accelerator
(RFQ), 482f

dipole mode, 493
electric fields in, 487
electrode design, 490f
electromagnetic modes in, 492f
electrostatic approximation, 483
electrostatic potential, expression for, 490
geometry, 486, 491, 492
ion injection application, 482f
limit on accelerating gradient, 490
manifold, 493
motion of synchronous particle, 487f
transverse focusing in, 483f, 489f

RC time, 203
Rectifier, half-wave, 209
Relativity, special, 15f

postulates of, 15f
Remanence flux, 93

magnetic, 102
Residuals, method of successive
overrelaxation, 55
Resistivity, volume, 60
Resistor, 198f

impedance, 360
power dissipation, 199

Resonance, 363
Resonant accelerators, properties, 356

Resonant cavity, 362
analogy with quarter wave line, 384
arrays for particle acceleration, 455f
comparison with induction linear

accelerator cavity, 367
coupled array, 459f
cylindrical, 367f, 371f
disk and washer structure, 466, 473
electric and magnetic coupling between

cavities, 460
high order modes, effect, 373f
inductive isolation in, 362f
lumped circuit analogy, 362f
matching power input, 380, 385
for particle acceleration, 455
power exchange, 376, 385
power losses, 363f, 373
Q parameter, 373
re-entrant, 365f
resonance width, 365, 373
resonant modes, 367f, 371f
role in RF accelerators, 454
side coupled cavities, 469
stored energy, 373
transformer properties, 377

Resonant circuits, 362f
Resonant modes, 367f

of array of coupled cavities, 462f
degeneracy, 376
nomenclature, 371
pi mode, coupled cavities, 464
pi/2 mode, coupled cavities, 466f
of seven coupled cavities, 464
TE vs. TM, 391
TE11, 393
TE111, 374f
TEM, 387f, 399f
TE210, in RFQ, 493
TM10, 388, 390f
TMn0, dispersion relationship, 400
TM010, cylindrical cavity, 370f, 372, 373
TM010, in beta-lambda and beta-lambda/2
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structures, 456
TM020, cylindrical cavity, 370, 372
TM0n0, cylindrical cavity, 370, 371
TM110, 445f
of two coupled cavities, 460f

Rest energy, 9
Rest frame, 13
Rest mass, 11
Reversible compression, particle orbits:

of phase oscillations,424f
properties, 338f
relativistic, 343

RF bucket, 422
Rogowski loop, 279f

geometry, 280
properties, 281
sensitivity, 280, 281
theory, 279f

Rogowski profile, 219f

Saturation induction, 93
Saturation wave, in magnetic core, 295f
Secondary, transformer, 204
Secondary emission coefficient, 215, 479
Sector magnet, 127f

focal properties, 45 degrees, 498f
horizontal direction, definition, 128
with inclined boundaries, focusing, 520f
vertical direction definition, 128

Septum, for beam extraction, 508
Shunt impedance, 452
Side coupled linac, 465, 469f
SIN cyclotron, 528f
Skin depth, 291, 293, 373
Slow wave, non-existence in uniform
waveguides, 393
Slow wave properties:

non-existence in uniform waveguide, 393
radial defocusing of captured particles, 476f
rest-frame description:

non-relativistic, 475f
relativistic, 477

Slow wave structures, 393f
capacitively loaded transmission line, 394f,

401 f
dispersion relationship, iris-loaded

waveguide, 403f
energy flow in, 449
individually phased cavity array, 398
iris-loaded waveguide, 395f

dispersion relationship, 403f
frequency equation, 447f

Solenoid, 68
Solenoidal magnetic lens, 125f
Space charge, 64
Sparks, 216
Spectrograph, 180 degree for charged
particles, 128
Spectrometer:

dual-focusing magnetic, 133f
orange, 131

Speed of light, c, 15
Squares, method of, 53
SSC (Superconducting Super Collider), 543
Stability bands, 189
Stanford Linear Accelerator (SLAC), 442
Stationary frame, 13
Stoke's theorem, 48f
Storage ring, 503f, 539
Stream function, 72
Strong focusing, 550f

acceptance, 551
comparison with weak focusing, 550f
effect of alignment errors

Successive overrelaxation, method of, 55f
with space charge, 67

SUPERFISH code, 455
Superposition, electric and magnetic fields,
64, 89
Surface charge, dielectric materials, 79
Surface current, paramagnetic and
ferromagnetic materials, 88
Switch, 198

closing, 198, 231
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opening, 198, 236
saturable core inductor, 263f
spark gap, high power, 259

Synchrocyclotron, 502, 523f
beam extraction from, 523f
comparison with cyclotron, 523

Synchronous particle, 410f
condition for:

individually phased cavities, 411f
racetrack microtron, 495f
Wideroe accelerator, 454

Synchronous phase, 411
Synchrotron, 502, 531f

energy limits, 535
focusing cell, definition, 533
geometry, 531f
longitudinal dynamics, 544f
magnets, separated function, 532
principles of operation, 531f
strong focusing in, 550f
superperiod, 533
synchronization condition, 546f
synchrotron radiation in electron

accelerator, 535f
transition energy, 544, 549f
types of, 502f
weak focusing, 534

Synchrotron oscillations,544, 549
Synchrotron radiation, 535

beam cooling by, 536
energy limits, electron synchrotron,535f
expression for, 535

Tandem Van de Graaf accelerator, 222, 224
Telegraphist's equation, 245
Termination, of transmission line, 246f, 381f
Thick lens equation, 119
Thin lens array:

orbital stability,182, 187
particle orbits in, 179f, 187

Thin lens equation, 119
Time dilation, 16f

Time domain, 198, 240
Topics, organization, 4f
Toroidal field sector lens, 131
Torus, 68f
Townsend coefficient, first, 214, 216
Townsend discharge, 220
Transformation:

Galilean, 13f
Lorentz, 20f
Newtonian:

kinetic energy, 14
velocity, 14

relativistic, velocity, 21
Transformer, 204f

air-core, 204f
droop, 207f
energy losses, 208
equations, 206
equivalent circuit models, 206f
impedance transformation, 207
pulse, 207
role of ferromagnetic material, 207f
volt-second product, 209

Transform function, of a diagnostic, 272
Transit-time factor, 473f
Transmission line, 240f

capacitance of, 249
capacitively loaded, 343f
dispersion relationship, 401f
coaxial, properties, 240f
conditions for TEM wave, 243
current diagnostics in high power line, 277
equations, time domain, 243f
frequency domain analysis, 380f
at high frequency, 388
inductance of, 247
lumped element circuit model, basis, 242f
matched termination, 247
parallel plate, properties, 241
as pulsed power modulator, 246f
pulse-forming-network equivalent, 254f
pulselength, as pulsed power modulator,
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249
quarter-wave line, 384
radial, properties, 317f
reflection coefficient, 382
relation to pulse forming networks, 240
solutions of wave equation, properties,

245f
stripline, properties, 241
termination, 246
transformer properties, 382f
transmission coefficient, 382
two-wire, properties, 241
velocity of wave propagation, 246
voltage diagnostics in high power line, 275f
wave equation, 245
wave reflection at termination, 246f, 381f

Trimming coils, in cyclotron, 526
Triton, properties, 10
Two-terminal elements, 197f

UNILAC accelerator, 471

Van de Graaff accelerator, 221
equipotential shields in, 225f
minimizing electric field stress,223f
parameters, 221f
principle of operation, 221f
tandem, 222, 224
voltage grading, 223f
voltage measurements, 269f

Vector, particle orbit, 166, 183f
Velocity, 11
Voltage, measurement, 267f

generating voltmeter, 269f
resistive divider, 269
resistive shunt, 268f
see also Pulsed voltage measurement

Water:
in coaxial transmission line, 250
dielectric properties, 80

microwave absorption, 80

electrostatic energy storage, 85, 212
insulation properties, fast pulse, 212
in radial transmission line, 319
resistors, 271

Waveguides, 386f
applications, 387
comparison to transmission line, 387
cutoff frequency, 387, 392
dispersion in, 387
lumped-circuit-element analogy, 387f
phase velocity in, 393
properties, 387f
slow waves, see Slow wave structures
solutions for TM10 mode, 391f

Weak focusing, 150
Whiskers, 227f

effect on vacuum insulation, 229f
enhancement of field emission on metal

surface, 227
removal by conditioning, 229
vaporization,,227f

Wideroe accelerator, 453f
limitations, 454
synchronous particle in, 454

Work, definition, 12

ZGS (Zero-gradient Synchrotron), 133, 534
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